
A Framework for Kinematic Modeling and Trajectory Planning
of Hyper-Redundant Manipulators Using a Modified PRM

MAHDI F. GHAJARI and RENE V. MAYORGA

Department of Industrial Systems Engineering
University of Regina

3737 Wascana Parkway, Regina, Saskatchewan
CANADA

mfallahinejad@gmail.com and Rene.Mayorga@uregina.ca

Abstract: - Trajectory planning for robotic manipulators can be defined as a set of a step-by-step procedure to
break down an arbitrary movement task into discrete motions while satisfying pre-defined constraints and
optimizing a cost function. In spite of the fact that various aspects of trajectory planning for robotic
manipulators have been investigated; the problem of providing a time-wise efficient collision-free path for
hyper-redundant manipulators in cluttered environments, have not been specifically addressed. This research
has developed a comprehensive computationally tractable collision-free path planner for several user-defined
degrees of freedom (DOF) robot manipulators without using inverse kinematics (IK) which is computationally
expensive. This study introduces a novel efficient multiple-query based sampling approach for obstacle
avoidance, and 2D trajectory planning, for N-DOF robot arms. A MATLAB based motion planner is proposed
to investigate this approach for different and diverse types of manipulators, with various joint types, and cost
functions. Various scenarios with different pre-defined highly constraining obstacles have been simulated in the
proposed motion planner and the results demonstrate the fast computation of collision free motions.

Key-Words: - Trajectory Planning, Hyper-redundant Manipulators, Collision-free Motion Planning

1 Introduction
According to the definition of Lozano [1],
motion planning can be defined as the process
of converting the robot motion task into a set of
computed discrete movements in order to
satisfy some constraints and optimize some
aspects of the robot motion between two
locations.

The objective of motion planning is giving
the robot the ability of automatically deciding
and guiding the order of motions execution in
an environment filled with obstacles. Use of
cost functions will be mandatory in economic
considerations, such as minimum time, energy
or operating in the shortest path [2]. Our goal in
a motion planning problem is to find a
collision-free motion for an object from start
configuration to a goal configuration. This is
proved as a hard problem [3], since the
complexity of motion planning increases
dramatically as the number of DOFs of moving
object grows.

The history of motion planning for robotic
arms is as old as that of industrial robot
invention. George Devol was the creator of
Unimate, the first industrial robot in the 1950s
that worked on a General Motors assembly line
in New Jersey, in 1961 [4].

The humanlike robot arms normally have 7-
DOF which are typically referred as redundant
manipulators and the ones with greater than 7-
DOF are considered as hyper-redundant
manipulators. Sampling-based motion planning
algorithms have been proven to be successful in
high dimensional C-space that have a
probability of failure which decreases to zero as
more time is spent. Sampling-based motion
planning methods are currently considered as
state of art for motion planning.

Although there is a wide range of different
trajectory designing algorithms, currently there
exists no general method, which outperforms all
others for all problem instances. In fact, each
method has various advantages and drawbacks
that make it best suited for specific types of

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2856 393 Volume 12, 2017

problems. Furthermore, since a workspace can
contain vast various regions with different
characteristics, there may not be a single
planner that will perform well in all these types
of regions [5].

Bohlin et al [6] described an algorithm based
on PRMs that is called Lazy PRM. This
approach is designed to minimize the running
time of the planner by minimizing the number
of collision checks performed during planning.
The planner constructs a roadmap assuming that
all the nodes and edges in the roadmap are in
the obstacle-free region. Then the planner
searches for the shortest path between the start
and the goal node. The planner removes the
nodes and edges which are in the obstacle space
along the path as it is searching for the shortest
path. Experiments indicate that the introduced
Lazy PRM is efficient in practice.

Song et al [7] presented a customized
version of PRMs method that postpones some
of the validation checks such as collision check
to the query stage which yields an efficient
outcome for many motion planning problems.
This approach enables the user to customize the
same roadmap according to multiple, variable,
query preferences. The results indicate a huge
improvement in performance of the motion
planner.

Branicky et al [8] by implementing an
innovative algorithm, highlighted the
advantages of their algorithm in comparison
with random sampling. Quasi-random variants
based on PRM planner are developed as (1)
classical PRM with quasi-random sampling,
and (2) a quasi-random lazy-PRM.

Bertram et al [9] proposed a novel integrated
approach to the problem of inverse kinematics
for redundant manipulators in manipulation
tasks. The proposed solution is based on
exploring a connected collision free
configuration with RRT and evaluating the
candidate configurations by heuristic workplace
metric, which measures the ability to reach to
the desired pose. The goal distance along with
the obstacle distance information is later used
for guiding the configuration space search.

Karaman et al [10] described an anytime
method based on RRT that quickly computes an
initial feasible plan, but unlike the RRT,
converges to an optimal path. Two key
extensions to the RRT committed trajectories
and branch-and-bound tree adaptation were
presented to enable the technique of having an
efficient use of calculation time online,
resulting in an anytime method for real-time
implementation.

