
Control of a Robot Differential Platform Using Time Scaling

DANILO RAIRÁN
Universidad Distrital Francisco José de Caldas

Technological Faculty
Carrera 7 No. 40 B - 53

COLOMBIA
drairan@udistrital.edu.co

Abstract: - A research area in control studies the human capabilities to control dynamical systems, because the

brain could be the most powerful control centre. However, there are many limitations for the application of a

human in the loop. For instance, the time response of a system could be too slow or too fast for a human. Thus,

losing attention or not having enough time to make decisions becomes the main challenge in this control field.

This paper proposes the use of time scaling plus the learning in a Neural Network to overcome those time

constraints. This new control strategy starts by scaling the system in time until a comfortable value for a human,

then a Neural Network learns the control actions from the human, and finally that Network runs at different time

rates, which will be applied to control a robotic differential platform. The new control procedure improves the

control performance carried out by a human by properly changing the time constant of the robot model. We also

consider the problem of possible variations of the robot platform after the training stage by using a dynamic

version of the back propagation algorithm.

Key-Words: - Time Scaling, Differential Platform, Motion Control, Neural Networks

1 Introduction
Researchers in control have used the concept of

time scaling for years. Scaling consists in changing

the time variable in such a way that the speed and

acceleration profile of a reference signal vary, while

its position coordinates remains unchanged, which

facilitates manoeuvers to track the reference [1], [2],

[3]. A similar application keeps the speed, thus

scaling position and acceleration, as in [4]. However,

the use of time scaling is not limited to the

redefinition of the reference signal, for instance

authors in [5] propose to speed up the plant of a

system so that its dynamic approaches an integrator

in the controller, in which case the control system

approximates a simple degree one case. Scaling the

reference facilitates the work of a human in the loop,

because among many other limits we cannot properly

handle changes faster that 0.5 Hz, as stayed in [6] and

[7]. Even when that limit may sound low, it is enough

to control several applications, especially when the

human is part of the system, as in [8], or when the

human in the loop has responsibilities only during an

initial learning stage, such as the proposals in [9] and

[10]. The main contribution in this paper corresponds

to the combination of time scaling and learning in the

generation of a powerful new tool to control dynamic

systems. The learning could be implemented in a

number of ways, for instance using Support Vector

Machines, but given the popularity of the Neural

Networks we use them in this paper. Neural

Networks are good candidates to classify, as shown

in [11-15], as well as to approximate functions, in

[16] and [17], or to predict given time series, as

shown in [18], [19] and [20], which correspond to

some of the tasks required during the learning stage

for the new control strategy.

In brief, control using time scaling requires three

steps: Scale, Train, and Run (STR). In the first step,

Scale, a person takes the model of a plant and changes

the speed of its transient behavior by defining a

scaling factor. This stage aims to find the best scaling

factor, or alternatively a set of them that makes the

control of the system comfortable for a human. Thus,

fast systems, such as magnetic levitation reduces its

speed until a person properly control it. On the other

hand, slow systems, such as temperature control,

increases its speed. Thus, passing milliseconds or

hours, respectively, into seconds. In the second step,

Train, the data captured during the first step serves to

train a Neural Network, so that instead of having a

human in the loop, the system runs automatically

using the Neural Network as the controller. This

second step still uses scaled time, and only in the third

step, Run, the system runs at the original time rate.

Not only in simulations, but also with the real plant.

This last step may require changes in the Neural

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Danilo Rairán

E-ISSN: 2224-2856 44 Volume 13, 2018

Network due to differences between the model and

the plant in the real world. Given that one of the main

contribution of this paper regards the use of time

scaling in control, the first five, out of the seven

sections, details every aspect of the scaling process.

First, showing a general formula to apply time

scaling, secondly modeling a differential platform,

used as application, thirdly applying the general

formula to scale dynamical systems in time, next

capturing data using a computer interface, and finally

selecting the best scaling factor. Seventh Section

regards the training stage, but also include some trials

at the original scale of time. Last Section, details the

implementation stage, emphasizing on how to handle

with differences between model and plant in the real

world.

