
A Framework for Kinematic Modeling and Trajectory Planning  
of Hyper-Redundant Manipulators Using a Modified PRM 

 
MAHDI F. GHAJARI  and  RENE V. MAYORGA 

Department of Industrial Systems Engineering 
University of Regina 

3737 Wascana Parkway, Regina, Saskatchewan 
CANADA 

mfallahinejad@gmail.com   and   Rene.Mayorga@uregina.ca 
 
 
Abstract: - Trajectory planning for robotic manipulators can be defined as a set of a step-by-step procedure to 
break down an arbitrary movement task into discrete motions while satisfying pre-defined constraints and 
optimizing a cost function. In spite of the fact that various aspects of trajectory planning for robotic 
manipulators have been investigated; the problem of providing a time-wise efficient collision-free path for 
hyper-redundant manipulators in cluttered environments, have not been specifically addressed. This research 
has developed a comprehensive computationally tractable collision-free path planner for several user-defined 
degrees of freedom (DOF) robot manipulators without using inverse kinematics (IK) which is computationally 
expensive. This study introduces a novel efficient multiple-query based sampling approach for obstacle 
avoidance, and 2D trajectory planning, for N-DOF robot arms. A MATLAB based motion planner is proposed 
to investigate this approach for different and diverse types of manipulators, with various joint types, and cost 
functions. Various scenarios with different pre-defined highly constraining obstacles have been simulated in the 
proposed motion planner and the results demonstrate the fast computation of collision free motions. 
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1 Introduction 
According to the definition of Lozano [1], 
motion planning can be defined as the process 
of converting the robot motion task into a set of 
computed discrete movements in order to 
satisfy some constraints and optimize some 
aspects of the robot motion between two 
locations.  

The objective of motion planning is giving 
the robot the ability of automatically deciding 
and guiding the order of motions execution in 
an environment filled with obstacles. Use of 
cost functions will be mandatory in economic 
considerations, such as minimum time, energy 
or operating in the shortest path [2]. Our goal in 
a motion planning problem is to find a 
collision-free motion for an object from start 
configuration to a goal configuration. This is 
proved as a hard problem [3], since the 
complexity of motion planning increases 
dramatically as the number of DOFs of moving 
object grows. 

The history of motion planning for robotic 
arms is as old as that of industrial robot 
invention. George Devol was the creator of 
Unimate, the first industrial robot in the 1950s 
that worked on a General Motors assembly line 
in New Jersey, in 1961 [4].  

The humanlike robot arms normally have 7-
DOF which are typically referred as redundant 
manipulators and the ones with greater than 7-
DOF are considered as hyper-redundant 
manipulators. Sampling-based motion planning 
algorithms have been proven to be successful in 
high dimensional C-space that have a 
probability of failure which decreases to zero as 
more time is spent. Sampling-based motion 
planning methods are currently considered as 
state of art for motion planning. 

Although there is a wide range of different 
trajectory designing algorithms, currently there 
exists no general method, which outperforms all 
others for all problem instances. In fact, each 
method has various advantages and drawbacks 
that make it best suited for specific types of 
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problems. Furthermore, since a workspace can 
contain vast various regions with different 
characteristics, there may not be a single 
planner that will perform well in all these types 
of regions [5]. 

Bohlin et al [6] described an algorithm based 
on PRMs that is called Lazy PRM. This 
approach is designed to minimize the running 
time of the planner by minimizing the number 
of collision checks performed during planning. 
The planner constructs a roadmap assuming that 
all the nodes and edges in the roadmap are in 
the obstacle-free region. Then the planner 
searches for the shortest path between the start 
and the goal node. The planner removes the 
nodes and edges which are in the obstacle space 
along the path as it is searching for the shortest 
path. Experiments indicate that the introduced 
Lazy PRM is efficient in practice. 

Song et al [7] presented a customized 
version of PRMs method that postpones some 
of the validation checks such as collision check 
to the query stage which yields an efficient 
outcome for many motion planning problems. 
This approach enables the user to customize the 
same roadmap according to multiple, variable, 
query preferences. The results indicate a huge 
improvement in performance of the motion 
planner. 

