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Abstract: - The sphere of conflict zones is extended each year all over the world, and the remain of war and the 
explosive devises increase the percentage of death and causalities. This critical situation needs the built of a 
new strategy for demining operation. This paper adopts the ant colony optimization (ACO) algorithms to 
coordinate a demining multi robot system. In general, demining operations have humanitarian purposes and the 
operator security is the most focused criteria in demining systems. Otherwise, other criteria are considered for 
militaries applications. In fact, time demining operation should be optimized in the case of large-scale 
minefield area. In this paper, two modifications were performed on ACO algorithm related to ant nest position 
and evaporation pheromone rate. We perform for each situation different experimentations for three types of 
minefield distributions.        
 
Key-Words: - ACO algorithms (Ant colony optimization algorithms), Demining operation, Evaporation 
pheromone rate, Landmine, Multi-robotic systems (MRSs), Meta-heuristic, Temporal performances 
 
1 Introduction 
According to [1], the number of death and casualties 
caused by mine, improvised explosive device (IED) 
and explosive remains of war (ERW) has been 
decreasing since 1999 (year of mine ban treaty 
validation). These recorded cases are the estimations 
of real casualties number then many armed conflicts 
are still existing or initiated. Consequently, the 
recorded results of mine accidents given by 
landmine report is still significant. For instance, 
between 2011 and 2012, the civilian casualties 
percentage, compared with military one rose from 
73% in 2011 to 78% in 2012. Compared to 2011, 
casualties percentages of both children and female 
have increased slightly in 2012. In 2012, the 
landmine report recorded a total number of 3,628 
mine/ERW/IED casualties. In addition, landmine 
report recorded more than 1,066 killed people and 
2,552 injured. Less than 1% of total casualties 
represent an unknown survival result for injured 
persons. The record process of casualties’ events 
leaves accident cases and this generates a 
considerable number of unrecorded data. As a 

result, the real number of casualties is still unknown 
and depends on world conflict situations. In 2012, 
the recorded number of casualties represents a 
decrease of 19% in comparison to 2011 results 
(4,474 casualties); but these results have a 14% 
decrease in comparison to 2009 results (4,224 
casualties). Landmines were localized in 62 states 
(2012) in which 2,367 casualties occur in 30 states; 
however, Landmine clearance represents a recurrent 
problem in itself. In fact, a surface area greater than 
281 km2 was cleared by 40 mine action-programs 
(2012). Nevertheless, this surface is extended every 
year and needs adaptable methods to ensure 
clearance efficiency. At least, Standard demining 
clearance model operations (UNDHA standard)  
must ensure 99.6% rate of successful mine 
detection, and a 100% of the same rate according to 
International Mine Action Standards (IMAS) [2-4]. 
Timing demining process performances are less 
important than personal safety, reliability and 
accuracy of the demining process.  For this reason, 
replacing manual methods as primary procedure for 
humanitarian demining by robotized solutions 
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should increase productivity by speeding up reliably 
and safely the demining process. Therefore, various 
demining treatments exist, due to the use of 
different types of sensors and equipment to detect 
and neutralize landmines. In addition to this 
difficulty, the nature of landmines and the 
characterizations of any demining instrument, which 
should be 100% reliable, must be taken into 
consideration. The application of robotics research 
to demining operations purposes requires the 
integration of various technologies, including 
demining-oriented functions like the adaptability to 
field mines distributions, type of control 
architecture, integration of heterogeneous sensors, 
autonomous navigation , coordination in the case of 
multi-robots system, communication 
implementation, Machine intelligence and signal 
processing algorithms [2]. 
Considering that these systems should explore 
unknown configuration field, the exiting robotic 
systems designed for demining operations have 
limited performances [5]. In addition, demining 
robots are equipped with highly sophisticated 
technology instruments for mine detection and 
processing [6] resulting in high mine clearance cost. 
Time optimization of demining operations has 
become an important humanitarian objective in 
considering the number of abandoned mines fields 
[7]. This optimization must respect security 
constraints attached to demining operator and 
enhance efficiency of demining tasks in time 
proceeding and energy consumption. According to 
[6, 7],various assistant tools were designed and 
tested to help automation demining process, limit 
the risk of human error, and rise the estimation of 
risk zone. The Substitution of human operators by 
robotic agents participates with appropriate strategy 
in the fulfillment of this goal [8]. However, the 
sophisticated robot agents and the mines 
distributions variety enhance the demining 
operations cost. This cost includes time demining 
operation, energy management, equipment, and 
security considerations. In this paper, the possible 
applications of multi-robot systems were explored 
for time detection optimization of Mx% (maximum 
mine portion detected.) mines (in particular case of 
Minefield configuration). For this reason, the 
adaptation of multi-robot systems for demining 
operations should induce the choice of an adaptable 
coordination algorithm. Due to the complexity of 
demining operations problems, the meta-heuristic 
algorithms are considered the most useful 
coordination algorithm. So research and 
optimization algorithms have risen their exploration 
capabilities by including basic heuristic [9]. Many 