2 Time Scaling Formula
Scaling a linear system comprises adequately

changing its poles and zeros location while keeping

their angle in the S-plane. Thus, the variation

corresponds to a change in the distance from poles

and zeros to the origin by a factor called the scaling

factor ��. Given the inverse relationship between the

pole location and its respective time constant, �� > 1

implies faster systems, whereas �� < 1 corresponds

to slower systems. For instance, given � =
�

�������
,

then ��	���	 = � = �

�
, and poles
�,� = −1 ± �, if

�� = 2, then �� = � = �

�
,
��,�� = 2 ± 2�, thus �� =

�

�������
, where �� correspond to a new system two

times faster than �.

The time scaling used in this paper requires an

additional condition. The actuating signal, provided

by the human (and recorded in a computer,) as well

as any other discrete observation of the system,

should also use the scaling factor ��. Thus, a

sampling rate, �	, changes into �	� = �	 ��⁄ . This last

step in the scaling process guarantees having

identical time series for original and scaled systems.

The definition of a general formula to scale

systems starts with the analysis of a characteristic

polynomial, as defined in equation (1), with poles

placed at � = −

, which correspond to a polynomial

with real coefficients �
 .

�� + ����� + ���⋯ �� + ������� + ��� =

�� + ��� +⋯+ �����+��
 (1)

Time scaling requires scaling poles by a factor ��,
as shown in equation (2).

�� + ������� + �����⋯ �� + ��������� + �����

�� + ����� +⋯+ �������
���

+����
�

= (2)

The analysis for the numerator of the transfer

function starts with the analysis of a constant

numerator, as defined in equation (3).

� =
��

������
����⋯���������

�� =
��
�

������
������⋯��������

���
�����

�

 (3)

The constant �� in equation (3) was included to

guarantee equal DC gain for � and ��, thus
��

��
=

��
�

����
�, then �� = ���, as shown in equation (4).

�′ = ����
�

������
������⋯��������

���
�����

� (4)

This new system �� shares both shape and

amplitude with �, and the only difference

corresponds to the time scale. Now, a numerator of

order one, as shown in equation (5).

� =
�����

������
����⋯�������

 (5)

The derivative in the numerator does not allow the

comparison made with a constant numerator. The

solution consists of integrating � and ��, as shown

in equation (6) and equation (7).

�� = � �

�
=

����

������
����⋯���������

 (6)

The integral for �� is multiplied by a factor �� in

order to make both integrals comparable, and then the

equivalent DC gain may be computed.

��� = ����
�����

������
������⋯��������

���
�����

� (7)

The constant ���� in (7) guarantees equal DC

gain for �� and ��� , thus
����

��
=

����
�����

����
� , then

���� = �����. Thus:

��� = �������
���

������
������⋯��������

���
�����

� (8)

The procedure to compute the formula for scaling

a linear system in time concludes by following the

same procedure for a constant and a derivative, as

was already made, but for higher orders in the

numerator, as written in equation (9).

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Danilo Rairán

E-ISSN: 2224-2856 45 Volume 13, 2018

�′ �
���

�����
������⋯��������

��������
�

������
������⋯��������

��������
� (9)

The formula in equation (9) works well for an

arbitrary number of poles of a proper transfer

function. For example, if � �
���

������
, and using a

scaling factor �	 � 2, then �′ �

����

������
.

3 Mathematical Model of the

Differential Platform
The definition of the mathematical model for the

differential platform DaNI 2.0 begins by analysing its

kinematic relations. These relations describe the

position by the � and � coordinates, as well as its
direction, �, as a function of time, as indicated in
equation (10). These coordinates depend on

parameters such as the distance between the wheels,

	 (which equals 0.37 m), the velocity of the right
wheel,

, the velocity of the left wheel,
�, and the
coordinates of the initial position, ��, ��, ��. Values
�� and �� correspond to the initial position in the xy-
plane, while �� describes the initial direction.

� � �� �
�

�
�

 �
����
	

�

� � �� �
�

�
�

 �
�� cos
�� ��
	

�

� � �� �
�

�
�

 �
��sin	
����
	

�

 (10)

In addition to the kinematic in equation (10), a

more precise model includes the dynamic of the pair

motor-wheel. That dynamic relates the linear velocity

�� in the wheel with the voltage in the motor
����
�� as shown in equation (11). An identification
process looks for a model that matches better the

experimental outputs,

��, given the input data,
����
��. This identification compresses the dynamic
into a linear and second order system, with settling

time close to 1.5 s and a damping ratio of 0.95, which

means that the system is slightly underdamped.

