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Abstract: In recent years, a number of methods have been proposed to construct fuzzy regression models based the
fuzzy distance. Most of the researches that have been proposed have used the parametric methods specifying
the form of the relationship between the dependent and independent variables. In this talk, we introduce
nonparametric fuzzy regression methods such as Rank transform method, Theil’s method, Kernel method,
k-nearest neighborhood method and Median smoothing method and discuss the efficiency of the proposed
methods.

1 IIntroductionNTRODUCTION

Tanaka et al.(1982) first introduced a fuzzy regression
model to construct a functional relationship between
fuzzy explanatory and response variables. He sug-
gested a fuzzy regression model as follows:

Yi = F(A,Xi), i = 1, · · · ,n, (1)

where Xi =(Xi0,Xi1, · · · ,Xip) is a (p+1)-dimensional
vector of known predictors, A = (A0,A1, · · · ,Ap) is a
(p+ 1)-dimensional vector of unknown coefficients,
F(A,Xi) is a function about the vector A and Yi is a
predicted variable corresponding to the input vector
Xi. The coefficient Ai, the predictor Xip and the pre-
dicted value Yi are LR-fuzzy numbers in the regres-
sion equation (1).

The membership function of an LR-fuzzy num-
ber A, denoted by (a, la,ra)LR, with a mode a and a
right(left) spread ra > 0(la > 0) is

µA(x) =


LA

(
a− x

la

)
if 0≤ a− x≤ la,

RA

(
x−a

ra

)
if 0≤ x−a≤ ra,

0 otherwise,

where the functions L and R are continuous and
strictly decreasing functions on [0,1] with LA(1) =
RA(1) = 0 and LA(0) = RA(0) = 1 (Zadeh, 1965).
Specially, if the left and right spread are same, we de-
note the symmetric fuzzy number as (a,s)LR. And if

LA(x)=RA(x)= 1−x, we call the LR-fuzzy number a
triangular fuzzy number and denote as (a, la,ra)T . An
alpha-level set of the fuzzy number A with the mem-
bership function µA, denoted by A(α), is defined by
A(α) = {x ∈ R|µA(x) ≥ α} for all α ∈ (0,1]. The α-
level set of the fuzzy number A can be represented as
follows:

A(α) = [lA(α),rA(α)],

where lA(α) = a − laL−1
A (α) and rA(α) = a +

raR−1
A (α). The 0-level set A(0) is defined as the clo-

sure of the set {x ∈ R|µA(x)> 0}.
Fuzzy regression models can be classified into two

types based on the functional relationship between the
dependant and independent variables, which is ex-
pressed by response functions. If the relationship is
unknown, the model is called a nonparametric fuzzy
regression model (Cheng & Lee 1999, Kao & Lin
2005, Kim & Chen 1997, Nevitt & Tam 1998, Wang
et al. 2007, Calonico et al. 2014, Razzaghnia et al.
2015, Jung et al. 2015 ). And if the relationship
is known, it is called a parametric fuzzy regression
model (Diamond 1988, Bargiela 2007, Wu 2008, Kim
et al. 2008, Yoon & Choi 2013, Jung et al. 2014, Lee
et al. 2015, Yoon et al. 2016, Lee et al. 2017). Var-
ious fuzzy regression methods using fuzzy distance
have suggested to analyze the fuzzy regression mod-
els.

In this paper, we introduce nonparametric fuzzy
regression methods such as Rank transform method
(Iman & Cononver, 1979), Theil’s method (Theil,
1950), Kernel method (Cheng & Lee, 1999), k-
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nearest neighborhood method(k-NN), and Median
smoothing method based on the basis of an alpha level
set of a fuzzy data, and discuss the efficiency of the
proposed nonparametric methods.

2 Nonparametric Fuzzyreg RessionNONPARAMETRIC FUZZY
REGRESSION

In this section, we apply nonparametric methods,
which use equations of the components of the α-level
set of the observed fuzzy numbers, to estimate the
value Yi based on {Xi1(α), · · · ,Xip(α),Yi(α)} where
Xik(α) and Yi(α) are the α-level sets of Xik and Yi, re-
spectively.

