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Abstract: In this paper, synchronization problem of supply chain chaotic system is carried out with active and
adaptive integral sliding mode controlling method. Active integral sliding mode synchronization is performed for
two identical supply chain systems by assuming that all parameters of the systems are known. When the internal
and external distortion parameters of the system are considered unknown, an appropriate feedback controller is
developed based on the adaptive integral sliding mode control mechanism to synchronize two identical supply
chain chaotic systems and to estimate the unknown parameters of the system. The stability evaluation of the
synchronization methods are performed by the Lyapunov stability theorem. In addition, the performance evaluation
of the designed controllers and the theoretical analysis are verified by some illustrative numerical simulations.
Simulation results indicate excellent convergence from both speed and accuracy points of view.
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1 Introduction
Chaos synchronization is an extension of the concept
of chaos control. In the past to decades, the chaos
synchronization has got considerable attentions by the
researchers because of its unpredictable complex be-
haviour. The ultimate goal of the synchronization is
to design a feedback controller such that the follower
system tracks the trajectories of the leader chaotic sys-
tem after a short initialization time interval. However,
the challenges occur when the chaotic systems are ex-
posed to some uncertainty, different initial values and
unknown system parameters. So, some actions have
to be taken in order to stabilize and to improve the
synchronization task.

Chaos phenomenon usually appears in nonlinear
dynamical systems. A nonlinear dynamical system
has chaotic behaviour if it is sensitive to the initial val-
ues of its state variables. Since Lorenz [1] in 1963 has
found his 3D chaotic system, many chaotic systems
have discovered and studied by the researchers, such
as: Chen system [2], Lü system [3], Liu system [4],
Genesio system [5], BhalekarGejji system[6], supply
chain system [7], and many other chaotic systems [8].

Nowadays, supply chain system, has got consid-
erable attention in analysis, modelling and planning
because of its so many economical applications[9,
10]. The purpose of this paper is to investigate the
synchronization and the control of chaos in the supply
chain system.

1.1 Literature review

In the literature, the first method on control of the
chaotic system has published by Ott et al in [11] as
name OGY method and the first identical synchro-
nization method has developed by Pecora et al in [12].
Since then, different methods have been proposed for
the synchronization and the anti-synchronization of
the chaotic systems either identical or non-identical
ones. Active method [13, 14], impulsive method [15],
projective method [16, 17], lag method [18], slid-
ing mode method [19, 20] and backstepping control
method [21] are some of the investigated synchroniza-
tion methods. Nevertheless, more often the parame-
ters of a chaotic system are fully or partially uncertain
or unknown, so these methods are hardly applicable.
To overcome this problem, many researchers concen-
trate on Adaptive method [22, 23, 24, 25], which are
extensions of adaptive control theory.

However there exist many adaptive related ap-
proaches in the literature, but there are minor works
carried out on adaptive integral sliding mode synchro-
nization method. Integral sliding mode method for
controlling a pneumatic servo system in [26], adap-
tive integral sliding Control of single electromag-
netic guiding system in [27], synchronization of uni-
fied chaotic systems via sliding mode in [28], adap-
tive sliding mode synchronization of two chaotic sys-
tems in [29], genetic algorithm based integral slid-
ing mode method in [30] and synchronization of the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Hamed Tirandaz

E-ISSN: 2224-2856 54 Volume 13, 2018



GenesioTesi chaotic system via adaptive sliding mode
method in [31] are some of the researches based on
the adaptive sliding mode method.

Recently, supply chain system has got a lot of
attention by the researchers [32, 33, 34, 10, 35, 36].
Supply chain system wants to afford of the customers
demands accurately on time with minimum possible
cost. Supply chain systems have usually some un-
known/uncertain coefficient in their dynamical sys-
tems. The behaviour of the supply chain system would
be chaotic in some situations as the behaviour re-
sults of the customers or purchasing decisions. The
deficiency of supply shortages, order batching, price
fluctuations and lead times may result a phenomenon
namely, bullwhip effect. A number of studies are de-
voted to find the bullwhip effect resources to reduce
the uncertainty[7, 37, 38].

Chaotic behaviour of the supply chain system at
the production or inventory levels is not pleasant. So
the control of a supply chain system may eliminate its
nonlinear factors of the system. And also the synchro-
nization task of the supply chain systems can equilib-
rium the demand and resource planning of the system.

