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Abstract:- In this paper, we introduce a new clustering algorithm based on Lehmer measure for simplifying the 
order of large scale dynamical system. This algorithm is applied with the combined advantages of retaining the 
dominant poles and the Pade approximation. The dominant pole algorithm adapted to select poles to obtain the 
cluster centre. The selection of poles for the cluster is based on from the viewpoint of important poles contribution 
to the system is preserved by dominant pole algorithm.  Having obtained the denominator polynomial of the 
reduced model, the numerator terms are obtained using the Pade approximation method. The reduction algorithm is 
fully computer oriented. The reduced model is stable if the original model is stable. Moreover, this method gives a 
better approximation in both the transient and the steady-state responses of the original system. 

Key- Words :- Order Reduction; Clustering; Lehmer measure; Dominant pole; Pade approximation; Integral Square 
Error. 
 
 

1 Introduction 
The model order reduction (MOR) is used to reduce 
high order system (HOS) into low order system (LOS) 
which retains the behavior of the original system 
which is important in many fields of engineering. The 
approximation of HOS with LOS is one of the 
important problems in system control theory. The use 
of a reduced order model makes it easier to implement 
analysis, simulations and control system designs. 
Therefore, it is necessary to obtain low order 
representation of original higher order models. The 
aim of the MOR is to reduce the order of a given linear 
system, such that the principal and important 
specifications of the HOS are retained in the reduced 
order model with minimum error. 
A number of simplification methods exist in the 
frequency domain. Pade approximation [1], [2] uses 
the concept of dominant poles and matching the few 
initial time moments of the systems. It receives a 
drawback of deciding the dominant poles, which 
should retain in the reduced order model. The 
continued fraction expansion approximation method 
[3]–[5] has many useful properties such as 
computational simplicity, the fitting of the time 
moments, and the preservation of the steady-state 
responses. 

Various methods have also been developed for 
obtaining a stable, low-order model if the original 
system is stable. [6] Uses the stability criterion of 
Routh for obtaining the reduced model. In their 
method, the low order models are derived by a suitable 
truncation of the original transfer function in the α-β 
expansion.[7], [8] suggested the equivalent but simpler 
procedures. The procedure in [8] eliminates the two 
reciprocal transformation used by Hutton and 
Friedland. This is achieved by modifying the alpha and 
beta tables used in [6]. [9] Using the Hurwitz 
polynomial approximants as characteristic 
polynomials, the numerator dynamics of reduced 
models are then determined by partial Pade 
approximation of a given large-order model. These two 
methods are correspondent [10] and called the Routh-
Hurwitz method. It is also noted that if the dominant 
poles are not closest to the origin, the Routh-Hurwitz 
approximation fails to obtain a good lower order 
model. In fact the stability-equation method  [11]–[13] 
also suffers from the same drawback because far-off 
poles and/or zeros of the stability equation of the 
characteristic polynomial are discarded. To overcome 
this problem, a generalization of the Routh method is 
developed by [14] to obtain several different reduced 
models. All stability based method is developed by 
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first approximating the characteristic polynomial 
followed by determining the coefficients of the 
numerator of the reduced model. Various constructions 
in consideration of stability problem are Chebyshev 
[15], [16] and Hermite [17] polynomial which deal 
with the stability problem with the original model. 
However, these methods may fail because of pure 
imaginary poles. [18] proposed stability-equation 
method using the Mihailov criterion and the Pade 
approximation technique. In clustering technique [19], 
zeroes and poles are collected to form clusters and 
these clusters are formulated by inverse distance 
measure (IDM) criterion to find cluster centers. [20] 
proposed a mixed method for finding stable reduced 
order models of large-scale systems using Pade 
approximation and clustering technique. [21], [22] 
modified the pole clustering by an iterative method. 
The difficulty with these methods is in selecting poles 
for the clusters. [23], suggested a method based on 
eigen spectrum analysis which consists of all poles of 
the high order system. The poles of the reduced model 
are uniformly spaced between the first and last poles. 
In this paper, it is proposed that the denominator  of 
reduced model is constructed from the new clustering 
method based on modified Lehmer measure [24]. The 
method uses the concept of dominant pole algorithm 
[25]  for the selection poles for the clustering. Pade 
approximation method is used to find the parameters of 
the numerator polynomial of the reduced model. 
Examples of model reduction are included, which 
compare the proposed approach with earlier methods 
to illustrate the advantages of the method. This 
proposed method has the advantages that the reduced 
order model is always stable if the original one is 
stable. Due to the selection of the importance of the 
poles the accuracy of the reduced order model is 
improved, and also reduced model leads to good 
approximations in both transient and steady-state 
responses.  