meta-heuristic algorithms like ant colony 
optimization, genetic algorithms etc. solve difficult 
optimization problems in a reduced amount of time 
with approximate solution. At this stage, ACO 
algorithms represent a coordination algorithm used 
to optimize demining operations time with adaptable 
considerations as an example for solving foraging 
robots problem.  
This paper is organized as follows. Sect. 2 
introduces the works related to multi-robots 
application on demining operations. In particular, 
these works include the configuration constraints in 
the case of mine distribution, type of meta-heuristics 
used for collaboration algorithms and performances 
metrics. Sect. 3 gives formulation approach of ant 
colony optimization algorithms. Sect. 4 presents the 
field mine distribution and collaboration models 
used in demining operations. Sect. 5 describes the 
simulation considerations for performed 
experiences. Sect. 6 lists and analyzes the 
simulations results. Sect. 7 is reserved for results 
discussion.  
2 Related works 
Multi-robots application in demining operations for 
humanitarian purposes represents an evaluation 
example of coordination strategy performance. 
Many researches such as [10-12] use specific 
coordination strategy in order to evaluate some 
criteria performances. General research organization 
starts with the definition of collaboration algorithms 
used in order to perform specific task. Demining 
process, which is highlighted in this research, 
includes many constraints related to the nature of 
minefield distribution and performance evaluation 
criteria. Some researches as in [10, 12, 13] give 
statistical studies on variety of spatial mine 
distribution in minefield. In fact, mines field spatial 
distributions in conflict zones are highly complex 
and varied. Landmine descriptions cannot be 
defined easily with deterministic clustering 
approaches. Landmine variety induces different 
mine distribution patterns, that one can be used to 
test hypotheses for demining operations. However, 
other assumptions have influence on performances 
evaluation systems. Combining the different 
parameters (incidents, populations, roads, 
agriculture field, etc.) for defining minefield map, 
would allow the consideration of environmental and 
social conditions [7]. 
Simulation example given in [5] tests real case 
minefield distributions in order to realize an 
automatic estimator to mines localization. Mines 
distribution configuration represents limitation in 
the case of unknown mined environment. 
Nevertheless, in several cases, mines distribution 
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can be modeled by stochastic model like in [6, 7, 
13]. Moreover, the efficiency of demining 
operations depends on the scenario followed for 
each robotic agent. 
On the other hand, the choice of collaboration 
strategy represents other constraints. In fact, 
demining operations with multi-robots systems raise 
complexity of collaboration interactions [10, 14]. In 
this case, the application of suitable meta-heuristic 
algorithms for multi-robot demining operations was 
performed in research such as [15-18]. Research 
studies focus on combined and modified heuristic 
(as is the case for Genetic algorithms, ACO 
algorithms, etc.) to enhance general performances of 
multi-robots systems. As a result, studies as [19] 
define some evaluation metrics to quantify 
collaboration performance cost. Localization and 
distribution robotic agents configuration were taken 
as evaluation criteria. These criteria depend on the 
application of constraints like possible robot agents 
interference [20]. A set of generic performance 
metrics was employed to evaluate each aspect of 
robotic demining systems. These performance 
metrics include demining processing speed to 
measure time elapsed until demining operations can 
be totally or partially achieved. The rest of 
experimentations focus on temporal performance 
optimization by using modified meta-heuristic 
algorithms. In particular, configuration parameters 
for minefield and coordination algorithm heuristic, 
as type of mine distributions and effects of 
evaporation pheromone rate, were treated in 
experimentations. Other performance metrics like: 
robotic agents displacements which represents 
aggregation of the distances inter-agent position 
during the demining operations (consumed energy), 
robotic Agents proportion of agents which ensure 
demining operations, robotic group size effect and 
communication flow exchanged between agents 
during robots interactions; represent other 
optimization objectives and they will be treated in 
further works. 
3 Ant colony optimization 
The choice of combinatorial methods for 
optimization instead of deterministic ones was 
determined by the nature of the treated problem. 
The case of demining problem is a difficult 
combinatorial optimization problem where 
demining operations should be performed with 
optimization of some criteria like operation time, 
energy, communication, etc. In this section, an 
example of Meta-heuristic algorithm based on Ant 
colony optimization (ACO) was presented. This 
algorithm is inspired by the ant behavior. With ACO 
algorithms, each ant is represented by an artificial 

