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Abstract: Constrained nonlinear optimization problems can be solved using penalty or barrier functions. This
strategy, based on solving unconstrained problems obtained form the original problem, has shown to be effec-
tive, particularly when used with direct search methods. An alternative to solve the above mentioned problems
is the filters method. The filters method, introduced by Fletcher and Leyffer in 2002, has been widely used to
solve constrained problems. These methods use a different strategy when compared with penalty or barrier func-
tions. The previous functions define a new one that combine the objective function and the constraints, while the
filters method treat optimization problems as bi-objective problems where the objective function and a function
that aggregates the constraints are optimized. Based on the work of Audet and Dennis, using filters method with
derivative-free algorithms, the authors developed some works where other direct search methods were used, com-
bining their potential with the filters method. More recently, a new variant of these methods was presented, where
some alternative aggregation restrictions for the construction of filters were proposed. This paper presents a variant
of the filters method, more robust than the previous ones, that has been implemented with a safeguard procedure
where values of the function and constraints are linked together and are not treated as completely independently.
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1 Introduction

A constrained NonLinear Problem (NLP) can be pre-
sented in the form:

min f(x)
s.t. ci(x) = 0, i ∈ E

ci(x) ≤ 0, i ∈ I
(1)

where, x ∈ Rn, f is the objective function,
ci(x) = 0, i ∈ E , with E = {1, 2, ..., t}, define
the equality constraints and ci(x) ≤ 0, i ∈ I, with
I = {t+ 1, t+ 2, ...,m}, represent the inequality
constraints.

We can define Ω =
{x ∈ Rn : ci = 0, i ∈ E ∧ ci(x) ≤ 0, i ∈ I} as
the set of all feasible points, i.e., the feasible region.

When the objective function and/or the con-
straints functions are not smooth, non continuous, it is
not possible to use derivative-based methods. In these
cases, we propose the use of derivative-free methods,
more precisely, deterministic direct search methods,
i.e., methods that only need and use information about
the objective and constraints functions values to find
the next iteration.

To deal with the constraints, using the most
well known direct search methods (which are uncon-

strained optimization methods), we need some degree
of constraints manipulation. The most frequent tech-
niques are based in penalty or barrier functions. More
recently, the filter methods has proved to be effective
to deal with the information given by the constraints.

Unlike penalty and barrier methods, the filters
method considers the feasibility and optimality sep-
arately, using the concept of dominance of multi-
objective optimization. A filters algorithm introduces
a function that aggregates constraint violations and
constructs a bi-objective problem. It attempts to mini-
mize simultaneously that function (feasibility) and the
objective function (optimality), giving priority to the
feasibility at least until a feasible iterate is found.

In short, we can say that in the resolution of a
problem we have two objectives: minimize the ob-
jective function (Optimality) and minimize the con-
straints violation, which must be zero or tend to zero
(Viability).

First filters method for derivative-free nonlinear
programming was presented by Audet and Dennis,
[1]. This method is based on pattern search methods.
Motivated by this work the authors have developed
a method that combines the features of the simplex
method and filters method, [3, 5, 6]. The promising
results that were obtained with this method encour-
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Figure 1: Filters Method - Graphic Concept

aged the development of more features of the method,
namely the combination of filters method with other
direct search unconstrained optimization methods and
the definition of other techniques to aggregate the con-
straint violation functions. This study was presented
in [4].

In this paper, the fundamental concepts that al-
lowed us to make this work, using the results obtained
in [4], as a comparison with other implementations of
the filters method, are presented.

2 Theoretical concepts

A key component of the filters method is a non-
negative continuous function h which aggregates the
constraint violation functions. Then h is a function
such that h(x) ≥ 0 with h(x) = 0 if and only if x
is feasible.

This function is used in the definition of succes-
sive filters along the iterative process, because a point
is accepted in a filter if and only if that point has better
values of h or f than the points found so far.

Another fundamental concept to the perception of
the filter method, is the dominance.

A point x ∈ Rn is said to dominate y ∈ Rn,
written x ≺ y , if f(x) ≤ f(y) and h(x) ≤ h(y) or
f(x) < f(y) or h(x) < h(y) .

A filter, denoted by F , is a finite set of points in
the domain of f and h such that no point x in the set
dominates other point y in the set, i.e., there is no pair
of points x and y in the filter that have the relation
x ≺ y.

Figure 1, based on Correia et. al. [4] and Ribeiro
et. al. [9], depicts the concept of a filter with four
initial points (a, b, c and d).