Anne et al in [39], have proposed an adaptive
method for synchronization of the supply chain sys-
tem with unknown internal or external disturbances.
In order to improve their competitiveness every en-
terprises have to use supply chain management sys-
tem. Goksu et al in [40], have designed a linear feed-
back controller to control and to synchronize the sup-
ply chain system. Chaos synchronization of supply
chain system is carried out by using radial basis func-
tion in [7] to counteracted the bullwhip effect. In [37],
the bullwhip effect is challenged by the linear control
theory. So far, there is not any published article on
adaptive-integral sliding mode synchronization of the
supply chain chaotic systems, which is the novelity of
this paper.

1.2 approach and contribution

The sliding mode control method is often used be-
cause of its inherent advantages of easy realization,
fast response and good transient performance, as well
as its insensitivity to parameter uncertainties and ex-
ternal disturbances.

In the following, the supply chain system and its
chaotic behaviour is described. Then an active integral
sliding mode scheme is developed for synchronization
of the leader-follower supply chain systems. After
that adaptive integral sliding mode synchronization of
suppy chain system is performed with unknown inter-
nal and external distortions; and also an appropriate
designed feedback controller is proposed to track the
trajectories of the leader supply chain system by the

corresponding follower system. Chaos synchroniza-
tion of the leader-follower systems are proved by the
Lyapunov stability theorem. At the end, the validity
of the proposed method is assessed by some provided
numerical simulations.

The structure of the consequent sections of this
paper are outlined as follows: In Section 2, some pre-
liminaries and theoretical information about chaotic
supply chain system is provided. The proposed iden-
tical active integral sliding mode control of the sup-
ply chain system is investigated in Section 3. Adap-
tive integral sliding mode synchronization is given in
Section 4, where the internal and the external distor-
tions of the supply chain system are considered un-
known. Some numerical simulation results related to
the represented approaches are carried out in Section
5to study the effectiveness of the proposed synchro-
nization schemes. Finally, in Section 6, some conclu-
sion remarks are provided.

2 Preliminaries and mathematical
modelling

The supply chain system can be represented based on
the three main components: producers, distributors
and final customers. In [39], the dynamic behaviour
of the supply chain system is given by a three dimen-
sional equations as:

ẋ1 = (m+ δm)x2 − (n+ 1 + δn)x1 + d1

ẋ2 = (r + δr)x1 − x2 − x1x3 + d2 (1)

ẋ3 = x1x2 + (k − 1− δk)x3 + d3

Where Ẋ = (ẋ1, ẋ2, ẋ3) is the time derivative of
the state variables vector X = (x1, x2, x3). Linear
disorders δm, δn, δr and δk are the amount of purtur-
bance of the constant parameters m,n, r and k, re-
spectively. d1, d2 and d3 are the three nonlinear ex-
ternal distortions related to the states x1, x2 and x3,
which are corresponding to the three quantities as
demand, inventory, and produced, respectively. The
component m indicate the distributors delivery effi-
ciency; the constant parameter n denote the customer
demand rate; the constant parameter r implies the dis-
tortion coefficient and k is the safety stock coefficient.

Chaotic behaviour of the supply chain system is
obtained with distributors values as: m = 10, δm =
0.1, n = 9, δn = 0.1, r = 28, δr = 0.2, k =
−5/3, δk = 0.3 and external perturbation values as
d1 = 0.2 sin(t), d2 = 0.1 cos(5t) and d3 = 0.3 sin(t).
The initial state values are considered as x1 = 0, x2 =
−0.11 and x3 = 9 along this paper. Time series of the
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supply chain system are given in Figure (1). In ad-
dition, the 3D phase plane chaotic behaviour of the
system are shown in the Figure (2).

The 3D chaotic supply chain system presented in
(1) can be re-written as follows:

Ẋ =(AP +A∆)X

+ x1 ·BX +D (2)

Where D = (d1, d2, d3)T is the nonlinear dis-
tortion vector. P = (m,n, r, k) denotes the con-
stant distribution parameter of the leader system (1)
and ∆ = (δm, δn, δr, δk) is the distortion vector
of the leader system (1). The coefficient matrix of
AP , A∆, B ∈ R3×3 are given as:

AP =

 −n− 1 m 0
r −1 0
0 0 k − 1

 ,
A∆ =

 −δn δm 0
δr 0 0
0 0 −δk

 , B =

 0 0 0
0 0 −1
0 1 0


(3)

The matrixes (AP +A∆) as the coefficient of vec-
tor X in Equation (2) has three eigenvalues as: λ1 =
−23.0292, λ2 = 11.9292, λ3 = −2.9667. Since
eigenvalue λ2 is positive, it can conclude from the
Lyapunov stability theory[41] that the supply chain at-
tractor presented in (2) is not stable at its origin equi-
librium point E0 = (0, 0, 0).
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Figure 1: Time series phase portrait of the chaotic
supply chain system for state values x1(t), x2(t) and
x3(t), respectively.

