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Abstract: - A research area in control studies the human capabilities to control dynamical systems, because the 

brain could be the most powerful control centre. However, there are many limitations for the application of a 

human in the loop. For instance, the time response of a system could be too slow or too fast for a human. Thus, 

losing attention or not having enough time to make decisions becomes the main challenge in this control field. 

This paper proposes the use of time scaling plus the learning in a Neural Network to overcome those time 

constraints. This new control strategy starts by scaling the system in time until a comfortable value for a human, 

then a Neural Network learns the control actions from the human, and finally that Network runs at different time 

rates, which will be applied to control a robotic differential platform. The new control procedure improves the 

control performance carried out by a human by properly changing the time constant of the robot model. We also 

consider the problem of possible variations of the robot platform after the training stage by using a dynamic 

version of the back propagation algorithm. 
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1 Introduction 
Researchers in control have used the concept of 

time scaling for years. Scaling consists in changing 

the time variable in such a way that the speed and 

acceleration profile of a reference signal vary, while 

its position coordinates remains unchanged, which 

facilitates manoeuvers to track the reference [1], [2], 

[3]. A similar application keeps the speed, thus 

scaling position and acceleration, as in [4]. However, 

the use of time scaling is not limited to the 

redefinition of the reference signal, for instance 

authors in [5] propose to speed up the plant of a 

system so that its dynamic approaches an integrator 

in the controller, in which case the control system 

approximates a simple degree one case. Scaling the 

reference facilitates the work of a human in the loop, 

because among many other limits we cannot properly 

handle changes faster that 0.5 Hz, as stayed in [6] and 

[7]. Even when that limit may sound low, it is enough 

to control several applications, especially when the 

human is part of the system, as in [8], or when the 

human in the loop has responsibilities only during an 

initial learning stage, such as the proposals in [9] and 

[10]. The main contribution in this paper corresponds 

to the combination of time scaling and learning in the 

generation of a powerful new tool to control dynamic 

systems. The learning could be implemented in a 

number of ways, for instance using Support Vector 

Machines, but given the popularity of the Neural 

Networks we use them in this paper. Neural 

Networks are good candidates to classify, as shown 

in [11-15], as well as to approximate functions, in 

[16] and [17], or to predict given time series, as 

shown in [18], [19] and [20], which correspond to 

some of the tasks required during the learning stage 

for the new control strategy. 

In brief, control using time scaling requires three 

steps: Scale, Train, and Run (STR). In the first step, 

Scale, a person takes the model of a plant and changes 

the speed of its transient behavior by defining a 

scaling factor. This stage aims to find the best scaling 

factor, or alternatively a set of them that makes the 

control of the system comfortable for a human. Thus, 

fast systems, such as magnetic levitation reduces its 

speed until a person properly control it. On the other 

hand, slow systems, such as temperature control, 

increases its speed. Thus, passing milliseconds or 

hours, respectively, into seconds. In the second step, 

Train, the data captured during the first step serves to 

train a Neural Network, so that instead of having a 

human in the loop, the system runs automatically 

using the Neural Network as the controller. This 

second step still uses scaled time, and only in the third 

step, Run, the system runs at the original time rate. 

Not only in simulations, but also with the real plant. 

This last step may require changes in the Neural 
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Network due to differences between the model and 

the plant in the real world. Given that one of the main 

contribution of this paper regards the use of time 

scaling in control, the first five, out of the seven 

sections, details every aspect of the scaling process. 

First, showing a general formula to apply time 

scaling, secondly modeling a differential platform, 

used as application, thirdly applying the general 

formula to scale dynamical systems in time, next 

capturing data using a computer interface, and finally 

selecting the best scaling factor. Seventh Section 

regards the training stage, but also include some trials 

at the original scale of time. Last Section, details the 

implementation stage, emphasizing on how to handle 

with differences between model and plant in the real 

world. 