����

�������
�

�.�

����.����.�
 (11)

The simulation of the robot motion uses the block

diagram in Fig. 1.a, which includes two main parts:

the kinematic and the Right and Left wheels. See that

each wheel in that figure has a different set point.

That discrepancy causes the robot to rotate, and the

proper definition of those references constitutes the

main concept behind motion control. Thus, to

describe a linear path both references remain equal,

to turn left
� �

, and to the right
� �

.

Fig. 1. Model of the robot platform. a) Block diagram of

the robot, b) motion simulation.

4 Time Scaling of the Model
The control process using time scaling starts with

the modelling stage and continuous by scaling that

model in time. This scaling uses the procedure in

equation (9) applied to the relations in equations (10)

and (11), both in the complex frequency domain.

Time scaling changes the transient behaviour of the

robot (not its steady state), in such a way that a person

leads the robot better than using the original time rate.

The steady speed of each wheel remains equal, what

vary is the transient duration to go from one speed to

another. Thus, the equation (12), which presents the

scaling of the dynamic, preserves the DC-gain

(steady state) compare with the same gain in equation

(11); see procedure in equation (9). To clarify the

difference between steady and transient behaviour we

present an example: the temperature control of an

oven may require certain final temperature (its steady

state), while time scaling will define how long a

simulation of the process takes to get to that final

temperature.

������

����
�

�.���
�

����.������.���
�
 (12)

y
 (

m
)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Danilo Rairán

E-ISSN: 2224-2856 46 Volume 13, 2018

The kinematic component in equation (10)

integrates velocities to obtain positions. Thus, the

scaled component, according to the procedure in

equation (9), is shown in equation (13).

�
�� �
�

�

��

�

 �
��

�
�� �
�

�

��

�

 �
��cos	
��

�� �
�

�

��

�

 �
��sin
��

 (13)

Time scaling also requires redefining the

sampling time ��. For instance, if a system runs five
times slower than normal, �	 � 1 5⁄ , then the

sampling time should also change as follows: ��
� �

�� �	 � 5��⁄ . This requirement has a direct relation

with the work of a neural network, as explained later.

5 Control Interface
An important advantage of time scaling regards

the acquisition of the human capability to control,

especially when the system is too fast or too slow for

a person. This acquisition requires an interface

between the person and the scaled system. In this

case, that interface presents the robot in an xy-plane,

and records the commands from the person through

the position of the mouse pointer. The central block

of the interface, in Fig. 2.a, contains the code for

equations (12) and (13). Its three lower inputs

correspond to the initial conditions (��, ��, ��), and
the other two are the set points for the wheels. On the

other hand, the three upper outputs are the robot

position (�, �, �), whereas the remaining outputs
present a vector in the direction of the robot motion,

�. This vector helps the person to predict the result of
continuing the control action that currently holds

through the mouse.

In addition to the central block in the Fig. 2.a there

are three blocks. One of them, Real-Time Sync,

guarantees running the simulation in real time at a

sampling time equal to ��
� , as explained in the

previous section, where �� � 50	%�. The second
block, Graphical Interface, generates a figure as

presented in Fig. 2.b. This figure provides feedback

to the person controlling the robot, by presenting the

result of the control actions. The third block, Mouse

Position, will be explained later.

The left part of Fig. 2.b shows the reference path

for the robot, as well as its ideal position at any time,

marked with a square. The reference path

corresponds to a Lissajous curve as defined in

equation (14). This closed curve implies high and low

curvature ratios, to the right and to the left, with

changing acceleration across the path. Thus, this type

of curve presents ideal challenges to test a motion

controller.

Fig. 2. Control interface. a) Block diagram, b) graphical

interface.

��
�� � cos
&��
��
�� � �'(
2&��

 (14)

The definition of the angular frequency in

equation (14) starts by considering an average

situation where the robot runs at 0.2 m/s during one

round, with length approaching 3* m. Thus, and
given that & � 2*
3* 0.2⁄ �⁄ , then & �
2 15	 �,� �⁄⁄ . If the final controlled variable were the

speed, the value of & would be 2/15, but because it is
the position (and time scaling affects it, as shown in

equation (13), then & � �

��
��.