3 Active integral sliding mode syn-
chronization

In this section, an active integral sliding mode for syn-
chronization of two identical supply chain systems is

Figure 2: Three-dimensional phase portrait of the
chaotic supply chain system

designed. Let the supply chain chaotic attractor rep-
resented in matrix form (2) as the leader one. Then
the follower supply chain attractor can be presented
in matrix form as follows:

Ẏ = (AP +A∆)Y + y1 ·BY +D + U (4)

Where Y = (y1, y2, y3) ∈ R denotes the follower
state variables vector and U = (u1, u2, u3) indi-
cates the feedback controller to be designed. The ma-
trix coefficients AP , A∆, B ∈ R3×3 are defined in
(3) and also the external distortion D ∈ R3×1 =
(d1, d2, d3)T is considered constant vector related to
state variables.

The error vector between the states of two identi-
cal leader chaotic attractor (2) and the follower attrac-
tor (4) can be given as:

Es = Y −X (5)

Then, the error dynamics between two chaotic at-
tractors can be obtained as follows:

Ės = Ẏ − Ẋ (6)

The ultimate goal of synchronization is to design
an appropriate feedback controller to force the motion
trajectories of the follower chaotic attractor to track
the leader one. To this end, an active integral slid-
ing mode controller is designed in this section that is
capable to synchronize the leader and the follower at-
tractors; and to force the synchronization error in (5)
to converges to zero. Given the dynamic synchroniza-
tion errors in (6), then the sliding surface of the active
integral sliding mode control S = (s1, s2, s3) can be
defined as follows:

si =

(
d

dt
+ λi

)(∫ t

0
ei(τ)dτ

)
= ei + λi

∫ t

0
ei(τ)dτ , ∀i = 1, 2, 3 (7)
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Where λ = (λ1, λ2, λ3) is the constant coefficient in
the sliding surface function. Then the time derivative
of the sliding surface can be given in matrix form as
follows:

Ṡ = Ės + λEs (8)

Where S=(s1, s2, s3) is the sliding surface vector.
According to the exponential reaching law pre-

sented in [41], the derivative of the sliding surface can
be given as follow:

Ṡ = −ξ sgn(S)−KS (9)

Where ξ = (ξ1, ξ2, ξ3) and K = (k1, k2, k3) are the
positive real constant vectors and sgn(.) denotes the
signum function.

Considering the time derivative of the sliding sur-
face in (8) and the exponential reaching law presented
by Equation (9), one can obtain:

Ės + λEs = −ξ sgn(S)−KS (10)

This equation can be simplified by substituting
the synchronization error Es and its dynamical repre-
sentative Ės from the equations (5) and (6) as follows:

Ẏ − Ẋ + λY − λX = −ξ sgn(S)−KS (11)

Substituting the state variable vectors X and Y
and their dynamic representatives Ẋ and Ẏ from the
equations (2) and (4), gives:

(AP +A∆)Y + y1 ·BY +D + U

− (AP +A∆)X − x1 ·BX −D
+ λY − λX = −ξ sgn(S)−KS (12)

Then the following feedback controller can be re-
sulted:

U =− (AP +A∆)Es − y1 ·BY
+ x1 ·BX − λEs − ξ sgn(S)−KS (13)

Theorem 1 The motion trajectories of the follower
chaotic attractor in Equation (4) with the initial state
values Y (0) ∈ R3, using the feedback controller pre-
sented in (13) with coefficient vectors λ, ξ,K > 0,
will track the trajectories of the leader attractor in
Equation (2). Furthermore, the synchronization error
vector Es in Equation (5) asymptotically converges to
zero.