agent that searches randomly a solution for the 
selected problem. In every iteration, exploration of 
solutions was made by agents displacements on a 
graph presenting the problem model. For every 
iteration, agents graph configurations define tested 
node which should be added to the optimal solution. 
Displacement through the problem graph is guided 
by a probabilistic decision model associated to the 
graph edges. As a result, the agents decisions were 
made in respect to edges probabilistic density. The 
edges probabilistic density is updated directly by the 
agents during graph exploration. Every individual 
agent choice influences the edges probabilistic 
density in order to construct optimal solutions. 
Many researchers focusing on bio-inspired 
algorithm studied the foraging behavior of ant 
colony. Especially, [21] performs experimentations 
using ant behavior to find optimal path from nest to 
food source. By the application of collective 
processing based on deposit pheromone model used 
in food ant foraging, this research demonstrates that 
ants are able to find the shortest path to food source. 
The artificial agents using ACO algorithms deposit 
artificial pheromone on the graph edges of the 
considered problem. The pheromone rate is 
determined by each artificial agent and it is related 
to the solution quality constructed by agents set. In 
fact, the probabilistic decision model is based on the 
amount of artificial pheromone deposited during 
solution construction. In the following iterations, 
other artificial agents use pheromone rate to select 
optimal edges. 
The demining problem can be modeled by a graph 
built with the quantification of landmine area. 
However, the ACO algorithm application to 
continuous domains is not simple. An easy approach 
would divide the landmine area into a subzone area. 
The displacement of demining agent is performed 
through the overlapping boundaries (see Fig. 1). 
Considering that mines dimensions are covered by 
acceptable accuracy intervals, landmines can be 
modeled in this configuration. Other researches as in 
[22-24] focus on the adaptation of ACO based 
algorithms to the continuous domain for 
applications which need more accuracy. 
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Fig.1. Landmine quantification 
The optimization demining problem is presented by 
(M, f0) (where M is the feasible solutions set and f0 
is the objective function allowing to each solution m 
∈  M a cost value f0(m).The demining problem 
resolution is obtained by an optimal solution m* 
which represents minimum demining time. M* 
represents the set of optimal solutions. The 
minimization problem resolution performed by Ant 
colony optimization consists of iteration of the 
following steps: 
• Construction of feasible solutions is ensured by 

probabilistic decision model 
• Realized feasible solutions participate in the 

modification of nodes selection. 
The given combinatorial optimization problem (M, 
f0) is characterized as follows: 
• A finite set E = { }1 2,  ,  ,  Ne e e υ… of decision 

elements, where Nʋ is the number of these 
elements. 

• A finite set S of the problem states, where a state 
is a sequence s = ,  ,  ,  ,  i j ke e e< … …>  over 
the elements of E. The elements number of a 
sequence s is expressed by |s|. The maximum 
length of a sequence has a positive constant 
limit: n < +∞. 

• A solution set M, which is a subset of S (i.e., M 
⊆ S). 

• A feasible states set S~, with S~ ⊆ S representing 
the constraints set Ω. 

• A set of optimal solutions M* (M*≠Ø), with M* 
⊆ M and M* ⊆ S~. 

At this stage, the above formulation of minimization 
problem could be presented by a weighted graph G 
= (E, L, T). The nodes of this graph are given by the 
elements in E set. The L set grouped the full 
connected node in E set. The T set is a vector of 
pheromone trails τ. Thus, the artificial agents build 
feasible solutions by performing random exploration 
on the connection edge of graph nodes. In general 
situation, pheromone trails can be deposited on 
nodes, edges or both. In demining problem 
formulation, only the case where pheromone trails 
are deposited on edges connections was considered. 
The pheromone trail noted by τ(i, j) represents the 
pheromone rate deposited on the edge connection 
between node i and j. The graph G represents the 
selected solution, which is under construction. The 
construction solution process is ensured by artificial 
agent that realizes a random selection of graph 
nodes. In the next step, these agents perform a 
random exploration of selected nodes. The selection 
of appropriate node was made stochastically in 

respect of pheromone rate importance, which is 
detected on the connection edges. During the node 
exploration of the graph G, a constraints set Ω 
should be verified by agents to prevent infeasible 
solutions. In the case of demining problems, 
artificial agents should avoid collision (in the treated 
experimentations, the consideration of these 
constraints is avoided for simplification purposes). 
Algorithmic Formulation of the solution 
construction behavior is given as follows: 
 