Points represented by a, b, c and d define a bound-
ary of the forbidden region, presented in shaded. To
the filter it should be added the points with better

(lower) values of f and h, i.e. the aim is to have h = 0
and the lowest possible values for f . Therefore the
point represented by y, as it is inside the forbidden re-
gion, will not be accepted in the filter. But the point
represented by z is out of the forbidden region and
therefore it will be included in the filter. The same ap-
plies to the point represented by w , however, in this
case, there would still rise to the elimination of points
represented by c and d of the filter, since they are
in the forbidden region defined by w , i.e., c and d
are dominated by w .

Now follows another concept that is also impor-
tant.

It is considered that a point x is filtered by a
filter F if:

- There exists a point y ∈ F such that y ≺ x or
y = x;

- or h(x) ≥ hmax;

- or h(x) = 0 and f(x) ≥ fF ;

where fF is the objective function value of the best
feasible point found so far and hmax is a previous de-
fined bound for h value, so each point x ∈ F satisfies
h(x) < hmax.

3 Filters method algorithm

Based on the algorithms presented in [1, 7–9],
defined in a general manner, the authors have im-
plemented and tested several versions of the filters
method ( [6] and [3]).

In these versions, the filters method was imple-
mented in combination with the Hooke and Jeeves
method, a pattern search method as Audet and Dennis
and with Nelder-Mead method. In [5] some improve-
ments were presented and a comparison was made of
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Figure 2: Filters Method Algorithm

a new simplex filter algorithm with the first version of
the same method.

Numerical results obtained have motivated the
generic implementation of filters method, i.e. so that it
can be applied not only with Nelder-Mead and Hooke
and Jeeves methods, in optimization of h and f , as
well as all available direct search type methods. That
was presented in [4].

The present work uses the procedure imple-
mented in [4] with changes, adaptations and gener-
alizations of those methods.

While in previous work the filters method treats
the optimality, optimization of f , completely iso-
lated from admissibility, optimization of h , in this
work there is a link between them, attempting that
both processes not to be fully independent.

After some analysis, it was found that in the pre-
vious implementation there could occur cases of al-
ternating values without obtaining convergence of the
algorithm. This could occur on an iteration of a pro-
cess to obtain a value, from which by the other process
will obtain the the initial value.

The new implementation is depicted in Fig. 2 and
the explanations are noted below.

In order to compare in a correct way, the same test
problems, the same aggregate functions h , and the
same direct testing methods as described in [4] were

used.
Algorithm
The procedure begins with an

initial filter that contains the
initial iteration, F0 = x0. Then,
it is constructed an initial
Set (Sk) containing n + 1 points
from that iteration (xk) and:
Sk = {xk} ∪ {xk + ei, i = 1, ..., n} , where
ei, i = 1, ..., n represents the vectors of
the canonic basis in Rn, starting
with the Search Set i = 0, ..., n.

1. If the point under analysis is
feasible then its inclusion in
the filter is evaluated:

(a) If it is not accepted:

i. One of five unconstrained
optimization methods is
applied to the function
F;

ii. A new point is obtained,
xk;

iii. Go back to the
construction of the Set:
Sk = {xk} ∪ {xk + ei, i = 1, ..., n};
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Figure 3: Numerical Results

(b) If it is accepted:

i. Filter is updated with
the new approximation to
the solution, i.e., the
new iteration;

ii. If the stop criterion
is verified, this
approximation is the
solution. Otherwise,
go back to the Set
construction, using this
point.

2. If the point is an infeasible
one, its inclusion in the filter
is evaluated:

(a) If it is not accepted:

i. One of five unconstrained
optimization methods is
applied to the function
h;

ii. A new point is obtained,
xk;

iii. Go back to the to the
construction of the
Set/Simplex : Sk =
{xk} ∪ {xk + ei, i = 1, ..., n};

(b) If it is accepted:

i. The filter is
updated with the new
approximation to the
solution, i.e., the new
iteration;

ii. If the stop criterion
is verified, this
approximation is the
solution. Otherwise,
go back to the Set
construction, using this
point.

Thus, the method contains two distinct processes:
the external iterative process, involving the Set con-
struction and the filter update and the internal itera-
tive process, involving the optimization of F and
h , where unconstrained optimization problems are
solved, with objective functions f or h, using one of
the Direct Search methods. These are de same meth-
ods described in [4], with which performance compar-
isons were made.

The main difference between this work and the
one presented in [4] is the use of the F function,
instead of the exclusively objective function f , from
problem (1) as shown in 1.(a)i. from the above proce-
dure.