The upper right part of the Fig. 2.b presents the

motion relative to the robot. Therefore, the square

representing the robot keeps still during the

simulation, while the square indicating the reference

moves at the distance. The ideal control situation

requires the robot to stay exactly over the reference,

but in a more realistic situation there is always a

distance. The final goal of a controller consists in

eliminating that distance. Thus, for instance in the

scenery presented in the Fig. 2 the robot should turn

left, at medium speed to align the robot with the

reference.

-1 0 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Vmax

V = 0

Left Right

-0.5 0 0.5
0

0.5

1

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Danilo Rairán

E-ISSN: 2224-2856 47 Volume 13, 2018

The control process presented so far requires the

definition of the set point for each wheel, but humans

make it different. For instance, a person control a

vehicle through pedals and a steering wheel, in other

words by controlling the linear speed, � (using

pedals), and the angular speed, � (by turning the

steering wheel). Thus, the position of the mouse in

the Y-axis of the lower right part of the Fig. 2.b

indicates the linear velocity, �. Defined from 0 to 0.4

m/s, because 0 ≤ � ≤ 1, according to the expression

in equation (15). Similarly, the position over the X-

axis represents �, where −1 ≤ � ≤ 1. The block

label Pointer position in Fig. 2.a includes both

expressions in the equation (15), where two

additional saturation blocks guarantee that the

velocities never overcome the natural limits of ±0.4

m/s.

�� = � + �

�
� = �0,2	 + 0,2� +

�

�
�−
�

�� = � − �

�
� = �0,2	 + 0,2� −

�

�
�−
�

 (15)

6 Selection of the Scaling Factor
The best scaling factor maximizes the

performance of the control process. In other words,

minimizes the error, which considers two variables:

1) the distance between robot and reference, �, and

2) the angle between ideal and actual directions for

the robot, ��. By ideal direction, we understand the

line of sight between the robot and its reference, ��,

because that is the shortest distance between them. In

addition, (�� ,��) in equation (16) corresponds to the

coordinates of the reference position.

� = ���� − ��� + ��� − ����

�� = ������� − � �� − �� �
∆� = �� − �

 (16)

The final definition of error comprises the effect

of distance and direction in a single index, as shown

in equation (17). Those two variables, different in

nature, can be combined given the similarity in

amplitudes for the curve used as reference. In this

index, �� corresponds to the simulation time, which

equals 60 ��⁄ given that the trajectory covers four

turns around the reference path. Thus, and in order to

make the errors at different scaling factors

comparable, the constant �� multiplies both integrals.

!""#" = $% �&���

�
+ % |∆�|&���

�
(�� (17)

The selection of the best scaling factor starts by

running a simulation of the motion control at �� = 1.

This experiment shows that it is possible to control

the robot, but we expected to have a better

performance using lower scaling factors, because the

person would have more time to react to the changes

in the reference path. Then, the next test sets �� in ½.

That change decreases the Error index, as expected.

Thus, the search continuous looking around ��	 =
	½, as follows �� = �

�
,
�

�
,
�

��
,
�

�
,
�

��
,
�

�
,
�

�
. Values under

¼ makes �� longer than 12 minutes, which elevates

the Error index, because the attention decrease. On

the other hand, �� does not pass ¾ because it is

evident that greater factors increase the Error index.

Now, with the rank of �� defined, the procedure

to capture data used 20 simulations per factor from

two participants: 10 simulations per person, however

only the best 5 out the 20 are shown in Fig. 3. This

reduction looks for consistency in the data, avoiding

possible variations during the learning stage. Each

box in Fig. 3 shows the maximum, minimum,

median, and first and third quartiles per scaling

factor. Thus, and looking at the lowest median, the

best performance happens at �� 	= 	5/12. On the

other hand, the global minimum is somewhere

between �� 	= 	1/3 and �� = 	½. Factors at the left

of 1/4 have large errors, given the attention problems

caused by long simulations. Similarly, factors at the

right of 2/3	also increases the Error index due to the

relation between the reaction time of a person and the

speed of the system.

Fig. 3. Error index for seven scaling factors.

Both participants produce simulations with similar

Error indexes, however they follow different control

strategies. One of them jumps from maximum to null

velocity continuously, whereas the other generates

smooth curves (see �� and �� in Fig. 4), as a

traditional control algorithm does. Thus, future work

may study how personal differences ends in different

control strategies, as well as the determination of the

number of those control styles. Finally, we should

remark that prolonging the trial stage, beyond 10

simulations, might result in decreasing the Error in

Fig. 3, due to the training, as happens in gamming

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Danilo Rairán

E-ISSN: 2224-2856 48 Volume 13, 2018

where the player becomes an expert, but then

expertise would play a bigger role than the effect of

the scaling factor.