Branicky et al [8] by implementing an 
innovative algorithm, highlighted the 
advantages of their algorithm in comparison 
with random sampling. Quasi-random variants 
based on PRM planner are developed as (1) 
classical PRM with quasi-random sampling, 
and (2) a quasi-random lazy-PRM. 

Bertram et al [9] proposed a novel integrated 
approach to the problem of inverse kinematics 
for redundant manipulators in manipulation 
tasks. The proposed solution is based on 
exploring a connected collision free 
configuration with RRT and evaluating the 
candidate configurations by heuristic workplace 
metric, which measures the ability to reach to 
the desired pose. The goal distance along with 
the obstacle distance information is later used 
for guiding the configuration space search. 

Karaman et al [10] described an anytime 
method based on RRT that quickly computes an 
initial feasible plan, but unlike the RRT, 
converges to an optimal path. Two key 
extensions to the RRT committed trajectories 
and branch-and-bound tree adaptation were 
presented to enable the technique of having an 
efficient use of calculation time online, 
resulting in an anytime method for real-time 
implementation. 

Gomez-Bravo et al [11] proposed a new 
approach to the problem of collision-free 
trajectory planning for hybrid robots in the 
presence of the obstacles. This method is based 
on a combination of random search algorithm 
(RRT) with an optimization method that is 
solved by a genetic algorithm. 

None of the abovementioned studies address 
the following issues: 
• A general trajectory planner for robot 

manipulators that can support unlimited 
degrees of freedom, different joint types 
(revolute and prismatic), different cost 
functions, and all types of obstacles. 

• Lack of multiple queries in most algorithms 
• Most of the previous studies have been 

conducted for specific scenarios. 
Accordingly, the following objectives are 
defined as the contribution of this study for 
addressing the hyper-redundant manipulators 
motion planning problem: 
• Developing a comprehensive trajectory 

planner capable of handling different 
scenarios including non-redundant, 
redundant, and hyper-redundant 
manipulators with different joint types.  

• The capability of mapping all types of 
obstacles and workspaces. 

• Handling various cost functions based on 
the scenarios. 

• User-control accuracy and resolution based 
on the scenarios.  

• High reliability in obstacle avoidance 
application. 

 
 

2 Methodology 
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In this section, a new methodology for 
developing a collision-avoiding trajectory for 
redundant and hyper-redundant robot arms in 
different types of environments is discussed. 
This methodology is based on sampling-based 
motion planning that can be divided into two 
phases: preprocessing phase (or off-line phase) 
and query phase (or on-line phase).  

2.1. The Preprocessing Phase (off-line) 
During the preprocessing phase as an off-line stage, 
a data structure (or roadmap) is constructed in a 
probabilistic way for a given workspace. The graph 
contains nodes which are chosen over Cfree and the 
edges that correspond to the feasible trajectories.  A 
proper sampling method is needed to generate 
collision-free configurations in Cfree. A uniform 
generation of nodes continues until the desired 
density is achieved. Each generated random 
configuration needs to be checked by the collision 
detector method, whether the randomly generated 
configuration is in a collision with obstacles. Once 
random nodes are created, they are connected to 
their neighboring nodes. The local planner computes 
a collision-free trajectory between a node and its 
neighbors. Then, randomly created configurations 
and their connections are added to the graph. In this 
stage, a roadmap is generated in a way that can 
quickly handle future queries [12]. 

The Initial empty graph includes only 
occupied regions. Then, repeatedly, a random 
free configuration is created and added to the 
number of nodes. As the planner generates 
nodes, the local planner connects the generated 
node to the neighboring nodes with a straight 
line representing the feasible trajectory between 
these two nodes. For mapping the obstacle the 
occupancy grid has to be created. The workflow 
of pre-processing phase is depicted in Figure 1. 