Proof: Let the Lyapunov candidate function as fol-
lows:

V =
1

2
S2 (14)

Clearly V is positive definite. The derivative of Lya-
punov function V with respect to the time is:

V̇ = SṠ = S(Ės + λEs)

= S

[
(AP +A∆)Y + y1 ·BY +D + U

− (AP +A∆)X − x1 ·BX −D + λY − λX
]

(15)

With substituting the designed feedback controller U
in (13), the derivative of Lyapunov function in (15)
can be simplified as:

V̇ = −ξ S sgn(S)−KS2 (16)

Hence V̇ is negative definite when the coefficient
vectors ξ andK are positive. Consequently, according
to the Lyapunov stability theorem, the leader supply
chain attractor in (2) and the follower attractor in (4)
will be asymptotically synchronized with the control
input vector of Equation (13). So the proof is com-
plete.

4 Adaptive integral sliding mode
synchronization

This section is devoted to adaptive integral sliding
mode synchronization of the supply chain chaotic
attractor. Along this section, the internal ∆ =
(δm, δn, δr, δk) and the external disturbance D =
(d1, d2, d3) parameter vectors of the supply chain at-
tractor are considered unknown. So the designed feed-
back controller and the parameter estimation strategy
are performed simultaneously.

Consider the supply chain chaotic attractor pre-
sented in matrix form (2), as the leader system. Then
the follower system can be given as:

Ẏ = (AP +A∆̂)Y + y1 ·BY + D̂ + U (17)

Where Y = (y1, y2, y3) is the state vector of the
follower supply chain attractor and U = (u1, u2, u3)
indicates the feedback control law of the closed-loop
control system, which have to be designed in such
way that aligns the behaviour of the follower attractor
to track the trajectories of the leader attractor, which
means two identical chaotic attractor (2) and (17) syn-
chronize with different initial leader and follower state
values. The constant matrix AP and B ∈ R3×3 can
be defined as follow:

AP =

 −n− 1 m 0
r −1 0
0 0 k − 1

 , B =

 0 0 0
0 0 −1
0 1 0


(18)
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Where P = (m,n, r, k) represents the con-
stant distribution vector and the estimated vector
D̂ = (d̂1, d̂2, d̂3) implicates the estimation of the
external nonlinear distortion parameter vector D =
(d1, d2, d3); and also matrix A∆̂ can be set as:

A∆̂ =

 −δ̂n δ̂m 0

δ̂r 0 0

0 0 −δ̂k

 (19)

Where ∆̂ = (δ̂m, δ̂n, δ̂r, δ̂k) denotes the estima-
tion of the internal linear distortion parameter vector
∆ = (δm, δn, δr, δk) of the leader system (2). In this
section, an adaptive integral sliding mode control law
will be designed to estimate the unknown parameters
and to synchronize the leader and the follower supply
chain attractors, simultaneously.

The synchronization error vectors between two
identical leader and follower attractors (2) and (17)
can be described as:

Es = Y −X , E∆ = ∆̂−∆ , ED = D̂ −D
(20)

Then, the dynamics of synchronization errors can
be obtained as follows:

Ės = Ẏ − Ẋ , Ė∆ =
˙̂
∆ = (δ̇m, δ̇n, δ̇r, δ̇k)

, ĖD =
˙̂
D = (ḋ1, ḋ2, ḋ3) (21)

The objective of adaptive synchronization is to
design an appropriate feedback controller to force the
motion trajectories of the follower chaotic attractor to
track the leader attractor when the parameters of the
leader attractor are unknown or uncertain. In this sec-
tion, an adaptive integral sliding mode controller is
designed that is capable to synchronize the leader and
follower attractors and to force the synchronization er-
rors in (20) to converge to zero.

Given the dynamic synchronization errors in (21),
then the sliding surface of the adaptive integral sliding
mode control S = (s1, s2, s3) and its time derivative
of sliding surface can be identified in the same way
as (7) and (8), respectively. And also the derivative of
the sliding surface obtained by exponential reaching
law presented in [41] can be defined as Equation (9).
Considering the time derivative of the sliding surface
in (8) and the exponential reaching law presented by
Equation (9), one can obtain:

Ės + λEs = −ξ sgn(S)−KS (22)

By substituting the synchronization errorEs from
equation (20), its dynamical representative Ės from

the equation (21), and the state variable dynamics Ẋ
and Ẏ from equation (2) and (17), respectively, gives:

(AP +A∆̂)Y + y1 ·BY + D̂ + U

− (AP +A∆)X − x1 ·BX −D
+ λY − λX = −ξ sgn(S)−KS (23)