3 Problem formulation 
Consider the linear, time-invariant (LTI) stable system 
defined by transfer function a 
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In model reduction we are faced with the problem of 
finding a reduced-order LTI system,   
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of order r, r ≪n, which approximates G(s). The aim of 
the model order reduction is to reduce the order of a 
given linear system, such that the principal and 
important specifications of the full order system are 
retained in the reduced order model with minimum 
error. 

2 The proposed model reduction method 

Step 1: Analysis for relative importance of poles 

Relative importance of all poles of original system is 
measured by the Dominant Pole Algorithm (DPA). We 
assume the transfer function H(s) can be expressed as 

𝐻𝐻(𝑠𝑠) = ∑ 𝑅𝑅𝑗𝑗
𝑠𝑠−𝜆𝜆𝑗𝑗

𝑛𝑛
𝑗𝑗=1                                (3) 

Where, the sum is taken over all poles and Rj is called 
the residue. The weighted residue is defined as ρj 

𝜌𝜌𝑗𝑗 = �𝑅𝑅𝑗𝑗 �
�𝑅𝑅𝑅𝑅(𝜆𝜆𝑗𝑗 )�

                                     (4) 

A large weighted residue magnitude 𝜌𝜌𝑗𝑗  implies 
dominance, i.e., good observability and controllability 
of the pole λj in the transfer function G(s). The peaks 
of the Bode magnitude plots occur at frequencies 
which are close to the imaginary parts of the dominant 
poles of G(s)[26]. For example, if 𝜌𝜌3 has the largest 
value, then the term 𝑅𝑅3

𝑠𝑠−𝜆𝜆3
 is the most important term 

and – λ3 is considered the most important pole. If 𝜌𝜌2 
has the next largest value, then the term 𝑅𝑅2

𝑠𝑠−𝜆𝜆2
 is the 

second most important term and – λ2 is considered the 
next important pole of the original system. The poles 
are sorted following decreasing weighted residue, i.e., 

𝜌𝜌1 ≥ 𝜌𝜌2 ≥ 𝜌𝜌3 ≥ ⋯𝜌𝜌𝑛𝑛    

We call λ1, λ2 . . . , λn are the corresponding n poles of 
the original system with their relative importance.  

Step 2: Determination of denominator polynomial 
Dr(s) 

Based on the distribution of the r important poles, r 
numbers of cluster centers are formed. The number of 
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cluster centers to be calculated is equal to the order of 
the reduced system. The poles are distributed into the 
cluster center for the calculation such that none of the 
repeated poles present in the same cluster center. The 
minimum number of poles distributed per each cluster 
center is at least one.  

Selection of poles for the clusters is based on relative 
importance of the poles computed using DPA. The first 
cluster includes first important pole and all others 
poles less than the second important poles of the 
original system and so on.  

The cluster center of the reduced order model can be 
obtained by using the modified Lehmer measure 
criterion. The procedure described similar to the 
method proposed by [20] but the pole cluster 
calculated in the proposed scenario are based on the 
dominant pole in that particular cluster center. 

Let k be the number of poles in a cluster are λ1, λ2, 
λ3,…..,λk. Where λ1 is the most important pole 
computed from step 1. And the λ2-λk are the poles 
greater than the second important poles. Compute the 
pole cluster center using modified Lehmer measure 
criterion identifies the cluster center as 
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Where Cc is the cluster center from r real poles of the 
original system 

Let, m pair of complex conjugate poles in a cluster is
1 1 2 2[( ), ( )..........( )]m mj j jα β α β α β± ± ±  then the modified 

Lehmer measure criterion is used to find the cluster 

center in the form of ( )c cA jB±  
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For obtaining the denominator polynomial for rth order 
reduced system, following cases may occur as in [22]. 