 

2 Time Scaling Formula 
Scaling a linear system comprises adequately 

changing its poles and zeros location while keeping 

their angle in the S-plane. Thus, the variation 

corresponds to a change in the distance from poles 

and zeros to the origin by a factor called the scaling 

factor ��. Given the inverse relationship between the 

pole location and its respective time constant, �� > 1 

implies faster systems, whereas �� < 1 corresponds 

to slower systems. For instance, given � =
�

�������
, 

then ��	���	 = � = �

�
, and poles 
�,� = −1 ± �, if 

�� = 2, then �� = � = �

�
, 
��,�� = 2 ± 2�, thus �� =

�

�������
, where �� correspond to a new system two 

times faster than �.  

The time scaling used in this paper requires an 

additional condition. The actuating signal, provided 

by the human (and recorded in a computer,) as well 

as any other discrete observation of the system, 

should also use the scaling factor ��. Thus, a 

sampling rate, �	, changes into �	� = �	 ��⁄ . This last 

step in the scaling process guarantees having 

identical time series for original and scaled systems. 

The definition of a general formula to scale 

systems starts with the analysis of a characteristic 

polynomial, as defined in equation (1), with poles 

placed at � = −

, which correspond to a polynomial 

with real coefficients �
 . 
 

�� + ����� + ���⋯ �� + ������� + ��� =

�� + ��� +⋯+ �����+��
  (1) 

 

Time scaling requires scaling poles by a factor ��, 
as shown in equation (2). 

 

�� + ������� + �����⋯ �� + ��������� + �����

�� + ����� +⋯+ �������
���

+����
�

= (2) 

 

The analysis for the numerator of the transfer 

function starts with the analysis of a constant 

numerator, as defined in equation (3). 

 

� =
��

������
����⋯���������

�� =
��
�

������
������⋯��������

���
�����

�

   (3) 

 

The constant �� in equation (3) was included to 

guarantee equal DC gain for � and ��, thus 
��

��
=

��
�

����
�, then �� = ���, as shown in equation (4). 

 

�′ = ����
�

������
������⋯��������

���
�����

�   (4) 

 

This new system �� shares both shape and 

amplitude with �, and the only difference 

corresponds to the time scale. Now, a numerator of 

order one, as shown in equation (5). 

 

� =
�����

������
����⋯�������

   (5) 

 

The derivative in the numerator does not allow the 

comparison made with a constant numerator. The 

solution consists of integrating � and ��, as shown 

in equation (6) and equation (7). 

 

�� = � �

�
=

����

������
����⋯���������

  (6) 

 

The integral for �� is multiplied by a factor �� in 

order to make both integrals comparable, and then the 

equivalent DC gain may be computed. 

 

��� = ����
�����

������
������⋯��������

���
�����

�  (7) 

 

The constant ���� in (7) guarantees equal DC 

gain for �� and ��� , thus 
����

��
=

����
�����

����
� , then 

���� = �����. Thus: 

 

��� = �������
���

������
������⋯��������

���
�����

�  (8) 

 

The procedure to compute the formula for scaling 

a linear system in time concludes by following the 

same procedure for a constant and a derivative, as 

was already made, but for higher orders in the 

numerator, as written in equation (9). 
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�′ �
���

�����
������⋯��������

��������
�

������
������⋯��������

��������
�   (9) 

 

The formula in equation (9) works well for an 

arbitrary number of poles of a proper transfer 

function. For example, if � �
���

������
, and using a 

scaling factor �	 � 2, then �′ �

����

������
. 

 

3 Mathematical Model of the 

Differential Platform 
The definition of the mathematical model for the 

differential platform DaNI 2.0 begins by analysing its 

kinematic relations. These relations describe the 

position by the � and � coordinates, as well as its 
direction, �, as a function of time, as indicated in 
equation (10). These coordinates depend on 

parameters such as the distance between the wheels, 

	 (which equals 0.37 m), the velocity of the right 
wheel, 

, the velocity of the left wheel, 
�, and the 
coordinates of the initial position, ��, ��, ��. Values 
�� and �� correspond to the initial position in the xy-
plane, while �� describes the initial direction. 
 