Zadeh introduced resolution identity theorem
(Zadeh, 1975) which can define a fuzzy set using α-
level sets family. Based on the resolution identity,
the membership function of a fuzzy set can be es-
timated using a finite number of α-level sets. This
study introduces several non-parametric fuzzy regres-
sion method such as fuzzy Kernel method, k-nearest
neighborhood method(k-NN), and Median smooth-
ing method which use weights. In addition,Theil’s
method and the Rank transformation method are in-
troduced. Rank transform method is a simple pro-
cedure where the data are merely replaced with their
corresponding ranks i.e. assign rank 1 to the small-
est observation and continue to rank n for the largest
observation. Also Theils method is introduced in this
paper which involves basically calculating the regres-
sion coefficients for all possible pairs of the sets. In
order to estimate a non-parametric fuzzy regression
model using a finite number of α-level sets of in-
dependent and dependent variables, we propose fol-
lowing procedures. The five estimation methods that
are proposed in this paper can be conducted similarly
based on following 5 steps.

(i) Estimate the mode yi of Yi based on the non-
parametric method and the set

{(lXi(1), lYi(1)) : i = 1, · · · ,n}

and
{(rXi(1),rYi(1)) : i = 1, · · · ,n},

where lXi(1) = rXi(1) = (xi1(1), · · · ,xip(1)) .

(ii) Estimate the endpoints l̂Yi(αo) and r̂Yi(αo) of
the output Yi from the nonparametric method based
on the set

{(lXi(αo), lYi(αo)) : i = 1, · · · ,n}

and
{(rXi(αo),rYi(αo)) : i = 1, · · · ,n},

where

lXi(αo) = (lxi1(αo), · · · , lxip(αo))

and
rXi(αo) = (rxi1(αo), · · · ,rxip(αo))

for some αo ∈ (0,1).

(iii) Estimate the pseudo endpoints l̄Yi(α
∗) and

r̄Yi(α
∗) of the output Yi from the nonparametric

method based on the set

{(lXi(α
∗), lYi(α

∗)) : i = 1, · · · ,n}

and
{(rXi(α

∗),rYi(α
∗)) : i = 1, · · · ,n},

where

lXi(α
∗) = (lxi1(α

∗), · · · , lxip(α
∗))

and
rXi(α

∗) = (lxi1(α
∗), · · · , lxip(α

∗))

for α∗ 6= αo.

(iv) The estimation of endpoints of Ŷi(α
∗) are pro-

posed by

l̂Yi(α
∗) =

{
Max{l̂Yi(αo),Min{l̄Yi(α

∗), l̂Yi(1)}} if α
∗ ≥ αo

Min{l̄Yi(αo), l̂Yi(α
∗)} if α

∗ < α

and

r̂Yi(α
∗)=

{
Min{r̂Yi(αo),Min{r̄Yi(α

∗), r̂Yi(1)}} if α
∗ ≥ αo

Max{r̄Yi(αo), r̂Yi(α
∗)} if α

∗ < α

from based on the results in (i)-(iii).

(v) Estimate the reference functions LŶi
(·) and

RŶi
(·) of the output Yi applying the least squares

method based on

{(l̂Yi(α j),α j)| j = 1, · · · ,s}

and
{(r̂Yi(α j),α j)| j = 1, · · · ,s}.

Using above procedure several fuzzy non-
parametric estimators are proposed.

2.1 k-nearest neighborhood
method(k-NN)

The k-nearest neighbors(k-NN) method is a non-
parametric method used for classification and regres-
sion (Altman, 1992). The k-nearest neighbor estimate
is the weighted average in a varying neighborhood
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based on the observation {(Xi,Yi) : i = 1, · · · ,n}. The
neighborhood is defined as the k-nearest neighbors
of x in Euclidean distance. The k-nearest neighbor
smoother is defined as (Altman, 1992)

Ŷi = S(x = Xi) =
n

∑
j=1

w j(x)Yj,

where Ŷi is the estimate of Yi and w j(x), is the weight
sequence defined through the set of indexes Jx = { j :
X j is one of the k-nearest observations to x}. Here,

w j(x) =


1
k

if j ∈ Jx,

0 o.w

For fuzzy non-parametric k-NN estimation, let us
define the set JlXi

(α) for lXi(α) as follows.
JlXi (α)

= { j : lX j(α) is the k-nearest observation of lXi(α)},
where lXi(α) = {(lxi1(α), · · · , lxip(α)) : i = 1, · · · ,n}.
Based on k-NN method, a fuzzy non-parametric
regression estimator estimator of left endpoint is
proposed as follows:

ˆlYi(α) =
n

∑
j=1

w j(lxi(α))lY j(α).