Then the adaptive feedback controller can be
given as:

U =−APEs − λEs −A∆̂Es − y1 ·BY
+ x1 ·BX − ξ sgn(S)−KS (24)

Furtheremore, the parameter estimations can be
obtained as follows:

˙̂
δm = +s1x1 − k∆1(δ̂m − δm)

˙̂
δn = −s1x2 − k∆2(δ̂n − δn)

˙̂
δr = −s2x1 − k∆3(δ̂r − δr) (25)
˙̂
δk = +s3x3 − k∆4(δ̂k − δk)

and,

˙̂
D = −S −KDED (26)

Where K∆ = (k∆1, k∆2, k∆3, k∆4) and KD =
(kd1 , kd2 , kd3) are constant positive coefficients.

Theorem.2 The leader chaotic system repre-
sented in (2) with unknown parameter vectors ∆ and
D and the follower chaotic system in (17) as the rep-
resentatives of the supply chain attractors are glob-
ally and asymptotically synchronized with any ini-
tial state values X(0) and Y (0) ∈ R3, by the feed-
back control law given in (24) with coefficient vectors
λ, ξ,K > 0, and the estimation parameters presented
in (25). Furthermore, the vectors of synchronization
errors Es, E∆ and ED in Equation (20) asymptoti-
cally converges to zero.

Proof. Let the Lyapunov candidate function as
follows:

V =
1

2

(
S2 + E2

∆ + E2
D

)
(27)

It is obvious that V is positive definite. The derivative
of Lyapunov function V with respect to the time is:

V̇ = SṠ + E∆Ė∆ + EDĖD

= S(Ės + λEs) + E∆
˙̂
∆ + ED

˙̂
D

= S

[
(AP +A∆̂)Y + y1 ·BY + D̂ + U

− (AP +A∆)X − x1 ·BX −D

+ λY − λX
]

+ E∆
˙̂
∆ + ED

˙̂
D (28)
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Substituting the control law U in (24), the derivative
of parameter estimations ˙̂

∆ and ˙̂
D in (21), gives

V̇ = S

[
D̂ − (A∆̂ −A∆)X −D − ξ sgn(S)−KS

]
+ E∆

˙̂
∆ + ED

˙̂
D

= −ξ S sgn(S)−KS2 −K∆‖E∆‖22
−KD‖ED‖22 (29)

Where ‖.‖2 denotes the euclidean norm. Then,
the derivative of V is negative definite as the coeffi-
cient vectors ξ,K,K∆ and KD are all positive. Con-
sequently, according to the Lyapunov stability theo-
rem, the leader supply chain system in (2) and the fol-
lower system in (17) will be asymptotically synchro-
nized with the control input vector of Equation (24)
and the estimation parameters defined in (25). So the
proof is complete.

5 Numerical simulations

The objective of numerical simulations is to validate
the effectiveness and feasibility of the proposed ap-
proach for synchronization of two chaotic systems and
also identification of unknown distributions. In this
section, some numerical results related to the synchro-
nization of the two identical supply chain systems are
given. Numerical simulations have been carried out
using Matlab Simulink. The implementation program
is written based on Forth-order Runge-Kutta iterative
method with a fixed time-step size and a tolerance of
10−7.

For simulation purposes, the supply chain system
presented in (1) is considered as the leader system.
Then the synchronization between the leader and the
corresponding follower systems are done based on the
designed feedback controller and parameter estima-
tion strategy.

For chaotic behaviour of the supply chain sys-
tem (1), parameters are selected as: m = 10, δm =
0.1, n = 9, δn = 0.1, r = 28, δr = 0.2, k =
−5/3, δk = 0.3 and external perturbation values as
d1 = 0.2 sin(t), d2 = 0.1 cos(5t), d3 = 0.3 sin(t).

5.1 Active integral sliding mode synchro-
nization

Now, some results related to the synchronization of
the two identical supply chain chaotic systems via
active integral sliding mode presented in Section 3
is given. The initial state values of the leader and
the follower chaotic systems are assumed typically as

X(0) = (0,−0.11, 9)T and Y (0) = (7, 8, 2)T , re-
spectively.