Case-1: If all modified cluster centers are real, then the 
denominator polynomial of the kth order reduced model 
can be obtained as 

1 2( ) ( )( )...( )r c c crD s s s sλ λ λ= − − −             (6)                                                                        

Where 1 2, ,.......,c c crλ λ λ  are 1st , 2nd ,…..,rth cluster 
center respectively. 

Case2:- If all modified cluster centers are complex 
conjugate then the kth order denominator polynomial is 
taken as:  

1 1 /2 /2( ) ( )( )........( )( )c c cr rrD s s s s sψ ψ ψ ψ
• •

= − − − −
 

        (7)                   

ψ
•

andψ


 are complex conjugate cluster center. 

1c c cA jBψ
•

= + and 1c c cA jBψ = −


 
Case-3: If some cluster centers are real and some are 
complex conjugate. For example, (k - 2) cluster centers 
are real and one pair of the cluster center is complex 
conjugate, then rth order denominator can be obtained 
as: 

1 21 2 ( 2)( ) ( )( )....( )( )( )c cr c c c rD s s p s p s p s sψ ψ
•

−= − − − − −


        (8)          

Hence, the denominator polynomial Dr(s) is obtained 
as: 

1
1 1 0( ) ..........r r

r r rD s d s d s d s d−
−= + + + +               (9)                                                     

Step 2: Determination of the numerator polynomial 
using Pade approximation technique. 

Coefficients of numerator for the reduced model are 
obtained by Pade approximations. The original nth-
order system can be expanded in power series about s 
= 0 as  
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The constant coefficients of the power series expansion 
at s=0 are calculated as follows. 
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Hence the reduced rth order is given as  
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Dr(s) is known through clustering method. For Gr(s) 
equation is a Pade approximation of G(s). 

Where,   
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where i=1,2,3,…….,r-1 

The comparison is done by computing the error index 
known as integral square error (ISE) [6]  in between 
the transient parts of the original and reduced order 
model, is computed to evaluate the quality, which is 
given by: 

                          
2

0

[ ( ) ( )]rISE y t y t dt
∞

= −∫                    (14)                                                                                                                                                              

Where y(t) and yr(t) are the unit step responses of 
original and reduced order systems respectively. This 
error index is computed for various reduced order 
models which are obtained by us and compared with 
the other order reduction methods available in the 
literature. 

4 Numerical Experiments 

To evaluate the efficiency of the proposed method, it 
has been applied to three test systems, where a step-by-
step procedure is given for the first test system. 

Test example 1: In this test case, consider the well-
known 4th order system with transfer function from the 
literature [23], [27]–[29].  

3 2

4 4 3 2

7 24 24( )
10 35 50 24
s s sG s

s s s s
+ + +

=
+ + + +  

To develop second order reduced model, two pole 
clusters centers are required. Based on step 1 the 
cluster one includes only one pole -1, and second 
cluster include pole (-2,-3 and -4). By applying the 
improved pole clustering method, the improved cluster 
poles are obtained as λc1=1and λc2=2.3844. The 
corresponding reduced order denominator polynomial 
is 

2( ) 3.384 2.384rD s s s= + +  

Furthermore, as specified in step 2, the coefficients of 
numerator polynomial of the required second order 
reduced model are obtained as.  

2 2

0.7523 2.384( )
3.384 2.384

sG s
s s

+
=

+ +  

 
Figure 1: Comparison with step responses of original model 

and reduced model of example 1 

The step response of the original and reduced order 
models is shown in figure 1 of test system 1. The 
quantitative comparison such as integral square error, 
steady state value, maximum overshoot, rise time, 
settling time between various 2nd order models is 
presented in table 1. It is distinctly ascertained that the 
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specification of the reduced order model achieved by 
the proposed method are close to the specification of 
the original system, and more serious than other 
methods. 
 

Table 1. Quantitative Comparison between various 
reduced-orders for example 1 

Method of 
order 

reduction

 

ISE 
Steady 
state 
value 

Overshoot 
(%) 

Rise 
time 
(Sec.) 

Settling 
Time 
(Sec.) 