  

Figure 1. Workflow of the pre-processing phase 

According to [13], the pseudocode of 
learning phase (or PRM planner algorithm) can 
be outlined as follows: 

1 G.init(AllNodes={}, Edges={}),i←0; 

2 while i˂N 

3    if qnew(i)ϵCfree and ((not G.same_comp    

(qnew(i),q)) then 

4       G.add_vertex(qnew(i));i←i+1 

5       for each q ϵ 

NEIGHBOURHOOD(qnew(i),G) 

6           if G, trajectory(qnew(i),q) ϵ Cfree then 

7           CONNECT(qnew(i),q) then 

8           G.add_edge(qnew(i),q) 

The preprocess phase of the trajectory 
planning can be accordingly divided into 
following steps: 

1) Robot Manipulator 
The first step in the off-line phase is defining 

the robot manipulator with all possible details. 
These details include the number of degrees of 
freedom (DOF), Denavit-Hartenberg D-H 
parameters, joint type, joint limit, and link cost 
values (pre-defined weight for each link). 

2) Occupancy Grid Mapping 
Trajectory planning requires both 

manipulator and workspace information. The 
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manipulator information can be safely defined 
as the number of degrees of freedom, number of 
links and their dimension. The workspace 
information consists of obstacles location and 
their dimension. To create occupancy grid, a 
numerical value is assigned to each cell that 
indicates the probability of the cell existence 
and also the difficulty of its reachability [13]. 

3) Forward Kinematics Calculation 
In this Paper, the D-H convention for 

forward kinematics (FK) calculation is used to 
compute the position of the links and the end-
effector [14]. It is prohibitively difficult to 
explicitly calculate the shape of Cfree; however, 
detecting whether a given configuration is in 
Cfree is an efficient solution to this problem. 
First, the manipulator configuration is 
calculated and then the collision detector 
recognizes if the manipulator intersects any of 
the obstacles. 

Equation 1 expresses the location and 
orientation of the end-effector frame with 
respect to the base frame as: 

 ( ) ( ) ( )0 01 1 12 2 23 3 1, ( _ )n n nT A q A q A q A q n−= …  (1)   

4) Random Sampling 
According to Lavalle [13], Cspace, the 

configuration space, is “uncountably” infinite 
while a sampling-based motion planning 
method can consider at most a countable 
number of random samples. This method can 
run forever then it may be “countably” infinite, 
but practically the expectation is to terminate 
the algorithm after considering a finite number 
of random samples. Therefore, the planner 
generates dense random configurations for any 
bounded Cspace. The maximum number of nodes 
for each scenario and needed roadmap can be 
equated to the mass, therefore, the total number 
can be computed as follows: 

 Number of Total Nodes = Density ×  
Volume of Cfree 

(2)   

5) Tip Distribution Grid 
Although the Beta distribution with tuned 

parameters yields to a more uniform 

distribution of manipulator’s end-effector, there 
is still a dense region of generated nodes around 
center towards the right side of the map. 

Therefore, the tip distribution grid (TDG) 
solution is applied to satisfy the distribution 
problem. The TDG controls the random 
generation of configurations by controlling the 
position of manipulator end-effector to 
uniformly distribute it over the entire 
workspace. Each TDG cell has a desired and 
predefined limit of number of nodes. Hence, if 
the limit is exceeded by the generated random 
configurations, the generated node will be 
discarded and the iteration will continue to 
spread nodes until all TDG cells reach the 
maximum number of nodes. The maximum 
number of nodes for each TDG cell is 
considered as a “mass”, thus it can be assumed 
that the density multiplied volume can be 
calculated as follows: 

 Maximum Nodes per Cell = Density ×  
TDG Cell Volume 

(3)   

6) Collision Detection 
Once a random configuration is generated 

and the location of the created sample is 
determined, the collision status of the 
configuration should be investigated. Hence, 
collision checking is a critical component of 
sampling-based planning [8]. The collision 
detector checks if the generated configuration 
intersects any part of Cobs. If it is collision-free, 
it will be added to the total generated collision-
free nodes; otherwise, it will be discarded. The 
first step is the calculation of the end-effector’s 
position. Then, this position is sent as a point to 
the occupancy grid. If the point lies in Cobs that 
point will automatically be discarded. Once the 
collision detection process is done and the 
generated configuration’s end-effector position 
is in Cfree; then we need to check if any part of 
the robot collides with an obstacle. The 
assumption during this process is that the robot 
cannot intersect itself or the links have an 
appropriate offset to avoid this collision. 