The behaviour of the leader and follower systems
are given in Fig. (3). It is clearly evident from Fig-
ures. (3)that the expected synchronization between
the leader and the follower systems are obtained; and
the synchronization errors converge to zero as time
tends to infinity.
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Figure 3: Motion trajectories of the leader and fol-
lower chaotic supply chain systems state variables ob-
tained by active integral sliding mode synchronization
method.

5.2 Adaptive integral sliding mode synchro-
nization

Some simulation results obtained from the synchro-
nization of the two identical supply chain system de-
scribed in Section 4 is represented here via design-
ing an adaptive integral sliding mode controller. Let
the initial state values for the leader and the fol-
lower chaotic systems as: X(0) = (0,−0.11, 9)T and
Y (0) = (7, 8, 2)T , respectively. The initial values
for the internal and the external distortions are con-
sidered as: ∆̂ = (δ̂m, δ̂n, δ̂r, δ̂k) = (0.7, 0.8, 0.3, 0.4)

and D = (d̂1, d̂2, d̂3) = (7, 8, 2), respectively.
The time response of the leader and the follower

chaotic systems state variables obtained by synchro-
nization process are shown in Fig. (4). The internal
and external parameter estimation errors are given in
Fig. (5) and (6), respectively. It is clearly apparent
from Fig. (4) to Fig (6) that the expected synchroniza-
tion between leader and follower systems is obtained.

6 Conclusion

Nonlinear behaviour and internal/external distortions
are not desirable factors in a supply chain system.
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Figure 4: Motion trajectories of the leader and fol-
lower chaotic supply chain systems state variables ob-
tained by adaptive integral sliding mode synchroniza-
tion method.
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Figure 5: Estimation errors of unknown internal dis-
tortion parameters δm, δn, δr and δk.
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Figure 6: Estimation errors of unknown external dis-
tortion parameters d1, d2 and d3.

The undesirable behaviour of the system may caused
by a phenomenon is named as bullwhip effect which
causes chaos in the supply chain system. Bullwhip
effect can be detected sometimes under certain cir-
cumstances. But the bullwhip effect can be reduced
by enterprise resource planning system with retrieving
correct demand information of the customers. Hence,
an appropriate synchronization method can reduce the
nonlinear behaviours and bullwhip effect of the supply
chain system.

Chaos synchronization of the supply chain sys-
tem via integral sliding mode approach is addressed
in this paper. The sliding mode control method syn-
chronization is often used because of its inherent ad-
vantages of easy realization, fast response and good
transient performance, as well as its insensitivity to
parameter uncertainties and external disturbances. So
chaos synchronization of the supply chain systems are
carried out by designing an appropriate feedback con-
troller via active/adaptive integral sliding mode con-
trol schemes. Suitable sufficient conditions for active
or adaptive synchronization of the leader and the fol-
lower supply chain systems are derived. The perfor-
mance of the proposed feedback controller and devel-
oped synchronization method is proved by Lyapunov
stability theorem. Furthermore, as we can see from
the simulation results, the excellent synchronization
of the two identical supply chain systems are obtained
from both speed and accuracy points of view; and also
synchronization errors for either internal or external
unknown parameters converge asymptotically to zero.
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Gómez-cortés, A. D. Algebraic, Synchroniza-
tion of Integral and Fractional Order Chaotic
Systems, 2015.

[9] G. R. Nasiri, R. Zolfaghari, H. Davoudpour, An
integrated supply chain production–distribution
planning with stochastic demands, Computers &
Industrial Engineering 77 (2014) 35–45.

[10] E. Claypool, B. A. Norman, K. L. Needy, Mod-
eling risk in a design for supply chain problem,
Computers & Industrial Engineering 78 (2014)
44–54.

[11] E. Ott, C. Grebogi, J. A. Yorke, Controlling
chaos, Physical review letters 64 (11) (1990)
1196.

[12] L. M. Pecora, T. L. Carroll, Synchronization in
chaotic systems, Physical review letters 64 (8)
(1990) 821.

[13] H. S. Nik, J. Saberi-Nadjafi, S. Effati, R. A.
Van Gorder, Hybrid projective synchronization
and control of the baier–sahle hyperchaotic flow
in arbitrary dimensions with unknown parame-
ters, Applied Mathematics and Computation 248
(2014) 55–69.

[14] H. Richter, Controlling chaotic systems with
multiple strange attractors, Physics Letters A
300 (2) (2002) 182–188.

[15] C. Lia, X. Liao, X. Zhang, Impulsive synchro-
nization of chaotic systems, Chaos 15 (2005)
023104.