SOLUTION_CONSTRUCTION 
 
For each artificial agent: 
• Select a start node e1 in respect to the given 

problem constraints. 
• Set k = 1 and 1ks e=< >  

While ~
1 2,  ,  ,   k ks e e e S=< … >∈ , sk ∉  S, and the 

set Jsk of elements that can be connected to sk exist 
(Jsk≠Ø), select the next node ek+1 randomly 
according to: 
If ( ),  k ske e J∈  Then ( )1  |  k kPT e e s+ = =

( ) ( )( )
( ) ( ) ( )( ),

, ,
  , ,

k sk

k k

k ke w J

F e e e e
F e w e w

τ
τ∈Σ

                                   

(1) 
Else                                     

( )1  |   0k kPT e e s+ = =                  (2) 
 
A connection (ek, w) belongs to Jsk, if and only if, 
the sequence 1 1 2,  ,  , ,k ks e e e w+ =< … >  satisfies 
the constraints Ω (i.e. sk+1 ∈  S~). F(i,j)(x) is a 
monotonic function which generally takes this form: 
xα η(i, j)β ( α, β > 0 and η(i, j)  are heuristic function 
corresponding to selection desirability of element j 
after i). If sk ∉ M and Jsk = Ø, i.e., the solutions 
construction process must be stopped, the current 
state sk is abandoned. To prevent this situation, 
artificial agents should have the ability to construct 
infeasible solutions. Thus, an infeasibility penalty 
function is usually integrated to the cost function. 
However, in the majority of coordination based on 
ACO algorithms, the blocked situation cited before 
does not occur. The used function F(i,j) in 
calculation of decision probability integrates the 
pheromone rate values. The complexity of this 
function depends on the type of selected problem, 
which many researches propose an adaptable 
formulation to it. The random proportional rule 
scheme represents an example. This scheme affects 
to η(i, j)  function the traveled distance inverse by 
artificial agent. In addition, [25] use alternative 
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selection scheme called the pseudo-random-
proportional rule (random variable uniformly 
distributed between 0 and 1).  
The Application of ACO algorithms needs the 
definition of pheromone rate update scheme. 
Various schemes have been adopted to establish the 
pheromone update. In general cases, the pheromone 
updates are following this generic scheme: 
 
ACO_ALGORITHM_PHEROMONE_UPDATE 
 
∀m ∈M+

t, ∀(i, j) ∈ m :  
( ) ( ) ( )1,  ,  ,  ,|  ,f ti j i j Q m M Mτ τ← + …           

(3) 
∀(i, j) :  
               ( ) ( ) ( ),    1  ,  ,i j i jτ ρ τ← −                 (4) 
 
Mi is the ith iteration solution sample, ρ (0≤ ρ <1), 
represents the evaporation rate, and Qf(m|M1, …, 
Mt) is the quality function. The quality function Qf 
is a non-increasing function and its interval of 
definition recovers the solutions reference set: M+

t. 
Different schemes of quality functions and reference 
sets were adopted in ACO algorithms 
implementations try. Considering the first ACO 
algorithm developed by [26], the selected quality 
function was 1/f0 (m) and the reference set M+

t=Mt. 
In a later pheromone update scheme, called iteration 
best update [25], the solution reference set groups 
the best solution within the last best iteration. 
Another version called global-best update [27] 
defines the solution reference set by the best 
solution among of all the iteration-best solutions. A 
combination between the two approaches was 
introduced by [28]. At the same time, [29] proposes 
a formulation of quality function reserved for the 
case where a prior knowledge of lower bound for 
the optimal solution cost is available. This 
formulation is given as follows: 
 

( ) ( )
1 0

  
,  ,

 
|  1

 f t

f m LB
Q m M M

f LB
τ
 
 


−
… −

− 
=   

                                
( )

0

 –
 

 –  
f f m
f LB

τ=                        

(5) 
 
f is the average cost of the last p solutions and LB is 
the lower bound for the optimal solution cost. 
In the proposed quality function, the evaluation of 
solutions is made by the correlation of generated 
cost with the cost main value of the other last 
solutions instead of using the absolute cost values. 

[25] describe a generic pheromone update based on 
online evaporation by artificial agents (ant colony 
system: ACS). During the solution construction, 
only the pheromone rate used in this construction is 
evaporated by an artificial agent. Another version of 
the generic pheromone update was adopted in 
MAX–MIN Ant System [30]. This version uses 
maximum and minimum pheromone trail limits. As 
a result, the generating solution probability is 
maintained to a positive level. Thus, the 
convergence to sub-optimal solutions and search 
stagnations is avoided. 
 
4 Methods and hypotheses 
 
This part represents general configuration 
parameters for tested environment. These 
parameters include minefield distribution and 
adaptation of ACO algorithms for collaborative 
demining robotic foraging. 
 