� � �� �
�

�
� 


 � 
����
	

�

� � �� �
�

�
� 


 � 
�� cos
�� ��
	

�

� � �� �
�

�
� 


 � 
��sin	
����
	

�

 (10) 

 

In addition to the kinematic in equation (10), a 

more precise model includes the dynamic of the pair 

motor-wheel. That dynamic relates the linear velocity 



�� in the wheel with the voltage in the motor 
����
�� as shown in equation (11). An identification 
process looks for a model that matches better the 

experimental outputs, 

��, given the input data, 
����
��. This identification compresses the dynamic 
into a linear and second order system, with settling 

time close to 1.5 s and a damping ratio of 0.95, which 

means that the system is slightly underdamped. 

 
����

�������
�

�.�

����.����.�
    (11) 

 

The simulation of the robot motion uses the block 

diagram in Fig. 1.a, which includes two main parts: 

the kinematic and the Right and Left wheels. See that 

each wheel in that figure has a different set point. 

That discrepancy causes the robot to rotate, and the 

proper definition of those references constitutes the 

main concept behind motion control. Thus, to 

describe a linear path both references remain equal, 

to turn left 
� � 

, and to the right 
� � 

. 

 

 

 
Fig. 1. Model of the robot platform. a) Block diagram of 

the robot, b) motion simulation. 

 

4 Time Scaling of the Model 
The control process using time scaling starts with 

the modelling stage and continuous by scaling that 

model in time. This scaling uses the procedure in 

equation (9) applied to the relations in equations (10) 

and (11), both in the complex frequency domain. 

Time scaling changes the transient behaviour of the 

robot (not its steady state), in such a way that a person 

leads the robot better than using the original time rate. 

The steady speed of each wheel remains equal, what 

vary is the transient duration to go from one speed to 

another. Thus, the equation (12), which presents the 

scaling of the dynamic, preserves the DC-gain 

(steady state) compare with the same gain in equation 

(11); see procedure in equation (9). To clarify the 

difference between steady and transient behaviour we 

present an example: the temperature control of an 

oven may require certain final temperature (its steady 

state), while time scaling will define how long a 

simulation of the process takes to get to that final 

temperature. 

 
������

����
�

�.���
�

����.������.���
�
  (12) 

 

y
 (

m
)
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The kinematic component in equation (10) 

integrates velocities to obtain positions. Thus, the 

scaled component, according to the procedure in 

equation (9), is shown in equation (13). 

 

�
�� �
�

�

��

�



 � 
��

�
�� �
�

�

��

�



 � 
��cos	
��

 
�� �
�

�

��

�



 � 
��sin
��

  (13) 

 

Time scaling also requires redefining the 

sampling time ��. For instance, if a system runs five 
times slower than normal, �	 � 1 5⁄ , then the 

sampling time should also change as follows: ��
� �

�� �	 � 5��⁄ . This requirement has a direct relation 

with the work of a neural network, as explained later. 

 

5 Control Interface 
An important advantage of time scaling regards 

the acquisition of the human capability to control, 

especially when the system is too fast or too slow for 

a person. This acquisition requires an interface 

between the person and the scaled system. In this 

case, that interface presents the robot in an xy-plane, 

and records the commands from the person through 

the position of the mouse pointer. The central block 

of the interface, in Fig. 2.a, contains the code for 

equations (12) and (13). Its three lower inputs 

correspond to the initial conditions (��, ��, ��), and 
the other two are the set points for the wheels. On the 

other hand, the three upper outputs are the robot 

position (�, �, �), whereas the remaining outputs 
present a vector in the direction of the robot motion, 

�. This vector helps the person to predict the result of 
continuing the control action that currently holds 

through the mouse. 

In addition to the central block in the Fig. 2.a there 

are three blocks. One of them, Real-Time Sync, 

guarantees running the simulation in real time at a 

sampling time equal to ��
� , as explained in the 

previous section, where �� � 50	%�. The second 
block, Graphical Interface, generates a figure as 

presented in Fig. 2.b. This figure provides feedback 

to the person controlling the robot, by presenting the 

result of the control actions. The third block, Mouse 

Position, will be explained later. 