7) Finding Neighboring Samples 
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Once all random nodes are created and the 
collision detection is performed for each one of 
them, they can be considered as the valid nodes 
and their configuration is placed in the Cfree. 
Next crucial step is to find the candidate 
neighbors around each node. Each connection 
(edge) in the graph indicates a pair of neighbor 
nodes (Figure 7). One of the critical factors in 
sample-based path planning algorithms is the 
process of pairing close nodes. A criterion (i.e. 
distance) is required to determine a 
neighborhood region for each node and then for 
their connection. The strategy that has been 
used to find the neighbor nodes in the proposed 
methodology is the Tip Distribution Grid 
(TDG). Not only the applied TDG technique 
solves the problem of random nodes 
distribution, but also it can be used as a 
criterion to recognize the neighboring nodes in 
the workspace. 

8) Local Planner 
The local planner is in charge of connecting 

the neighbor nodes. The straight-line segments 
in Figure 7 shows the connections between two 
nodes. However, the trajectory between two 
neighbor nodes, which is not necessarily a 
straight line, is generated by the local planner 
while satisfying the collision-free condition. 

The quality of the collision detection for the 
trajectories depends on the workspace and 
obstacles’ geometry. For instance, if there are 
obstacles with sharp edges and vertices the local 
planner must generate paths with higher 
resolution. 

9) Cost Function 
Path planning for highly redundant 

manipulators involves cost functions that have 
to be optimized since there are large numbers of 
degrees of freedom performing a task. Hereby, 
one of the main contributions of the proposed 
technique for hyper-redundant robotic arms 
motion planning is handling and optimization of 
various cost functions simultaneously. In this 
study the cost function is defined to be a 
function of following parameters: 

• Distance: finding the shortest Euclidean 
distance between the end-effector positions 
from initial to goal configuration. 

• Time: finding the shortest trajectory 
between initial and goal configuration. 

• Total joints displacement: the objective is 
having minimum joints displacement in 
accordance to the assigned costs for each 
link. 

2.2. The Query Phase (real-time) 
By using the constructed roadmap in the off-line 
preprocessing phase, paths are to be found between 
any initial and goal configurations during the query 
phase. That is, once the roadmap is generated, it 
contains occupancy grid, all valid nodes, and all 
feasible obstacle-avoiding trajectories between 
neighbor nodes and initial robot properties. The 
strategy that has been used in the query phase for 
connecting any arbitrary pairs of nodes is finding 
the shortest/least cost path between any desired start 
and goal nodes that involves the graph searching 
algorithm A*. The workflow of this phase is shown 
in Figure 2. 

 
Figure 2. Real-time query phase workflow 

A* is the best-first graph search algorithm 
that has been widely used in pathfinding 
because of its performance and accuracy to find 
the efficient path. Additionally, other studies 
found A* to be superior to other methods [15]. 
Detailed information about A* can be found in 
[16]. 

3 Implementation 
The proposed approach is implemented in a  
MATLAB platform because this platform is widely 
accepted for academic purposes as well as in 
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industry. The overall procedure of implementation 
of the proposed algorithm can be listed as follows: 

The workflow of the developed modified PRM 
planner is depicted in Figure 3 According to this 
workflow, the off-line phase starts with the 
generation of obstacle-avoiding random 
configurations followed by the robot and 
environment initialization to create a roadmap to 
begin the query phase, which needs a pair of initial 
and goal nodes to find the best path. 

To efficiently develop and implement the 
proposed approach in MATLAB, one should 
use the advantages of Object-Oriented 
Programming (OOP) since the planner is 
dealing with a large number of nodes and 
numerous properties for each node as well as 
the edges and the trajectories between each pair 
of neighbor nodes. Figure 4, demonstrates the 
structure overview of this planner including the 
classes, relations, and connections. 

 
Figure 3. Overview of presented planning algorithm 

Implementing an OOP programming would 
also solve the problem of handling the 
numerous assigned properties to the nodes, 
edges and randomly generated trajectories. 
Defining different classes with different 
properties is an appropriate approach in dealing 
with such problems. These classes function like 
a template for creating specific instances of the 
classes which are called objects. These objects 
contain all or part of the data for a particular 
entity that is designed base on that class. 
Objects can actively manage the set of data by 
calling certain functions and methods to be 

executed. Figure 4 illustrates the workflow of 
MATLAB implementation. This workflow 
includes all the classes and their relationship to 
each other and how they feed data to following 
classes and objects to perform a trajectory 
planner for a user-defined environment and 
robot. 