4.1 Minefield configuration 
 
The measurement of demining operations time was 
performed at different values of configuration 
parameters. In concordance with [31], evaporation 
pheromone model is studied as influential 
parameter. In fact, robots/mines ratio is fixed, the 
evaporation pheromone rate is increased gradually 
and detection mines time is noted for different 
minefield proportion (Mx %). Tested mines 
proportion has been fixed to 60%, 70%, 80% and 
90% for a total number of 50 mines [6]. 
In addition, mine spatial distribution has possible 
effect in mine detection time [6, 7]. Different spatial 
distributions are experimented. These distributions 
include: 
• 1st case: (random distribution) mines are placed 

randomly with uniform density of probability.  
• 2nd case: (fixed spatial distribution) second 

distributions are destined for fixed mine position. 
Two different dispositions with limited mined 
zone are evaluated. These two tests are indicated 
in Fig. 2 and Fig. 3. In Fig. 2, the minefield is 
subdivided into two parts relatively to a vertical 
symmetry axis. P1 represents mined area zone. 
In Fig. 3, the minefield is subdivided into four 
parts relatively to a vertical and horizontal 
symmetry axes and P3 represents mined area 
zone. Other parts are mine free. As presented in 
[32], and in the case of environment symmetry 
the localization represents a complicated task. 
This complexity is due to correctness of robot 
position and orientation estimation (unknown 
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mine land without specific information). 
Collaborative algorithms as for ACO algorithms 
can reduce elapsed time in mines research 
operations. 

• 3rd case: (random line distribution: Fig. 4) Mine 
lines are randomly placed along the line or 
dropped with a constant spacing. The random 
lines are given a very broad margin of placement 
error. The random spacing lines are assumed to 
represent positioning errors mainly due to 
navigation and drop timing errors. Random lines 
are assumed to have random orientation and 
mine spacing. But in these experimentations; 
random mine lines are parallel [5]. 

 
Fig. 2. Fixed spatial distribution 1. 

 
Fig. 3. Fixed spatial distribution 2. 

 
Fig. 4. Random line distribution (s=1,µ=3 and areas 

dimensions=16x16). 
4.2 Navigation and research methods 
This part includes the presentation of mine research 
methods adopted by different robot agents. The 
evaluation of this methods effect is based on the 
time detection mines quality. In this 
experimentation, three main collaborative 
navigation algorithms were performed: 
• Method1: (model BASE) in this model, robot 

agents do not adopt a particular logic for mine 
research. So robot agents are not restricted to any 
constraint except some particular rules listed as 
fallows: 
- R1: when a robot agent finds a mine. It must 

return to the base for the deactivation of 
mine operation. 

- R2: used base is fixed. 
- R3: all robot agents are placed in the base at 

the demining operations beginning.  
• Method2: (model ACO) in this part, robot agents 

adopt a mine research strategy based on ACO 
algorithm to find optimum demining operation. 
The same rules adopted in model BASE (R1 R2 
R3) are retained. The Used robot agents path is 
fixed by pheromone rate τ deposited by other 
searching agents. Three main methods are 
adopted for pheromone rate calculation: 
- 1st case: In this test, the evaporation 

pheromone rate ρ (static evaporation 
pheromone rate) is fixed and the pheromone 
rate calculation is given as follows [33]: 

 
τ(k)=τ(k-1)(1-ρ)                (6) 

- 2nd case(dynamic evaporation pheromone 
rate ): this ACO algorithm configuration 
adopts a programmable evaporation 
pheromone rate to calculate pheromone rate 
as follows: 
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τ(k)=τ(k-1)(1-ρ)+ (1- 1
1+𝑄𝑄

)τ(k-1)                    
(7) 
ρ= 1

1+(τ−α)4

√2α

     , where α = 0.5                (8) 

 

This equation is introduced as a heuristic Q factor, 
which represents an algorithm quality factor [31]. 
The α factor used in programmable evaporation 
pheromone rate was fixed to 0.3 and Q factor 
represents an algorithm appreciation for method 
research rule [10] (Q= 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 
∗  𝑇𝑇𝑇𝑇

𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇
 ). Two main 

rules for demining research operations are 
considered: 

• Dynamic rule 1= mine research operation 
(TP=find mine when trying to research 
mine, FP = robot does not find mine when 
trying to research mine) 

• Dynamic rule 2= base return (TN = robot 
already charging mine in return when trying 
to return to base, FN = mine discharged into 
the base) 