The left part of Fig. 2.b shows the reference path 

for the robot, as well as its ideal position at any time, 

marked with a square. The reference path 

corresponds to a Lissajous curve as defined in 

equation (14). This closed curve implies high and low 

curvature ratios, to the right and to the left, with 

changing acceleration across the path. Thus, this type 

of curve presents ideal challenges to test a motion 

controller. 

 

 

 
Fig. 2. Control interface. a) Block diagram, b) graphical 

interface. 
 

��
�� � cos
&��
��
�� � �'(
2&��

  (14) 

  

The definition of the angular frequency in 

equation (14) starts by considering an average 

situation where the robot runs at 0.2 m/s during one 

round, with length approaching 3* m. Thus, and 
given that & � 2* 
3* 0.2⁄ �⁄ , then & �
2 15	 �,� �⁄⁄ . If the final controlled variable were the 

speed, the value of & would be 2/15, but because it is 
the position (and time scaling affects it, as shown in 

equation (13), then & � �

��
��.  

The upper right part of the Fig. 2.b presents the 

motion relative to the robot. Therefore, the square 

representing the robot keeps still during the 

simulation, while the square indicating the reference 

moves at the distance. The ideal control situation 

requires the robot to stay exactly over the reference, 

but in a more realistic situation there is always a 

distance. The final goal of a controller consists in 

eliminating that distance. Thus, for instance in the 

scenery presented in the Fig. 2 the robot should turn 

left, at medium speed to align the robot with the 

reference.  
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The control process presented so far requires the 

definition of the set point for each wheel, but humans 

make it different. For instance, a person control a 

vehicle through pedals and a steering wheel, in other 

words by controlling the linear speed, � (using 

pedals), and the angular speed, � (by turning the 

steering wheel). Thus, the position of the mouse in 

the Y-axis of the lower right part of the Fig. 2.b 

indicates the linear velocity, �. Defined from 0 to 0.4 

m/s, because 0 ≤ � ≤ 1, according to the expression 

in equation (15). Similarly, the position over the X-

axis represents �, where −1 ≤ � ≤ 1. The block 

label Pointer position in Fig. 2.a includes both 

expressions in the equation (15), where two 

additional saturation blocks guarantee that the 

velocities never overcome the natural limits of ±0.4 

m/s. 

 

�� = � + �

�
� = �0,2	 + 0,2� +

�

�
�−
�

�� = � − �

�
� = �0,2	 + 0,2� −

�

�
�−
�

 (15) 

 

6 Selection of the Scaling Factor 
The best scaling factor maximizes the 

performance of the control process. In other words, 

minimizes the error, which considers two variables: 

1) the distance between robot and reference, �, and 

2) the angle between ideal and actual directions for 

the robot, ��. By ideal direction, we understand the 

line of sight between the robot and its reference, ��, 

because that is the shortest distance between them. In 

addition, (�� ,��) in equation (16) corresponds to the 

coordinates of the reference position.  

  

� = ���� − ��� + ��� − ����

�� = ������� − � �� − �� �
∆� = �� − �

  (16) 

 

The final definition of error comprises the effect 

of distance and direction in a single index, as shown 

in equation (17). Those two variables, different in 

nature, can be combined given the similarity in 

amplitudes for the curve used as reference. In this 

index, �� corresponds to the simulation time, which 

equals 60 ��⁄  given that the trajectory covers four 

turns around the reference path. Thus, and in order to 

make the errors at different scaling factors 

comparable, the constant �� multiplies both integrals.  

 

!""#" = $% �&���

�
+ % |∆�|&���

�
( �� (17) 

 

The selection of the best scaling factor starts by 

running a simulation of the motion control at �� = 1. 

This experiment shows that it is possible to control 

the robot, but we expected to have a better 

performance using lower scaling factors, because the 

person would have more time to react to the changes 

in the reference path. Then, the next test sets �� in ½. 

That change decreases the Error index, as expected. 

Thus, the search continuous looking around ��	 =
	½, as follows �� = �

�
,
�

�
,
�

��
,
�

�
,
�

��
,
�

�
,
�

�
. Values under 

¼ makes �� longer than 12 minutes, which elevates 

the Error index, because the attention decrease. On 

the other hand, �� does not pass ¾ because it is 

evident that greater factors increase the Error index. 