Fig. 4. Two turns of the human control of the scaled

systems at �� = 5/12. a) Robot motion and reference

path, b) velocities.

7 Control Using Neural Networks
An algorithm replaces the human in this new step

of the control process using time scaling. That

algorithm should 1) learn what the human does to

control the robot, and 2) perform that control at

different scaling factors. A traditional candidate for

the learning stage is an Artificial Neural Network. On

the other hand, and concerning the second constraint,

handling different factors implies having the same

outputs at the same inputs, regardless the sampling

time, and some neural network architectures do

precisely that. For instance, a feedforward multilayer

perceptron processes input data (passing it through

weights, transfer functions, and sums) almost

instantly, due to the short time to compute those

operations. In practice, an output instantly follows a

corresponding input. Thus, we use a feedforward

multilayer perceptron to replace the human, because

that network fulfils both requirements to automate

the control process.

A person should control two variables during each

simulation: the linear and the angular velocities,

which carry out by properly locating the mouse

pointer in the control interface. However, in the case

of a vehicle, the driver may in addition listen to the

radio, talk, and many other things at the same time,

which show the computational power of a human

brain. In contrast, we should divide the control task

in two parts aiming for small and thus fast enough

networks. Hence, a network,))�, controls the linear

velocity, while other,))�, controls the angular

velocity, as shown in Fig. 5. The input data for))�

is the radius, �, given the proportionality between the

linear velocity and the distance to a target.

Additionally, the input of))� is ��, due to the

relation between angular velocity and changes in

direction.

Those two networks use data from the experiment

with best performance (�� 	= 	5/12), such as robot

position	〈�,�,�〉, reference position	〈�� ,��〉, and set-

points 〈�� ,��〉. These data cover 4 turns around the

reference path (about 940 samples), as shown in Fig.

4, and serve to compute the input of the networks (�

and ��), as well as their targets (�, �). Computing

those inputs and outputs requires the expressions in

equations (16) and (18), respectively, were

definitions for � and � comes from the connections

in Fig. 5.

Fig. 5. Networks configuration to control the robot.

� =
����	

�

� =
����	

�

 (18)

Each network has two inputs,
� and	
�, as shown

in Fig. 6. The first input,	
�, corresponds to the

current value: ���� or	∆����, whereas the second

one,
�, corresponds to the difference between
����
and its value two steps back,
��� − 2�, it is ����−
��� − 2� or	∆����− ∆��� − 2�. The first input

serves as an indication of how much effort the control

system should make to move the robot to its ideal

position (� → 0,	∆� → 0), whereas the second input

shows how fast the robot has changed its position,

which may be associated with a basic form of

prediction. Those inputs pass through a single hidden

layer with two neurons and hyperbolic tangents as

transfer functions, as shown in Fig. 6, given that this

structure works as a universal approximator. The

training of the two networks,))� and))�, uses the

algorithm called Levenberg-Marquardt

backpropagation, and data divided in three subsets:

70% to train, 15% to validate, and 15% to test. Thus,

the best network comes from training 20 networks

and choosing the network with the lowest mean

square error (mse). Table 1 reports the weights for the

best networks.

y
 (

m
)

v
L
,
v
R

 (
m

/s
)

�

��

��	�

��	�

�

�

��

��

+

+
+

-

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Danilo Rairán

E-ISSN: 2224-2856 49 Volume 13, 2018

Now, the already trained networks replace the

human in the control loop. Those networks receive

data from the simulated robot (� or	∆�) and come up

with appropriate set points for the wheels (��

and	��), aiming to reduce the linear and angular

distance to the reference path. First, at the scale

factor	�� = 5 12⁄ , and later at	�� = 1. The first test

with this new and automatic control system consists

in following the same reference path used to get the

training data. If this test shows at least the same

human performance, the control system is ready for

experiments at different paths and speeds, as well as

the unitary scaling factor. Changing the scale factor

leaves the weights and structure of the networks

untouched, and only requires the variation of the

discrete blocks	1 ,⁄ (in the case of the Simulink

application), which allow the reading of the inputs

only every sampling time. Thus, that delay goes

from	�	� = 120	-. to	�	 = 50	-..