- 3rd case (timed evaporation pheromone rate) 
this case adopts also a programmable 
evaporation pheromone rate. But, 
evaporation pheromone rate is defined by 
the determination of wasted time elapsed 
between two successive mine detections as 
follows: 
τ(k)=τ(k-1)(1-ρ)+(1- 1

1+𝑄𝑄
)τ(k-1)                (9) 

ρ= ∆𝑡𝑡
1+𝑡𝑡𝑡𝑡1

    (10) 
∆t=tM1-tM2+1    (11) 
tM1=detection time for minei 
tM2= detection time for minei-1 

• Method3: (model modified ACO) the method 
adopted in this part is based on an ACO 
algorithm but with considering a mobile base in 
order to minimize base-mine displacement. Base 
coordinates are defined by Px and Py: 

Px(k) =  Px (k−1)+ Rix (k)
2

   (12) 

P𝑦𝑦(k) = P𝑦𝑦 (k−1)+ R𝑖𝑖𝑖𝑖  (k)
2

   (13) 
The (Rix(k), Riy(k)) couple represents the 
coordinates of recent detected minei. The idea 
presented was inspired by the intensification and 
diversification [9, 34]. The diversification for 
robotic agent represents the ability to demine many 
and different mine land regions. Intensification is 
summarized in the ability of base guides demining 
operation in specific zones with high mine 
concentration. At this stage, the robot agents are 
reserved for mine research and the deactivating 

operations are assigned to the base as a new agent 
type. 
5 Simulation protocol 
This section introduces general simulation protocols 
followed in collaborative algorithms efficiency 
validation. All simulations are performed with 
NetLogo [35, 36]. NetLogo is used as a software 
platform to simulate robotic agents and landmine 
map. In fact, NetLogo supports advanced modeling 
of complex systems using a library of java 
programming primitives. In NetLogo simulation 
environment, robotic agents are modeled in simple 
design without the consideration of collision 
avoidance. As given in Table 1the experience design 
was performed by variation of the evaporation 
pheromone rate and kind of landmine distributions. 
Each experience is repeated ten times using 
NetLogo API control. Mine detection time values 
was reported to MATLAB software platform in 
order to compare different configuration results.  
A simplified foraging scenario was taken to describe 
demining operations. Robots states include the 
searching and homing state. When a robot detects a 
mine, it picks it up and comes back toward 
neutralizing base. Execution demining time is 
accounted while a robot is either in searching mode 
or homing. Time of other robots avoidance is not 
considered in demining scenario. Fig. 5 shows the 
state diagram for demining operations scenario. 
Robotic agents detect, collect mines and bring them 
to a mine neutralizing base. 

 

TABLE 1 SIMULATION PARAMETERS 

Model Evaporation pheromone rate %  Distributions 

ACO 0%-100% Random, fixed 1, fixed 2 
and random line 

Modified 
ACO 

0%-100% Random, fixed 1, fixed 2 
and random line 
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Fig. 5. Behavior diagram of a multi-robot demining 
system. 
6 Result 
Experimental studies in this manuscript were 
performed for fixed mines/robots ratio. According 
to [20], rising robots/mines ratio beyond some limits 
do not affect time detection because of the 
interference of robotic agents, which stabilizes the 
time result. In order to test evaporation pheromone 
rate influence on time demining optimization; some 
tests are performed with different robots/mines 
ratio. These tests identify limits that do not modify 
temporal performances. The application of various 
mines/robot rate on presented mines distributions 
and collaboration models based on ACO algorithms, 
attest that rising robotic agents number (in order to 
minimize mine detection time) has no influence on 
system timing performances. Fig. 7 gives an 
example of time detection mine stabilization for 
base demining model with random distribution 
(robots/mines ratio = 50%, mean time 
values=129.17). Fig. 6 summarizes means and 
deviation values of other stabilized time detection 
mine for different demining models (base, ACO and 
Modified ACO models) and detected mines 
proportion (60%-90%) ranges. Variation effects of 
distributions study cases are considered with mean 
values. 

 
Fig. 6. Means and deviations list of mine detection 
time values 
 

 
Figure. 7. Time detection mine using model BASE 
and random distribution. 
 
This part presents the possible effect of evaporation 
pheromone rate variation on demining time 
performances for both ACO and modified ACO 
algorithms (Mx%=90%). In each experimentation, 
pheromone evaporation rate is increased regularly 
by 10%.  
 