[16] L. Chun-Lai, Z. Mei, Z. Feng, Y. Xuan-Bing,
Projective synchronization for a fractional-order
chaotic system via single sinusoidal coupling,
Optik-International Journal for Light and Elec-
tron Optics 127 (5) (2016) 2830–2836.

[17] H. Xi, Y. Li, X. Huang, Adaptive function pro-
jective combination synchronization of three dif-
ferent fractional-order chaotic systems, Optik-
International Journal for Light and Electron Op-
tics 126 (24) (2015) 5346–5349.

[18] M. G. Rosenblum, A. S. Pikovsky, J. Kurths,
From phase to lag synchronization in cou-
pled chaotic oscillators, Physical Review Letters
78 (22) (1997) 4193.

[19] J. Sun, Y. Shen, X. Wang, J. Chen, Finite-
time combination-combination synchronization
of four different chaotic systems with unknown
parameters via sliding mode control, Nonlinear
Dynamics 76 (1) (2014) 383–397.

[20] M. P. Aghababa, A. Heydari, Chaos synchro-
nization between two different chaotic systems
with uncertainties, external disturbances, un-
known parameters and input nonlinearities, Ap-
plied Mathematical Modelling 36 (4) (2012)
1639–1652.

[21] J. Yu, B. Chen, H. Yu, J. Gao, Adaptive fuzzy
tracking control for the chaotic permanent mag-
net synchronous motor drive system via back-
stepping, Nonlinear Analysis: Real World Ap-
plications 12 (1) (2011) 671–681.

[22] H. Adloo, M. Roopaei, Review article on adap-
tive synchronization of chaotic systems with un-
known parameters, Nonlinear Dynamics 65 (1-
2) (2011) 141–159.

[23] X. Zhang, H. Zhu, H. Yao, Analysis and adap-
tive synchronization for a new chaotic system,
Journal of dynamical and control systems 18 (4)
(2012) 467–477.

[24] T. Ma, J. Zhang, Y. Zhou, H. Wang, Adaptive hy-
brid projective synchronization of two coupled
fractional-order complex networks with differ-
ent sizes, Neurocomputing 164 (2015) 182–189.

[25] K.-S. Hong, et al., Adaptive synchronization of
two coupled chaotic hindmarsh–rose neurons by
controlling the membrane potential of a slave
neuron, Applied Mathematical Modelling 37 (4)
(2013) 2460–2468.

[26] H.-M. Chen, Z.-Y. Chen, M.-C. Chung, Imple-
mentation of an integral sliding mode controller
for a pneumatic cylinder position servo control
system, in: Innovative Computing, Information
and Control (ICICIC), 2009 Fourth International
Conference on, IEEE, 2009, pp. 552–555.

[27] Q. Hu, H. B. Du, D. M. Yu, Adaptive integral
sliding mode control of single electromagnetic
guiding system suspension altitude in linear ele-
vator, in: Applied Mechanics and Materials, Vol.
321, Trans Tech Publ, 2013, pp. 1704–1707.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Hamed Tirandaz

E-ISSN: 2224-2856 61 Volume 13, 2018



[28] J.-J. Yan, Y.-S. Yang, T.-Y. Chiang, C.-Y. Chen,
Robust synchronization of unified chaotic sys-
tems via sliding mode control, Chaos, Solitons
& Fractals 34 (3) (2007) 947–954.

[29] M. Pourmahmood, S. Khanmohammadi, G. Al-
izadeh, Synchronization of two different uncer-
tain chaotic systems with unknown parameters
using a robust adaptive sliding mode controller,
Communications in Nonlinear Science and Nu-
merical Simulation 16 (7) (2011) 2853–2868.

[30] S. Dereje, M. K. Pattanshetti, A. Jain, R. Mi-
tra, Genetic algorithm based integral sliding sur-
face design and its application to stewart plat-
form manipulator control, International Journal
of Systems applications, Engineering and Devol-
opment 5 (2011) 518–528.

[31] M. Ghamati, S. Balochian, Design of adap-
tive sliding mode control for synchronization
genesio–tesi chaotic system, Chaos, Solitons &
Fractals 75 (2015) 111–117.

[32] S. E. Fawcett, M. A. Waller, Making sense out
of chaos: Why theory is relevant to supply chain
research, Journal of Business Logistics 32 (1)
(2011) 1–5.
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