The idea behind this new implementation is to
construct the function F using not only the objec-
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tive function f from the initial problem (1), but also
the function h that may be used to aggregate con-
straint violations. This is illustrated in the formula-
tion of the problem (2), where F (x) is defined by
F (x) = f(x)+ηh(x) , resulting in the problem with-
out constraints

min
x∈Rn

F (x), (2)

where η is a positive factor.
As in [4], the same five methods were used

in internal process: Opportunistic Coordinate search
method (CS); Hooke and Jeeves method (HJ); A ver-
sion of Audet et. al. method (AA); Nelder-Mead
method (NM) and a Convergent Simplex method
(SC). The first three are Pattern Search Methods or
Directional Direct-Search Methods.

The last two are Simplex Methods or Simplicial
Direct-Search Methods.

4 Aggregate constraint violation
functions

Considering the problem (1) constraints, namely the
t equality constraints, which may be written as two
inequality constraints:

ci(x) = 0, i = 1, ..., t
⇔ ci(x) ≤ 0 ∧ ci(x) ≥ 0, i = 1, ..., t
⇔ ci(x) ≤ 0 ∧ −ci(x) ≤ 0, i = 1, ..., t

settle 2t+m = n, this can be rewritten defining:
ri(x) = ci(x) ≤ 0, i = 1, ..., t
rj(x) = −ci(x) ≤ 0, j = t+ 1, ..., 2t; i = 1, ..., t
rj(x) = ci(x) ≤ 0, j = 2t+ 1, ..., q; i = t+ 1, ...,m

the problem to solve will be:

min
x∈Rn

f(x)

s.t. ri(x) ≤ 0, i = 1, ..., q
. (3)

To construct the h function (function that ag-
gregate the constraint violation) the norm 2 is usually
used,

h (x) = ‖C+ (x)‖2 =

√
q∑

i=1
max (0, ri (x))2.

The requirements for h are: be continuous and
h(x) ≥ 0 with h(x) = 0 if and only if x is
feasible, i.e., h must be a non negative continuous
function which h(x) = 0 if and only if x is feasible.
Therefore we propose the same alternatives presented
in [4], to aggregate the constraint violation functions,

and in that way, we can compare properly the obtained
values.

The definitions of h used to aggregate the con-
straint violation functions, are presented in Table 1.

5 Used parameters

In both processes, internal (Unconstrained Opti-
mization - Direct Search Methods) and external (Con-
strained Optimization - Filters Method), it is neces-
sary to choose some parameters. Once again, to com-
pare the values obtained with those obtained in [4]
same parameters were uses, where possible. The used
parameters are presented in Tables 2 and 3.

6 Numerical Results

The test problems are the same as used in [4] and were
selected from Schittkowski [10] and CUTE [2] collec-
tions. The fifteen Schittkowski problems are: S224;
S225; S226; S227; S228; S231; S233; S234; S249;
S264; S270; S323; S324; S325 and S326 and of Cute
collection were chosen two test problems: C801 and
C802. The last problem is the PA problem presented
in [6].

Figure 4: Numerical Results- Hooke-Jeeves

Figure 5: Numerical Results- Audet et. al.

The choice of these eighteen test problems was
not made in accordance with any special requirement,
they are only used to illustrate the performance of the
methods implemented.

In order to classify the solution approximations,
we use the same criteria used in [4], without using the
Bad classification:
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Table 1: Alternatives to aggregate the constraint violation functions
Measure h

Norm 1/`1 Penalty N1 h (x) = ‖C+ (x)‖1 =
q∑

i=1
max [0, ri (x)]

Norm 2 N2 h (x) = ‖C+ (x)‖2 =

√
q∑

i=1

{
max [0, ri (x)]2

}

Extreme Barrier NEB h (x) =

{
0 if x ∈ Ω

+∞ if x /∈ Ω

Progressive Barrier

Classic Penalty NP h (x) =
q∑

i=1
{max [ri (x) , 0]}2

Static/Dynamic Penalty

Figure 6: Numerical Results- Nelder-Mead

Figure 7: Numerical Results- Simplex Convergent

• a Feasible solution approximation if h(xk) = 0,
is:

– Good if: |f(x∗)− f(xk)| ≤ 0.0001;

– Medium if: 0.0001 < |f(x∗)−f(xk)| ≤
0.01;

• an Infeasible solution approximation if h(xk) 6=
0, is:

– Good if: |f(x∗) − f(xk)| ≤ 0.0001 ∧
h(xk) ≤ 0.0001;

– Medium if:

Figure 8: Numerical Results-N1 aggregate function

Figure 9: Numerical Results-N2 aggregate function

* 0.0001 < |f(x∗) − f(xk)| ≤
0.01 ∧ h(xk) ≤ 0.0001;

* or |f(x∗) − f(xk)| ≤ 0.0001 ∧
0.0001 < h(xk) ≤ 0.01;

* or 0.0001 < |f(x∗) − f(xk)| ≤
0.01 ∧ 0.0001 < h(xk) ≤ 0.01;

All the obtained solution approximations were
classified using these criteria.