Fig.8 and 9 represent the detection time variation 
relating to the minefield distribution type for both 
ACO and Modified ACO models. For lower 
pheromone evaporation rate, higher values of 
detection time results are taken with random 
distribution. Rising pheromone evaporation rate 
ameliorates temporal performances. However, this 
decrease of mine detection-time is stabilized for 
high evaporation. In fact, detection time results are 
limited to a range of 200 s.t for evaporation 
pheromone rate > 60% in the case of ACO model 
and for evaporation pheromone rate > 30% in the 
case of modified ACO model. 
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Fig. 8. Time detection results for the ACO model 

 
Fig. 9. Time detection results for the modified ACO 
model 

 
Fig. 10. Time detection comparison between ACO 
and modified ACO models 
Fig. 10 indicates the time variation between ACO 
and modified ACO models. Considering the effect 
of minefield distribution type separately, modified 
ACO model presents better timing results than ACO 
model with lower pheromone evaporation rate. 
ACO model presents better timing results than 
modified ACO model only in the case of fixed 
spatial distributions with high pheromone 
evaporation rate (>80%). 

The impact of pheromone evaporation rate on time 
system performances is noted at the beginning of the 
solutions construction. Adopting a programmable 
pheromone evaporation rate which induces new 
solution explorations should reduce time demining. 
Researches of [31, 37, 38], use different models of 
programmable evaporation rate based on a 
mathematical formulation. Dealing with the 
evaporation pheromone example given by [31], this 
model is taken as a reference to evaluate our 
evaporation pheromone rate model. Simplifying 
evaporation pheromone model is the principal 
motivation of selection of a timed algorithm model. 

 
Fig. 11. Evaporation pheromone rate model 
comparison 
Fig. 11 reports the temporal result difference 
between different evaporation pheromone models 
for ACO and Modified ACO collaborative 
algorithms. Mathematical evaporation pheromone 
rate model [31] is represented by Q1 model. Our 
evaporation pheromone rate model is represented by 
Q2 model. In the case of ACO model (m2d1, m2d2, 
m2d3 and m2d4); temporal results obtained with Q1 
model are better than with Q2 model except the 
result in fixed 2 distribution (m2d1). In fact, the 
system equipped with Q2 evaporation pheromone 
model takes double time to detect 90% of mines 
compared to Q1 model. This different change in the 
case of Modified ACO model and better temporal 
performances is detected with Q2 model in the case 
of fixed distributions. Multi-robot system 
experimentations are performed on the software 
simulation platform. In real implementation, the 
application of mathematical complex model for 
evaporation pheromone rate should require more 
hardware resources and reduce temporal 
performances.  
 
7 Discussion 
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The realized experimentations use a fixed setting of 
robot/mine rate. Generally, rising robot/mine rate is 
higher than 50% does not enhance cooperation 
impact on demining time optimization. These results 
were confirmed in the previous researches, like that 
of [20] and verified in our previous work. The 
principal aim of research in this paper is the 
connection between evaporation pheromone rate 
and timing performance. In fact, as given in Fig. 7, 8 
and 9 better timing results are detected for modified 
ACO model (in most studied cases: Table 2).  
 

 
 
In general, ACO algorithms are made from ant 
foraging behavior. ACO optimization gives a short 
path solution to one source of food. In the case of 
demining problems, the mines are distributed in 
various positions. The best initial situation ACO 
algorithm consists of a limited zone mine 
concentration. This situation is given by fixed1 and 
fixed2 distributions. For these two mine 
distributions and at a lower evaporation pheromone 
rate, better timing results are obtained in comparison 
to the base model. However, with random 
distributions (random and random line 
distributions), time demining results are degraded 
with ACO model in favor of the base or modified 
ACO model. The Amelioration of the ACO model 
results is given by the raising evaporation 
pheromone rate. In fact, this action helps robotic 
agents to forget the previous detected mine positions 
and forces the agents to explore new zones. Time 
result experimentations are reduced for the 
evaporation pheromone rate, which are higher than 
60% in the case of ACO model, and 30% rate in the 
case of modified ACO model. The solution is 
ensured by modified ACO model presents flexibility 
toward different mine distributions. 
 
The variation of the evaporation pheromone rate has 
an impact on timing results. With this interpretation, 

some researchers [31, 39] applied a specific  
function  to  define  the  evaporation  pheromone  
rate.  In general, this function is bounded between 0 
and 1. It rises exponentially with the pheromone 
rate. Table 4 summarizes the demining time results 
for the two types of evaporation pheromone rates 
(Q1 and Q2) and for the cooperative robotic models 
(ACO and modified ACO models). Our proposed 
evaporation pheromone rate Q2 gives lower timing 
performances for demining operations in the case of 
the ACO model. The worst timing results are 
detected for random mine distribution (55% of time 
result reduction). However, the Q2 model gives 
better timing results in the case of the modified 
ACO model with fixed mine distributions. The best 
results are detected for fixed 2 mine distribution. 
The evaporation pheromone Q1 model still has 
better results in random distributions (with modified 
ACO model) but the timing performance differences 
between Q1 and Q2 models are reduced in 
comparison to ACO model.  
 