 
Figure 4. Relations of the user-defined classes in MATLAB for 

simulation 
 

1) Robot Manipulator Class 
To develop a model of the manipulator that 

the motion planning is being defined on, the 
robot has to be initialized in MATLAB. This 
MATLAB class consists of few sub-classes to 
set the robot properties including its number of 
DOF, the links and their properties, the robot’s 
origin, and its other physical properties. Link 
class can be considered as a sub-class to this 
class which defines some specific link 
properties such as their ID number, D-H 
parameters, joint types, their weight cost (as one 
of the parameters in the Cost Function). 

2) Node and Point Classes 
As discussed in the previous sections, 

creating random nodes to develop a motion 
planner for the robot, the corresponding random 
configuration of the robot have to be defined. 
This step can be done by assigning random 
values to the pre-defined properties in the Robot 
Manipulator class. In the process of generating 
random configurations, one of the most 
important issues that should be handled 
properly is to determine that the nodes are 
uniformly distributed. 

In Figure 5.a, a 7-dof manipulator with the 
maximum length of 8.25 units was chosen to 
illustrate the end-effector position distribution 
in black dots. Not only the normal random 
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generator has densely generated samples around 
the center but also the manipulator end-effector 
has barely reached the workspace boundaries. 
Hereby, the shape of the distribution needs to be 
controlled. Using Beta distribution as a family 
of continuous probability distribution that is 
parameterized by two positive shape 
parameters, denoted by α and β, the result is 
much closer to a uniform randomized node 
generation. Figure 5.b indicates the effect of 
Beta distribution that allows a uniform 
distribution all over the workspace and 
reachability of the boundaries. 

  
Figure 5. 

(a) End-effector position distribution of 6000 generated random 
configurations for 7-dof manipulator (maximum length 8.25 
units) using simple random generator. 
(b) End-effector position distribution of 6000 generated random 
configurations for 7-dof manipulator (maximum length 8.25 
units) using Beta distribution, α, β=5 

3) Occupancy Grid Class 
Occupancy Grid class is another class that 

has to be defined for the initialization process of 
the motion planner. In this class, the 
environment properties such as its size, the 
obstacle locations, their size, and also the grid 
resolution to map the obstacle in the 
environment. Discretization resolution of 
manipulator workspace defines the number of 
cells per axis and the quality of approximation. 
The occupied cells are listed in Cobs and marked 
with color blue on the roadmap (Figure 6). 

 
Figure 6. Securely occupancy grid mapped obstacle, 

resolution: 30 cells per 10-unit-axis 

The Point in Polygon (PIP) method in 
general uses repeated geometric queries. Given 
multiple polygons and a sequence of query 
points, PIP finds the status for each query point. 
Each cell calls for PIP function and checks if 
any vertex of the cell is in the defined polygon. 
If the answer value is “1” then that cell is 
considered as an occupied cell and marked with 
color blue. An extension has been added to this 
method that adds all of the surrounded cells of 
each occupied cell to the blocked area. 

4) Distribution Grid and TDG Cell Classes 
As depicted in Figure 5, although the 

controlling parameters of α and β makes the 
distribution of randomly generated nodes as 
uniform as possible, there is still a rather dense 
region in the center of the map. TDG class is 
defined to control the number of nodes 
generated in each cell of the map. This class 
uses the Occupancy Grid class and some of its 
defined properties (e.g. Density, Walking 
Distance, Max. Nodes per Cell) as the input to 
construct a new instance of TDG. 

5) Neighbor Class 
After generating all the random nodes and 

detecting collision by performing collision 
avoiding procedure explained in the previous 
section, the existing nodes on the maps are the 
valid nodes that the robot can pass its motion 
through them. Next step is assigning the 
neighboring nodes to each generated node. 
According to TDG Cell method, each cell 
contains the nodes that are within the Walking 
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Distance to the other nodes in that cell. 
Therefore, the local planner is called by the 
origin class to connect these nodes and generate 
a linear trajectory between them (Figure 7). 