Original 
Model - 1 0 2.26 3.93 

Proposed 
method 2.6× 10-4 1 0 2.30 4.04 

[29] 3.5 × 10-

4 1 1.24 2.13 3.15 

 [30] 2.78 × 
10-3 1 0 2.53 4.55 

[23] 2.85 × 
10-3 0.99 1.3 2.19 3.22 

 [12] 4.296 × 
10-3 1 1.07 2.3 3.41 

[31] 1.88 × 
10-2 1 2.69 2.2 5.57 

 
Test example 2: Consider the well-known 6th order 
system with transfer function from the literature 
[32],[33].  

5 4 3 2

6 6 5 4 3 2

2 3 16 20 8 1( )
2 33.6 155.94 209.46 102.42 18.3 1

s s s s sG s
s s s s s s

+ + + + +
=

+ + + + + +
To develop second order reduced model, two pole 
clusters are required. Based on step 1 the cluster one 
includes poles ( -0.1, -0.2, -0.5, -1.0), and second 
cluster include pole (-5 and -10). By applying the 
improved pole clustering method, the improved cluster 
poles are obtained as λc1=0.1066 and λc2=6. The 
reduced order denominator polynomial is obtained as  

2( ) 6.107 0.6393rD s s s= + +  

Furthermore, as specified in step 2, the coefficients of 
numerator polynomial of the required second order 
reduced model are obtained as.  

2 2

-0.48088 .630( )
6.107

9
0.6393

6sG s
s s

+
=

+ +  
The step response of the original and reduced order 
models is shown in figure 2 of test system 2. The 
quantitative comparison such as integral square error, 
steady state value, maximum overshoot, rise time, 
settling time between various 2nd order models is 
presented in table 2. It is distinctly ascertained that the 
specification of the reduced order model achieved by 
the proposed method are close to the specification of 

the original system, and more serious than other 
methods.

 

 

Figure 2: Comparison with step responses of original model 
and reduced model of example 2

 
Table 2.Quantitative Comparison between various reduced-

orders for test system 2 
Method of 

order 
reduction

 

ISE 
Steady 
state 
value 

Overshoot 
(%) 

Rise 
time 
(Sec.) 

Settling 
Time 
(Sec.) 

Original 
Model - 1 0 22.7 40 

Proposed 
method 0.0227 1 0 20.6 37.2 

[34] 0.5337 1 7.61 14.3 53 
[33] 2.8887 1.1 7.46 15.1 50.4 

 

Test example 3: In this final example, we will 
consider an 8th order system transfer function that has 
been recently considered by different researchers[19], 
[35]. Consider 8th order model given by 
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Furthermore, as specified in step 2, the coefficients of 
numerator polynomial of the required fourth order 
reduced model are obtained as  
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Figure 3: Comparison with step responses of original model 

and reduced model of example 3 

Table 3.Quantitative Comparison between various 
reduced-orders for example 3 

Method 
of order 

reduction

 

ISE 
Steady 
state 
value 

Over-
shoot 
(%) 

Rise 
time 
(Sec.) 

Settling 
Time 
(Sec.) 

Original 
Model - 1 0 3.89 7.57 

Proposed 
method 1.827 1 0 3.86 7.70 

 [35] 8.550 1 0 3.84 7.34 
 

The step response of the original and reduced order 
models of test system 3 is shown in figure 3. The 
quantitative comparison such as integral square error, 
steady state value, maximum overshoot, rise time, 
settling time between various 2nd order models is 
presented in table 3. It is distinctly ascertained that the 
specification of the reduced order model achieved by the 
proposed method are close to the specification of the 
original system, and more serious than other methods. 
 
4 Conclusion 

In this method, new pole clustering method along with a 
simple mathematical process is suggested to obtain poles 
of the reduced order system. The selection of poles to the 
obtained cluster center is based on from the viewpoint of 
important poles contribution to the system is preserved 
by dominant pole algorithm. The coefficient of 
numerator polynomial is obtained using Pade 
approximation technique. The closeness between the 

original and approximated system is calculated by using 
ISE as quality parameters for the given step input. Ramp 
input and impulse input can also be examined.  This 
method preserves stability in a reduced order model if 
the given higher order system is stable. This method has 
been extended for a discrete system as well with the 
combination of another method. 
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