 
To explain the results given by Table 3, the worst 
and the best result for Q2 model are selected. The 
worst time result corresponds to the ACO 
cooperative model with random distribution. The 
best time result corresponds to the modified ACO 
cooperative model associated with fixed 2 mine 
distribution. Fig. 12 reports the variation of the 
evaporation pheromone rate models in the worst 
time result (Fig. 12.a) and the best time result (Fig. 
12.b). The recorded evaporation pheromone rate 
from Q1 model simulations differs from theoretical 
evaporation pheromone rate formulation 
(ρ= 1

1+(τ−α)4

√2α

). This difference is amplified for the 

modified ACO model. In addition, the model guided 
by Q2 approaches the theoretical model but it 
presents higher sensitivity of the pheromone rate 
variation and saturates fast bounded limit. Fig. 12.c 
gives a comparison between Q1 model in the ACO 
and modified ACO model. Evaporation pheromone 
model converges to the theoretical model with 

TABLE 3: COMPARISON TIME RESULT BETWEEN Q1 AND Q2 
MODELS 

Distribution ACO model Modified ACO model 

Random 55% 32% 

Fixed 1 46% -8% 

Fixed 2 12% -27% 

Random line 42% 28% 

(*) %=(timeQ2-timeQ1)/ timeQ2 

TABLE 2 :SUMMARY OF TIME RESULT VARIATION BETWEEN 
ACO AND MODIFIED ACO MODELS 

Distribution 0% to 50% 50% to 70% 70% to 80% 80% to 100% 

Random + - + - 

Fixed 1 + + + + 

Fixed 2 + + + + 

Random line + + - - 

(+/-) Sign of time result variation between ACO and 
modified ACO models for different static evaporation 
pheromone rates (timeACO – timemodified ACO)   
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additional delay in the modified ACO model. In Fig. 
12.d, the Q2 model preserves the same pattern and 
therefore gives better time results for fixed 
distributions. 
 

 
 

(a) ACO model with random distribution 
 

 
 
(b) Modified ACO model with fixed 2 distribution 

 

 

 
(c) Comparison of evaporation pheromone rate Q1 

model 
 

 
 

(d) Comparison of evaporation pheromone rate Q2 
model 

 
Fig. 12. Evaluation of the evaporation pheromone 
rate model (Q1 and Q2 models) for ACO and 
modified ACO model 
 
Fig. 13 presents the time demining results for the 
reduction of evaporation pheromone rate sensitivity 
to variation of the pheromone rate. These attempts 
of Q2 model amelioration are based on the 
introduction of delay in the iterations of evaporation 
pheromone rate calculation. Some increasing values 
of delays (10 s.t, 40 s.t, 70 s.t and 200 s.t) are 
experimented. The general time performances of the 
demining system is degraded for the ACO and 
modified ACO models and there is no modification 
of evaporation pheromone rate pattern in the 
function of pheromone rate. 

 
Fig. 13. Time results for different models of 
evaporation pheromone rate 
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8 Conclusion 
This paper presents the experimentations of the 
pheromone evaporation rate on the multi-robotic 
demining system. The Effects of the pheromone 
evaporation rate are noted for particular rates and 
better results are obtained with modified ACO 
algorithms.  The temporal performance of demining 
multi-robot systems is obtained by modifying the 
ACO algorithms. However, results are still 
depending on the environment configurations and 
on the other modifications can be performed on 
ACO algorithms especially by studying the 
pheromone evaporation rate. The application of 
programmable evaporation pheromone rate helps to 
improve temporal performances. The improvement 
of temporal performances is set up with the 
evaporation pheromone rate pulse (instead of high 
evaporation pheromone rate maintain). The choice 
of the model of evaporation pheromone rate 
modifies temporal performances of the demining 
system. The proposed evaporation pheromone rate 
Q2 enhances temporal performances of the 
demining operations for a particular configuration 
mainly with the modified ACO collaborative model 
and fixed mine distribution. The studied Q1 model 
is an example of programmable evaporation 
pheromone rate. Other functional models can be 
tested. The aim of the algorithmic evaporation 
pheromone model is to simplify the implementation 
of this system. In our case, the additional 
experimentations on real implementation of multi-
robot controller must be performed to evaluate the 
algorithmic model of evaporation pheromone rate. 
A collaborative model based on Ant Colony 
Optimization is selected. In addition, other meta-
heuristic algorithms can be applied in the same case. 
In particular, hybrid meta-heuristic algorithms 
should be experimented on multi-robotic controllers. 
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