Now, with the rank of �� defined, the procedure 

to capture data used 20 simulations per factor from 

two participants: 10 simulations per person, however 

only the best 5 out the 20 are shown in Fig. 3. This 

reduction looks for consistency in the data, avoiding 

possible variations during the learning stage. Each 

box in Fig. 3 shows the maximum, minimum, 

median, and first and third quartiles per scaling 

factor. Thus, and looking at the lowest median, the 

best performance happens at �� 	= 	5/12. On the 

other hand, the global minimum is somewhere 

between �� 	= 	1/3 and �� = 	½. Factors at the left 

of 1/4 have large errors, given the attention problems 

caused by long simulations. Similarly, factors at the 

right of 2/3	also increases the Error index due to the 

relation between the reaction time of a person and the 

speed of the system. 

 

 
Fig. 3. Error index for seven scaling factors. 

 

Both participants produce simulations with similar 

Error indexes, however they follow different control 

strategies. One of them jumps from maximum to null 

velocity continuously, whereas the other generates 

smooth curves (see �� and �� in Fig. 4), as a 

traditional control algorithm does. Thus, future work 

may study how personal differences ends in different 

control strategies, as well as the determination of the 

number of those control styles. Finally, we should 

remark that prolonging the trial stage, beyond 10 

simulations, might result in decreasing the Error in 

Fig. 3, due to the training, as happens in gamming 
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where the player becomes an expert, but then 

expertise would play a bigger role than the effect of 

the scaling factor. 

 

 
Fig. 4. Two turns of the human control of the scaled 

systems at �� = 5/12. a) Robot motion and reference 

path, b) velocities. 

 

7 Control Using Neural Networks 
An algorithm replaces the human in this new step 

of the control process using time scaling. That 

algorithm should 1) learn what the human does to 

control the robot, and 2) perform that control at 

different scaling factors. A traditional candidate for 

the learning stage is an Artificial Neural Network. On 

the other hand, and concerning the second constraint, 

handling different factors implies having the same 

outputs at the same inputs, regardless the sampling 

time, and some neural network architectures do 

precisely that. For instance, a feedforward multilayer 

perceptron processes input data (passing it through 

weights, transfer functions, and sums) almost 

instantly, due to the short time to compute those 

operations. In practice, an output instantly follows a 

corresponding input. Thus, we use a feedforward 

multilayer perceptron to replace the human, because 

that network fulfils both requirements to automate 

the control process. 

A person should control two variables during each 

simulation: the linear and the angular velocities, 

which carry out by properly locating the mouse 

pointer in the control interface. However, in the case 

of a vehicle, the driver may in addition listen to the 

radio, talk, and many other things at the same time, 

which show the computational power of a human 

brain. In contrast, we should divide the control task 

in two parts aiming for small and thus fast enough 

networks. Hence, a network, ))�, controls the linear 

velocity, while other, ))�, controls the angular 

velocity, as shown in Fig. 5. The input data for ))� 

is the radius, �, given the proportionality between the 

linear velocity and the distance to a target. 

Additionally, the input of ))� is ��, due to the 

relation between angular velocity and changes in 

direction. 

Those two networks use data from the experiment 

with best performance (�� 	= 	5/12), such as robot 

position	〈�,�,�〉, reference position	〈�� ,��〉, and set-

points 〈�� ,��〉. These data cover 4 turns around the 

reference path (about 940 samples), as shown in Fig. 

4, and serve to compute the input of the networks (� 

and ��), as well as their targets (�, �). Computing 

those inputs and outputs requires the expressions in 

equations (16) and (18), respectively, were 

definitions for � and � comes from the connections 

in Fig. 5. 

 

 

 

 

 

 

 

 
Fig. 5. Networks configuration to control the robot. 