 
Figure 7. A 7-dof manipulator neighbor nodes selection; 

workspace dimension= 10 unit by 10 units,  
robot origin= (5, 5), density= 1 

6) PRM Class 
Once all the necessary classes for 

initialization are started then the trajectory 
planner is called to construct the roadmap by 
repeatedly generating random nodes and 
checking their collision free feature. The 
modified PRM planner runs by calculating an 
estimation of needed total nodes with the 
desired density. The verified nodes are then 
added to an array in this class called All Nodes 
which basically contains all the eligible nodes 
for the roadmap. Every single trajectory 
generated between the neighboring nodes are 
checked by collision detector to determine it 
does not collide any of the pre-defined 
obstacles. 

7) A-Star and Path Classes 
A* is a graph search algorithm that has been 

used in this study to handle the defined cost 
function and develop the trajectory planner. A* 
is widely used in the graph search applications 
and many studies have shown its superiority to 
the other approaches. A* is a best-first search 
algorithm and finds the path from the start node 
to the goal node with the least cost value. 

A* traverses the graph, it follows a path of 
the lowest expected total cost, keeping sorted 
priority queue of alternate path segments along 

the way. An amount of cost computed for each 
edge in the graph is equal to the summation of 
displacement of each joint during local planning 
for neighbor nodes, multiplied by the link cost 
assigned by the user. 

All Nodes array is fed into this class as an 
input to construct a new instance of A-Star and 
its objects are created as the roadmap and an 
empty open list. There are several methods 
(functions) in this class that are designed to use 
the previous classes output and generated the 
best path. These methods include: Is In Path, 
Cost to Node, Path Length, Add Node, Sort and 
Clone Path. 

4 Results and Discussion 
The following scenarios are executed in 

MATLAB framework. In the resultant figures, 
the manipulator and its joints are shown in bold 
black line, and green circles, respectively. The 
obstacles are shown in cyan line segments. 

4.1. Scenario No.1 
The first scenario contains a scene populated 
with large obstacles and a redundant fixed-base 
6-DOF manipulator. The mission is designed 
for a situation that a redundant manipulator 
operates in a tight area. Figure 8 demonstrates 
the capability of the presented general planner 
in designing motions for a redundant robot arm 
moving along tight workspace from start 
configuration at the bottom left corner to top 
right corner keeping safe clearance with 
obstacles. 

 
Figure 8. The designed trajectory of a 6-DOf manipulator; joints 

are shown in green in final configuration 
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4.2. Scenario No.2 
The second scenario consists of a humanoid 
robot arm, which is a 7-DOF redundant 
manipulator operating in a crowded workspace 
populated with many small obstacles. Figure 9 
illustrates the maneuverability of the presented 
planner in crowd workspaces. As can be seen in 
the bottom right corner of this figure, the 
manipulator folds itself perfectly to avoid any 
collision whereas the planner is random-based. 

 
Figure 9. The designed trajectory for a 7-DOf manipulator; 

joints are shown in green in final configuration 

4.3. Scenario No.3 
The third scenario is presenting a simulation for 
the Canadarm2, manipulating an object form an 
initial configuration and move along the free 
spaces and then places the object in a tight 
location surrounded by obstacles like a box. 
Figure 10 presents one of the challenges that 
may Canadarm2 can encounter while operating 
at ISS which has simply done by the proposed 
planner. The final configuration is exactly the 
best-obtained configuration to reach that end-
effector position deep inside a narrow space. 

 
Figure 10. The designed trajectory for Canadarm2; joints 

are shown in green at the goal configuration 

 

4.4. Scenario No.4 
In the 4th scenario the performance and 
capability of the proposed motion planner is 
going to be checked for an RRP manipulator 
having a prismatic joint. Figure 11 shows one of 
challenging features of the proposed method 
which has not been addressed reasonably in the 
past works. This scenario designed to illustrate 
the perfect capability of using prismatic joint 
for end-effector reaching the farthest boundaries 
of the workspace by only sliding. 