Fig. 6. Feedforward multilayer perceptron structure.

Table 1. Final weights for ��� and	���.

���

Hidden layer,

n1

Hidden layer,

n2

Output layer,

n3

��

,

,

= −2.139 ��

�,

,

= 2.381 ��

,

�,

= −0.712

��

,�

,

= 0.782 ��

�,�

,

= 6.999 ��

,�

�,

= −0.721

�

= −0.138 ��

= −6.161 �

�
= −0.537

���

��

,

,

= 1.766 ��

�,

,

= −0.165 ��

,

�,

= 0.371

��

,�

,

= 4.018 ��

�,�

,

= 2.358 ��

,�

�,

= −1.319

�

= −0.312 ��

= 0.423 �

�
= 0.074

A possible variation of the reference path to test

the control system implies changing �� in equation 5.

For instance, from two times / to one or three times.

If it is one time, the robot follows a circular path, as

shown in the upper part of Fig. 7, at a speed defined

by the value of /. The maximum speed

(experimentally defined) permits a single turn in a

minute, with some oscillations at the beginning of the

motion caused by the initial position of the robot. On

the other hand, if �� = .�	(3/�) the path has three

internal loops, then the robot cannot go at the same

speed as before, but completes a whole turn in 90

seconds, as shown in the lower part of Fig. 7. It is

important to emphasize that the networks were

trained at	�	� = 120	-., and now they run at	�	 =
50	-.; nevertheless, they adequately control the

robot platform. The simulations of the control system

with these new paths show that the neural networks

control the robot at new scenarios and at different

scaling factors. The remaining question is how a real

platform will react to the new controller, as shown in

the next section.

Fig. 7. Performance of the system at	�� = 1, �	 =

���(��) a)	�	 = ���(��), b)	�	 = ���(3��).

8 Final Implementation
Any difference between the behaviour of the

model and the plant may lead to losses of the

controller performance, because the control

procedure highly depends on the quality of the

model. Thus, this section proposes a solution for this

problem. Instead of leaving the controller fixed, a

learning algorithm could continuously change the

weights of the neural networks to adapt, not only to

the environment, but also to changes in the platform

-1 -0.5 0 0.5 1

x (m)

-1

-0.5

0

0.5

1

t = 120 s

y
 (

m
)

��
�

�� ��
�,�

�,�

��
�

��
�,�

�,�

��
�,�

�,�

�⬚

��
�,�

�,�

��
�

��
�,�

�,� �⬚

�� ��
�,�

�,�

��
�

��
�

��
�

�⬚

	�

	�

	�

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Danilo Rairán

E-ISSN: 2224-2856 50 Volume 13, 2018

itself. The selected learning algorithm, in [21],

defines an updating rule for the output layer, and

another for the hidden layer, which permits the

definition of different learning rates for those layers.

Learning comes up as a solution for the mismatch

between model and platform, but it also could move

the control system into instability. Thus, in addition

to define the learning rates for each layer, we should

define when to learn. For instance, the

experimentation process shows that activating the

learning for the radius network first and then for the

angle network presents better results than a

simultaneous approach. Results in Fig. 8 corresponds

to the learning from zero to two minutes for the

radius, and from two to eight minutes for the angle.

Fig. 8. Application of the learning algorithm for radius

and angle networks.

Initial error for radius and angle seems too large

in Fig. 8 compare with errors after the learning stage,

but this is only because one of the weights for each

neuron was deliberately set to zero, as shown in Table

2. This change aims for evaluating the learning

process, emulating a drastic change or discrepancy

between simulation and final implementation. On the

other hand, see that weights in the output layer

changes more than in the hidden layer, which may

mean two things: 1) weights in the hidden layers are

closer to local minima, or 2) the learning rate affect

differently each layer, because the learning rate for

the hidden layers was 0.01, while 0.001 for the output

layer.

Table 2. Changes in the weights values due to the learning

stage.