 

� =
����	

�

� =
����	

�

   (18) 

 

Each network has two inputs, 
� and	
�, as shown 

in Fig. 6. The first input,	
�, corresponds to the 

current value: ���� or	∆����, whereas the second 

one, 
�, corresponds to the difference between 
���� 
and its value two steps back, 
��� − 2�, it is ����−
��� − 2� or	∆����− ∆��� − 2�. The first input 

serves as an indication of how much effort the control 

system should make to move the robot to its ideal 

position (� → 0,	∆� → 0), whereas the second input 

shows how fast the robot has changed its position, 

which may be associated with a basic form of 

prediction. Those inputs pass through a single hidden 

layer with two neurons and hyperbolic tangents as 

transfer functions, as shown in Fig. 6, given that this 

structure works as a universal approximator. The 

training of the two networks, ))� and ))�, uses the 

algorithm called Levenberg-Marquardt 

backpropagation, and data divided in three subsets: 

70% to train, 15% to validate, and 15% to test. Thus, 

the best network comes from training 20 networks 

and choosing the network with the lowest mean 

square error (mse). Table 1 reports the weights for the 

best networks. 

y
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m
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Now, the already trained networks replace the 

human in the control loop. Those networks receive 

data from the simulated robot (� or	∆�) and come up 

with appropriate set points for the wheels (�� 

and	��), aiming to reduce the linear and angular 

distance to the reference path. First, at the scale 

factor	�� = 5 12⁄ , and later at	�� = 1. The first test 

with this new and automatic control system consists 

in following the same reference path used to get the 

training data. If this test shows at least the same 

human performance, the control system is ready for 

experiments at different paths and speeds, as well as 

the unitary scaling factor. Changing the scale factor 

leaves the weights and structure of the networks 

untouched, and only requires the variation of the 

discrete blocks	1 ,⁄  (in the case of the Simulink 

application), which allow the reading of the inputs 

only every sampling time. Thus, that delay goes 

from	�	� = 120	-. to	�	 = 50	-.. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Feedforward multilayer perceptron structure. 

 
Table 1. Final weights for ��� and	���. 

��� 

Hidden layer, 

n1 

Hidden layer, 

n2 

Output layer, 

n3 

��

,



,

= −2.139 ��

�,



,

= 2.381 ��


,


�,

= −0.712 

��

,�


,

= 0.782 ��

�,�


,

= 6.999 ��


,�

�,

= −0.721 

�



= −0.138 ��



= −6.161 �


�
= −0.537 

��� 

��

,



,

= 1.766 ��

�,



,

= −0.165 ��


,


�,

= 0.371 

��

,�


,

= 4.018 ��

�,�


,

= 2.358 ��


,�

�,

= −1.319 

�



= −0.312 ��



= 0.423 �


�
= 0.074 

 

A possible variation of the reference path to test 

the control system implies changing �� in equation 5. 

For instance, from two times / to one or three times. 

If it is one time, the robot follows a circular path, as 

shown in the upper part of Fig. 7, at a speed defined 

by the value of /. The maximum speed 

(experimentally defined) permits a single turn in a 

minute, with some oscillations at the beginning of the 

motion caused by the initial position of the robot. On 

the other hand, if �� = .�	(3/�) the path has three 

internal loops, then the robot cannot go at the same 

speed as before, but completes a whole turn in 90 

seconds, as shown in the lower part of Fig. 7. It is 

important to emphasize that the networks were 

trained at	�	� = 120	-., and now they run at	�	 =
50	-.; nevertheless, they adequately control the 

robot platform. The simulations of the control system 

with these new paths show that the neural networks 

control the robot at new scenarios and at different 

scaling factors. The remaining question is how a real 

platform will react to the new controller, as shown in 

the next section. 

 

 

 
Fig. 7. Performance of the system at	�� = 1, �	 =

���(��) a)	�	 = ���(��), b)	�	 = ���(3��). 
 