In the above tests, it can be shown an improve-
ment in the results, when compared with those pre-
sented in [4]. A table which summarizes the obtained
results are presented in the left table of Fig. 3 and the
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Figure 10: Numerical Results-NEB aggregate func-
tion

Figure 11: Numerical Results-NP aggregate function

differences to the results obtained in [4] are presented
in the table on the right.

An improvement on the results is noticed in al-
most all types of solutions obtained above, i.e. in
the good and medium ones, and for almost all direct
search methods and penalty functions.

In order to enable an easier data analysis, it is
present an analysis for each method and for each
penalty function, based on right table of Fig. 3.

Thus, starting with the direct search methods, we
have the results of the Coordinate Search method in
Fig. 12. We can observe the large increase in the num-
ber of feasible solutions and a small decrease in infea-
sible solutions.

For the Hook-Jeeves method we have the results
presented in Fig. 4. These were the worse results,
where it was obtained fewer solutions than with the
previous implementation in [4].

Results obtained with Audet et. al. method are
presented in Fig. 5. Here were obtained better results
than with the previous implementation for the feasi-
ble approximation. For the infeasible approximations
it were obtained the same results with every penalty
function.

For the Nelder-Mead method the results presented
in Fig. 6 were obtained. The conclusions are similar
to the previous case.

The results presented in Fig. 7 are for the Simplex
Convergent algorithm. Once again, the conclusions
are similar to the previous two cases.

For the aggregate constraints violation functions,
there was also an performance increase in the prob-
lems resolution.

Thus, starting with the N1 aggregate function , we

Figure 12: Numerical Results-Coordinate Search

have the results in Fig. 8. We can observe the large
increase in the number of feasible solutions and also a
small increase in infeasible solutions.

For the N2 aggregate function, we have the results
in Fig. 9. The results are very similar to the previous
case. Also, in both cases the Hooke-Jeeves method
was the only one where it was not obtained better re-
sults.

The results for the NEB aggregate function, are
presented in Fig. 10. With this aggregate constraints
violation function, we obtained the better improve-
ment of all results, particularly in the feasible solu-
tions.

The results for the NP aggregate function, are pre-
sented in Fig. 11. With this aggregate constraints vio-
lation function, we obtained the lowest improvement
of all results. Once again the poor performance of the
Hooke-Jeeves resulted in a loss of solutions.

For these 18 test problems, from various tested
methods and constraints evaluation combination that
that the best performance improvement was the NM
combined with NEB. Besides being the combination
with the best results, it was also the one that had the
better improvements, when compared with our previ-
ous works.

7 Conclusion

From the above presented numerical results it can be
concluded that it is possible to use and improve other
direct search methods and combining them with the
filters method. Also, it is possible to improve the pro-
posed technique for constraint violation functions ag-
gregation.

In our particular case, it is predictable a signifi-
cant improvement of the previously obtained results
with the creation of a new objective function, by in-
cluding a penalty term. This has proved to be an es-
sential fact to the improvement of the results.

Thus, the suggestions presented in [4] together
with the improvements proposed in this work, re-
sults in another alternative for solving constrained op-
timization problems without using derivatives of the
functions involved or their approximations.
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Table 2: Unconstrained Optimization - Direct Search Methods - Used parameters
Parameters Coordinate

Search
Hooke-Jeeves Audet Nelder-Mead Simplex

Convergent
kmax 100 100 100 100 100
s 1 1 * 1 1
sm * * 1,5 * *
sp * * 1 * *
smin 10−3 10−3 10−3 * *
α * * * 1 1
β * * * 0,5 0,5
γ * * * 2 2
T1 10−5 10−5 10−5 10−5 10−5

T2 10−5 10−5 10−5 10−5 10−5

Tvar * * * 10−5 10−5

Tvoln * * * * 10−5

kmax →Maximum number of iterations; s→ Length of the initial step
sm → Length of the initial mesh search step (Audet); sp → Length of the initial poll step (Audet)

s→ Length of the initial step; smin →Minimum value for the step length
α→ Reflexion parameter (Nelder-Mead); β → Contraction parameter (Nelder-Mead)

γ → Expansion parameter (Nelder-Mead)
T1 = |xk − xk+1| → Tolerance for the distance between two consecutive iterations

or Tolerance for the distance between the last iteration and the latest iteration (Nelder-Mead)
T2 = |f (xk)− f (xk+1) | → Tolerance for

the distance between two values of the objective function in successive iterations
Tvar → Tolerance to the variance of the objective function values in the vertices of the simplex (Simp. Conv.)

Tvoln → Tolerance to the normalized volume of the simplex
∗ → Parameter non used in the method
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