���

Hidden layer,

n1

Hidden layer,

n2

Output layer, n3

��
�,�

�,�

−2.139�	− 2.232

��
�,�

�,�

2.381�	2.380

��
�,�

�,�

−0.712�	− 0.864

��
�,�

�,�

0.782�	0.782

��
�,�

�,�

6.999�	6.999

��
�,�

�,�

��	− �.� !
"�
�
−0.138�	− 0.309

"�
�
−6.161�	− 6.161

"�
�
−0.537�	− 0.372

���
��

�,�

�,�

1.766�	2.426

��
�,�

�,�

−0.165�	− 0.228

��
�,�

�,�

0.371�	0.768

��
�,�

�,�

4.018�	3.999

��
�,�

�,�

2.358�	2.358

��
�,�

�,�

��	− �.�#!
"�
�
−0.312�	− 0.005

"�
�

0.423�	0.416
"�
�

0.074�	0.039

9 Conclusions
This paper presented the control process of a

robotic platform based on time scaling. This process

changes the time constants of a robot model, given a

scaling factor, facilitating the control actions of a

person over the scaled system. Once the person

controls the system, two neural networks replace the

person and run at the original time rate. Selecting the

best scaling factor implies maximizing the

performance of the control system, using several

trials with different persons at variable transient

behaviours. In this case, the best factor slows the

transients to about half the normal speed. The data

collected at that factor serve to train the neural

networks that replaces the person, which is tested by

trying paths different from the training path. On the

other hand, the differences between model and real

platform may cause losses in the control

performance, thus in the last section, an online

training algorithm continuously tunes the neural

networks to accommodate them to the real plant,

preserving or even improving the performance of the

control system with a human in the loop. Finally, we

consider that is important to test more plants to show

the advantage of this new control process, also to

enhance the control interface to facilitate the control

actions, for instance looking for a more realistic

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

xr, x

y
r,

 y

0 100 200 300 400 500 600

-0.2

0

0.2

v
L
,

v
R

0 100 200 300 400 500 600
0

0.5

1

1.5

e
R

0 100 200 300 400 500 600

-1

-0.5

0

0.5

1

e
θ

t (s)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Danilo Rairán

E-ISSN: 2224-2856 51 Volume 13, 2018

scenario using virtual reality, instead of presenting

the robot as a single square.

References:

[1] A. K. Singh, K. M. Krishna and S. Saripalli,

"Planning trajectories on uneven terrain using

optimization and non-linear time scaling

techniques," 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems,

Vilamoura, 2012, pp. 3538-3545.

doi: 10.1109/IROS.2012.6385662

[2] V. Duggal et al., "Overtaking maneuvers by non

linear time scaling over reduced set of learned

motion primitives," 2015 IEEE Intelligent

Vehicles Symposium (IV), Seoul, 2015, pp. 115-

120.

doi: 10.1109/IVS.2015.7225672

[3] Y. Hu, G. Yan, Z. Lin and M. Liu, "Time-scaling

control and passive walking of bipeds with

underactuation degree one," 49th IEEE

Conference on Decision and Control (CDC),

Atlanta, GA, 2010, pp. 1116-1121.

doi: 10.1109/CDC.2010.5717814

[4] N. Motoi, T. Shimono and R. Kubo, "Point-to-

point motion control based on reproduction of

recorded human motions with time scaling,"

IECON 2014 - 40th Annual Conference of the

IEEE Industrial Electronics Society, Dallas, TX,

2014, pp. 2834-2839.

doi: 10.1109/IECON.2014.7048910

[5] L. Hsu, T. R. Oliveira and J. P. V. S. Cunha,

"Extremum seeking control via monitoring

function and time-scaling for plants of arbitrary

relative degree," 2014 13th International

Workshop on Variable Structure Systems (VSS),

Nantes, 2014, pp. 1-6.

doi: 10.1109/VSS.2014.6881131

[6] S. A. S. Mousavi, X. Zhang, T. M. Seigler and J.

B. Hoagg, "Characteristics that make dynamic

systems difficult for a human to control," 2016

American Control Conference (ACC), Boston,

MA, 2016, pp. 4391-4396.

doi: 10.1109/ACC.2016.7525613

[7] B. Yu, R. B. Gillespie, J. S. Freudenberg and J. A.

Cook, "Human control strategies in pursuit

tracking with a disturbance input," 53rd IEEE

Conference on Decision and Control, Los

Angeles, CA, 2014, pp. 3795-3800.

doi: 10.1109/CDC.2014.7039980

[8] M. Corno, P. Giani, M. Tanelli and S. M.