8 Final Implementation 
Any difference between the behaviour of the 

model and the plant may lead to losses of the 

controller performance, because the control 

procedure highly depends on the quality of the 

model. Thus, this section proposes a solution for this 

problem. Instead of leaving the controller fixed, a 

learning algorithm could continuously change the 

weights of the neural networks to adapt, not only to 

the environment, but also to changes in the platform 

-1 -0.5 0 0.5 1

x (m)

-1

-0.5

0

0.5

1

t = 120 s

y
 (

m
)

��
� 

�� ��
�,�

�,� 

��
� 

��
�,�

�,� 

��
�,�

�,� 

�⬚ 

��
�,�

�,� 

��
� 

��
�,�

�,� �⬚ 

�� ��
�,�

�,� 

��
� 

��
� 

��
� 

�⬚ 

	� 

	� 

	� 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Danilo Rairán

E-ISSN: 2224-2856 50 Volume 13, 2018



itself. The selected learning algorithm, in [21], 

defines an updating rule for the output layer, and 

another for the hidden layer, which permits the 

definition of different learning rates for those layers. 

Learning comes up as a solution for the mismatch 

between model and platform, but it also could move 

the control system into instability. Thus, in addition 

to define the learning rates for each layer, we should 

define when to learn. For instance, the 

experimentation process shows that activating the 

learning for the radius network first and then for the 

angle network presents better results than a 

simultaneous approach. Results in Fig. 8 corresponds 

to the learning from zero to two minutes for the 

radius, and from two to eight minutes for the angle.  

 

 
Fig. 8. Application of the learning algorithm for radius 

and angle networks. 
 

Initial error for radius and angle seems too large 

in Fig. 8 compare with errors after the learning stage, 

but this is only because one of the weights for each 

neuron was deliberately set to zero, as shown in Table 

2. This change aims for evaluating the learning 

process, emulating a drastic change or discrepancy 

between simulation and final implementation. On the 

other hand, see that weights in the output layer 

changes more than in the hidden layer, which may 

mean two things: 1) weights in the hidden layers are 

closer to local minima, or 2) the learning rate affect 

differently each layer, because the learning rate for 

the hidden layers was 0.01, while 0.001 for the output 

layer. 

 
Table 2. Changes in the weights values due to the learning 

stage. 

��� 

Hidden layer, 

n1 

Hidden layer, 

n2 

Output layer, n3 

��
�,�

�,�  

−2.139�	− 2.232 

��
�,�

�,� 

2.381�	2.380 

��
�,�

�,�  

−0.712�	− 0.864 

��
�,�

�,� 

0.782�	0.782 

��
�,�

�,� 

6.999�	6.999 

��
�,�

�,�  

��	− �.� ! 
"�
�  
−0.138�	− 0.309 

"�
�  
−6.161�	− 6.161 

"�
�  
−0.537�	− 0.372 

��� 
��

�,�

�,� 

1.766�	2.426 

��
�,�

�,�  

−0.165�	− 0.228 

��
�,�

�,�  

0.371�	0.768 

��
�,�

�,� 

4.018�	3.999 

��
�,�

�,� 

2.358�	2.358 

��
�,�

�,�  

��	− �.�#! 
"�
�  
−0.312�	− 0.005 

"�
� 

0.423�	0.416 
"�
�  

0.074�	0.039 

 

 

9 Conclusions 
This paper presented the control process of a 

robotic platform based on time scaling. This process 

changes the time constants of a robot model, given a 

scaling factor, facilitating the control actions of a 

person over the scaled system. Once the person 

controls the system, two neural networks replace the 

person and run at the original time rate. Selecting the 

best scaling factor implies maximizing the 

performance of the control system, using several 

trials with different persons at variable transient 

behaviours. In this case, the best factor slows the 

transients to about half the normal speed. The data 

collected at that factor serve to train the neural 

networks that replaces the person, which is tested by 

trying paths different from the training path. On the 

other hand, the differences between model and real 

platform may cause losses in the control 

performance, thus in the last section, an online 

training algorithm continuously tunes the neural 

networks to accommodate them to the real plant, 

preserving or even improving the performance of the 

control system with a human in the loop. Finally, we 

consider that is important to test more plants to show 

the advantage of this new control process, also to 

enhance the control interface to facilitate the control 

actions, for instance looking for a more realistic 
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scenario using virtual reality, instead of presenting 

the robot as a single square. 
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