From the similar procedure, the right endpoint can
be estimated as

r̂Yi(α) =
n

∑
j=1

w j(lxi(α))rY j(α).

2.2 Median smoothing method

This method is similar to the K-nearest neighbor
smoothing. The neighborhood is defined as the K-
nearest neighbors of x in Euclidean distance. The Me-
dian smoother is defined as

Ŷi = S(x = Xi) = Med j∈Jx(Yj),

Based on Median smoothing method, a fuzzy non-
parametric regression estimator of left endpoint is
proposed as follows:

ˆlYi(α) = Med{lY j(α) : j ∈ JlXi (α)
},

where JlXi (α)
is defined above.

From the similar procedure, the right endpoint can
be estimated as

r̂Yi(α) = Med{rY j(α) : j ∈ JrXi (α)
}.

2.3 Kernel method

A sample approach to represent the weight sequence
in the local averaging method is to represent the

weight distribution by a density function, which con-
tains a scale parameter that adjusts the size and the
form of the weights according to the location of the
point with respect to the point estimation x. This den-
sity function is known as the kernel function. The
kernel estimate, S(x), is defined as a weighted aver-
age of the response variable in a fixed neighborhood
around x, determined in a shape by the kernel func-
tion K and the bandwidth h (Cheng and Lee, 1999).
Kernel estimate, S(x), is defined as

Ŷi = S(x = Xi) =
n

∑
j=1

w j(x)Yj

and the weight sequence is

w j(x) =
Kh(x−X j)

Ph(x)
,

where Ph(x) = ∑
n
j=1 Kh(x−X j) and Kh(u) = 1

h K( u
h )

in which K( u
h ) is the kernel with scale factor h. In this

paper the kernel function is defined as follow:

K(x) =


3
4
(1− x2) if |x|< 1

0 o.w.

For the fuzzy non-parametric Kernel estimator,
the left endpoint is proposed:

lYi(α) =
1

SlYi (α)

n

∑
k=1

K
(

lXk(α)− lXi(α)

h

)
lYk(α),

where

SlYi (α)
=

n

∑
j=1

K
(

lX j(α)− lXi(α)

h

)
and

rYi(α) =
1

SrYi (α)

n

∑
k=1

K
(

rXk(α)− rXi(α)

h

)
rYk(α),

where

SrYi (α)
=

n

∑
j=1

K
(

rX j(α)− rXi(α)

h

)
for the estimator of the right endpoint.

2.4 Theil’s method

Theil’s estimation method is widely used nonpara-
metric regression method. Theil’s estimation method
can be applied to fuzzy regression using median in ac-
cordance with mode and end points of the alpha-level
sets.(Choi et.al.2016)
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For the fuzzy non-parametric Theil’s estimator,
the left endpoint of the slope is proposed as follows
(Choi et.al.2016):

Med

{
lYi(α)− lY j(α)

|lXi(α)− lX j(α)|
: 1≤ i < j ≤ n

}
.

And from the relation
lYi(α) = lA0(α)+ lA1(α) · lxi1(α),

estimator of the left end point of the constant term can
be obtained as follows:

ˆlA0(α) =
¯lYi(α)− ˆlA1(α) · ¯lxi1(α)

From the similar procedure, the right endpoint can
be estimated as

Med

{
rYi(α)− rY j(α)

|rXi(α)− rX j(α)|
: 1≤ i < j ≤ n

}
.

and
ˆrA0(α) = r̄Yi(α)− ˆrA1(α) · ¯rxi1(α)

For multiple fuzzy regression based on Theil’s
method, see (Choi et.al.2016).