Savaresi, "Human-in-the-Loop Bicycle Control

via Active Heart Rate Regulation," in IEEE

Transactions on Control Systems Technology,

vol. 23, no. 3, pp. 1029-1040, May 2015.

doi: 10.1109/TCST.2014.2360912

[9] L. Peternel, E. Oztop and J. Babič, "A shared

control method for online human-in-the-loop

robot learning based on Locally Weighted

Regression," 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems

(IROS), Daejeon, 2016, pp. 3900-3906.

doi: 10.1109/IROS.2016.7759574

[10] R. B. Warrier and S. Devasia, "Iterative

Learning From Novice Human Demonstrations

for Output Tracking," in IEEE Transactions on

Human-Machine Systems, vol. 46, no. 4, pp.

510-521, Aug. 2016.

doi: 10.1109/THMS.2016.2545243

[11] F. Xie, H. Fan, Y. Li, Z. Jiang, R. Meng and A.

Bovik, "Melanoma Classification on

Dermoscopy Images Using a Neural Network

Ensemble Model," in IEEE Transactions on

Medical Imaging, vol. 36, no. 3, pp. 849-858,

March 2017.

doi: 10.1109/TMI.2016.2633551

[12] A. Kumar, J. Kim, D. Lyndon, M. Fulham and

D. Feng, "An Ensemble of Fine-Tuned

Convolutional Neural Networks for Medical

Image Classification," in IEEE Journal of

Biomedical and Health Informatics, vol. 21, no.

1, pp. 31-40, Jan. 2017.

doi: 10.1109/JBHI.2016.2635663

[13] X. Y. Zhang, G. S. Xie, C. L. Liu and Y. Bengio,

"End-to-End Online Writer Identification With

Recurrent Neural Network," in IEEE

Transactions on Human-Machine Systems, vol.

47, no. 2, pp. 285-292, April 2017.

doi: 10.1109/THMS.2016.2634921

[14] H. Liu; N. Shu; Q. Tang; W. Zhang,

"Computational Model Based on Neural

Network of Visual Cortex for Human Action

Recognition," in IEEE Transactions on Neural

Networks and Learning Systems , vol. PP, no.

99, pp. 1-14

doi: 10.1109/TNNLS.2017.2669522

[15] T. E. Chen et al., "S1 and S2 Heart Sound

Recognition Using Deep Neural Networks," in

IEEE Transactions on Biomedical Engineering,

vol. 64, no. 2, pp. 372-380, Feb. 2017.

doi: 10.1109/TBME.2016.2559800

[16] P. Andras, "High-Dimensional Function

Approximation With Neural Networks for Large

Volumes of Data," in IEEE Transactions on

Neural Networks and Learning Systems , vol.

PP, no. 99, pp.1-9

doi: 10.1109/TNNLS.2017.2651985

[17] H. Liu, Y. Zhang and W. Wu, "Saturated

adaptive back-stepping control for robot

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Danilo Rairán

E-ISSN: 2224-2856 52 Volume 13, 2018

manipulators with RBF neural network

approximation," 2016 IEEE International

Conference on Information and Automation

(ICIA), Ningbo, 2016, pp. 1550-1555.

doi: 10.1109/ICInfA.2016.7832065

[18] T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer and

K. Funaya, "Robust Online Time Series

Prediction with Recurrent Neural Networks,"

2016 IEEE International Conference on Data

Science and Advanced Analytics (DSAA),

Montreal, QC, 2016, pp. 816-825.

doi: 10.1109/DSAA.2016.92

[19] S. Hussein, R. Chandra and A. Sharma, "Multi-

step-ahead chaotic time series prediction using

coevolutionary recurrent neural networks," 2016

IEEE Congress on Evolutionary Computation

(CEC), Vancouver, BC, 2016, pp. 3084-3091.

doi: 10.1109/CEC.2016.7744179

[20] C. Zhao, M. van Heeswijk and J. Karhunen, "Air

quality forecasting using neural networks," 2016

IEEE Symposium Series on Computational

Intelligence (SSCI), Athens, 2016, pp. 1-7.

doi: 10.1109/SSCI.2016.7850128

[21] S.G. Kadwane, Amit kumar, B.M. Karan, T.

Ghose "Online Trained Simulation and DSP

Implementation of Dynamic Back Propagation

Neural Network for Buck converter," ACSE

Journal, vol. 6, no. 1, pp. 27-34, Jan. 2006.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Danilo Rairán

E-ISSN: 2224-2856 53 Volume 13, 2018