 
Figure 11. The designed trajectory for the RRP manipulator 

(end-effector is slider); joints are shown in green in goal 
configuration 
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Figure 12. The designed trajectory for a 10-DOF manipulator; 

joints are shown in green at the goal configuration 

 

4.5. Scenario No.5 
The fifth scenario is presenting the capability of 
planning obstacle avoidance trajectory of the 
proposed motion planner for a 10-DOF robot 
arm in a crowded environment or highly 
constrained workspace. Figure 12 demonstrates 
a hyper-redundant 10-DOF robot arm 
manipulates an object deep inside a box located 
at the bottom left corner and placed deep inside 
another box located at the top right corner. 

4.6. Scenario No.6 
The planner plans an obstacle avoiding path for 
an RPR (Revolute-Prismatic-Revolute) 
manipulator which means there is a slider 
sliding for the second link. The designed robot 
arm has 90-degree prismatic joint for the second 
link which makes it more constrained for 
obstacle avoidance maneuver. As can be seen in 
 0 Figure 13, the designed collision-free 
trajectory employed the feature of sliding joint 
specifically to avoid collisions. 

 
Figure 13. The designed trajectory for the RPR manipulator 

(Second link is slider); joints are shown in green in goal 
configuration 

4.7. Scenario No.7 
The last scenario is presenting the capability of 
the proposed planner in collision-free trajectory 
planning for a 16-DOF hyper-redundant 
manipulator which has not been properly 
addressed comprehensively in the past studies. 
Sharp-edge obstacle avoidance of an unlimited-
DOF robot arm is one of the boldest features of 
the introduced efficient and quick path planner. 
Figure 14 shows an example for scenarios that 
consists of an unlimited-DOF manipulator 
avoiding collisions in highly constrained 
workspaces including sharp-edge obstacles. 

Table 1 shows the performance of the 
proposed trajectory planner for selected 
scenarios. Its columns represent the total 
number of nodes which is one of the most 
important parameters in defining the difficulty 
of the problem, off-line CPU-time (secs), and 
Real-time CPU-time (secs). 

According to this table, due to the length of 
roadmap trajectories, density and occupancy 
grid resolution, the CPU-time (secs) for off-line 
phase increases up to nine minutes (scenario 
No.7). However, the real-time phase is done in 
a quite short period of computation time (secs) 
for a 16-dof robotic arm in comparison to other 
methods and non-sampling based approaches. 
More detailed results can be found in [18]. 
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Figure 14. The designed trajectory for a 16-DOF 

manipulator; joints are shown in green at the goal configuration 
 

Table 1. Comparison between the results of defined scenarios 

 Number of 
Nodes 

Off-line 
CPU Time 

On-line 
CPU Time 

Scenario 1 90 28.65 3.20 

Scenario 2 187 74.15 0.80 

Scenario 3 109 276.4 34.80 

Scenario 4 46 39.31 2.70 

Scenario 5 65 157.8 26.59 

Scenario 6 50 45.96 4.10 

Scenario 7 150 539.3 40.30 
* All the simulations are executed using Windows 8.1 on a Lenovo 
ThinkPad W530 processing with Intel Core i7-3820QM 2.70 GHz (64-
bit) processor and 8 GB of RAM. 
 
Please take notice that motion planning and 
obstacle avoidance in 2-D; in general, can be 
more difficult and restrictive than in the 3-D 
space. This is widely acknowledged worldwide. 
Still, the proposed approach can be easily 
extended to motion planning and obstacle 
avoidance in 3-D, for redundant and hyper-
redundant manipulators [18]. 
 
5 Conclusions 
In this paper, a novel approach has been 
presented for setting a MATLAB framework 
and developing an efficient collision-free 
trajectory planner for redundant and hyper-
redundant manipulators. An innovative method 
has been presented based on a modified 
multiple query PRM which is capable of 

dealing with a wide range of variety of the 
problem; including robots with different 
number of DOF, joint types, and cost functions.  
A MATLAB framework has been developed to 
get the user defined robot characteristics, and 
simulation environment features. The trajectory 
planner has been applied to seven scenarios 
using an A* search algorithm and the 
corresponding results have been presented. This 
study can be expanded by implementing a 3D 
collision detection function and including the 
dynamics of the manipulators. 
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