2.5 Rank transform method

Iman and Conover (Iman and Conover, 1979) intro-
duced Rank tranform method and showed that it is a
robust and powerful procedure in hypothesis testing
with respect to experimental designs. Assume that
we have data (xi,yi), i = 1, · · · ,n. The dependent
variable yi is replaced by each corresponding rank.
R(yi) is the rank assigned to ith value of Y . Similarly,
independent variable xi is also replaced by each rank.
R(xi) is the rank assigned to ith value of X . For
arbitrary given independent variable x∗, to get the
predicted value ŷ the R(x∗) is defined as follows:

1)If x∗ < x(1), then R(x∗) = R(x(1))
2)If x∗ > x(n), then R(x∗) = R(x(n))
3)If x∗ = x(i), then R(x∗) = R(x(i))
4)If x(i) < x∗ < x(i+1)(i = 1, · · · ,n−1), then R(x∗) =

R(x(i))+ [R(x(i+1))−R(x(i))]×
x∗−x(i)

x(i+1)−x(i)

The fuzzy Rank transform estimator of left end-
point can be obtained using following rank which is
proposed in (Jung et.al.,2015).

R(lYi(α)) =
n+1

2
+β1(α)(R(lxi1(α))−

n+1
2

)

From the similar procedure, the right endpoint can be
estimated using

R(rYi(α)) =
n+1

2
+β1(α)(R(rxi1(α))−

n+1
2

)

For the estimators of multiple fuzzy regression,
see (Jung et.al.,2015).

3 Numerical ExampleNUMERICAL EXAMPLE

In order to compare the efficiencies of the fuzzy
regression models obtained by using five nonpara-
metric methods, we use the data introduced by Dia-
mond(1988), which has fuzzy input and fuzzy output.
Also, we use a performance measure, d

(
Yi,Ŷi

)
which

is the sum of the difference area between the observed
and the estimated fuzzy data, to compare the accu-
racy of the constructed fuzzy regression models (Jung
et.al.,2015).

d
(

Yi,Ŷi

)
=

∫
∞

−∞
|µYi(x)−µŶi

(x)|dx∫
∞

−∞
µYi(x)dx

+hd(Yi(0),Ŷi(0)),

(2)
where hd(A,B) = supa∈Ain fb∈B|a−b|.

A data (Diamond, 1988) is introduced to compare
proposed five fuzzy non-parametric method.

Table 2.1 Data given by Diamond

Input Output
(xi, lxi ,rxi)T (yi, lyi ,ryi)T
(21,4.20,2.10)T (4.0,0.6,0.8)T
(15,2.25,2.25)T (3.0,0.3,0.3)T
(15,1.50,2.25)T (3.5,0.35,0.35)T
(9,1.35,1.35)T (2.0,0.4,0.4)T
(12,1.20,1.20)T (3.0,0.3,0.45)T
(18,3.60,1.80)T (3.5,0.53,0.7)T
(6,0.60,1.20)T (2.5,0.25,0.38)T
(12,1.80,2.40)T (2.5,0.5,0.5)T

Using the performance measure defined above,
the errors are obtained in Table 2.2 to compare the
accuracies.

Table 2.2 Estimation Errors
Methods 3-NN MSM Kernel Theil’s RTM
Error 2.206 2.069 2.226 1.756 2.124

1.200 1.200 1.005 1.155 1.200
1.319 1.400 1.297 1.110 1.434
1.190 1.600 1.564 1.550 1.423
1.500 1.500 0.813 0.811 1.189
1.887 1.800 1.698 1.008 1.412
1.286 1.288 1.319 0.776 1.154
1.907 1.674 1.622 1.791 1.907

Sum 12.495 12.528 11.544 9.958 12.115

From Table 2.2, it is confirmed that Theil’s
method is more efficient than other methods with
given data.

This paper can be extended for more properties
of the estimators such as consistency, rate of conver-
gence and other asymptotic properties, which show
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the properties of each estimators mathematically. And
more efficient conditions which explain the properties
of non-parametric methods used in fuzzy regression
analysis can be dealt with in our next research.

4 ConclusionsCONCLUSIONS

In this paper, in order to construct a fuzzy regres-
sion model, we proposed five nonparametric methods,
which are known as the distribution free methods and
not dependent on the error distribution. The example
given showed that Theil’s Method is more efficient
than other methods. Further studies such as consis-
tency, rate of convergence, and other asymptotic the-
ory are needed for more efficient conditions which ex-
plain the properties of nonparametric methods used in
the fuzzy regression analysis.
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