Gomez-Bravo et al [11] proposed a new
approach to the problem of collision-free
trajectory planning for hybrid robots in the
presence of the obstacles. This method is based
on a combination of random search algorithm
(RRT) with an optimization method that is
solved by a genetic algorithm.

None of the abovementioned studies address
the following issues:
• A general trajectory planner for robot

manipulators that can support unlimited
degrees of freedom, different joint types
(revolute and prismatic), different cost
functions, and all types of obstacles.

• Lack of multiple queries in most algorithms
• Most of the previous studies have been

conducted for specific scenarios.
Accordingly, the following objectives are
defined as the contribution of this study for
addressing the hyper-redundant manipulators
motion planning problem:
• Developing a comprehensive trajectory

planner capable of handling different
scenarios including non-redundant,
redundant, and hyper-redundant
manipulators with different joint types.

• The capability of mapping all types of
obstacles and workspaces.

• Handling various cost functions based on
the scenarios.

• User-control accuracy and resolution based
on the scenarios.

• High reliability in obstacle avoidance
application.

2 Methodology

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2856 394 Volume 12, 2017

In this section, a new methodology for
developing a collision-avoiding trajectory for
redundant and hyper-redundant robot arms in
different types of environments is discussed.
This methodology is based on sampling-based
motion planning that can be divided into two
phases: preprocessing phase (or off-line phase)
and query phase (or on-line phase).

2.1. The Preprocessing Phase (off-line)
During the preprocessing phase as an off-line stage,
a data structure (or roadmap) is constructed in a
probabilistic way for a given workspace. The graph
contains nodes which are chosen over Cfree and the
edges that correspond to the feasible trajectories. A
proper sampling method is needed to generate
collision-free configurations in Cfree. A uniform
generation of nodes continues until the desired
density is achieved. Each generated random
configuration needs to be checked by the collision
detector method, whether the randomly generated
configuration is in a collision with obstacles. Once
random nodes are created, they are connected to
their neighboring nodes. The local planner computes
a collision-free trajectory between a node and its
neighbors. Then, randomly created configurations
and their connections are added to the graph. In this
stage, a roadmap is generated in a way that can
quickly handle future queries [12].

The Initial empty graph includes only
occupied regions. Then, repeatedly, a random
free configuration is created and added to the
number of nodes. As the planner generates
nodes, the local planner connects the generated
node to the neighboring nodes with a straight
line representing the feasible trajectory between
these two nodes. For mapping the obstacle the
occupancy grid has to be created. The workflow
of pre-processing phase is depicted in Figure 1.

Figure 1. Workflow of the pre-processing phase

According to [13], the pseudocode of
learning phase (or PRM planner algorithm) can
be outlined as follows:

1 G.init(AllNodes={}, Edges={}),i←0;

2 while i˂N

3 if qnew(i)ϵCfree and ((not G.same_comp

(qnew(i),q)) then

4 G.add_vertex(qnew(i));i←i+1

5 for each q ϵ

NEIGHBOURHOOD(qnew(i),G)

6 if G, trajectory(qnew(i),q) ϵ Cfree then

7 CONNECT(qnew(i),q) then

8 G.add_edge(qnew(i),q)

The preprocess phase of the trajectory
planning can be accordingly divided into
following steps:

1) Robot Manipulator
The first step in the off-line phase is defining

the robot manipulator with all possible details.
These details include the number of degrees of
freedom (DOF), Denavit-Hartenberg D-H
parameters, joint type, joint limit, and link cost
values (pre-defined weight for each link).

2) Occupancy Grid Mapping
Trajectory planning requires both

manipulator and workspace information. The

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2856 395 Volume 12, 2017

manipulator information can be safely defined
as the number of degrees of freedom, number of
links and their dimension. The workspace
information consists of obstacles location and
their dimension. To create occupancy grid, a
numerical value is assigned to each cell that
indicates the probability of the cell existence
and also the difficulty of its reachability [13].

3) Forward Kinematics Calculation
In this Paper, the D-H convention for

forward kinematics (FK) calculation is used to
compute the position of the links and the end-
effector [14]. It is prohibitively difficult to
explicitly calculate the shape of Cfree; however,
detecting whether a given configuration is in
Cfree is an efficient solution to this problem.
First, the manipulator configuration is
calculated and then the collision detector
recognizes if the manipulator intersects any of
the obstacles.

Equation 1 expresses the location and
orientation of the end-effector frame with
respect to the base frame as:

 () () ()0 01 1 12 2 23 3 1, (_)n n nT A q A q A q A q n−= … (1)

4) Random Sampling
According to Lavalle [13], Cspace, the

configuration space, is “uncountably” infinite
while a sampling-based motion planning
method can consider at most a countable
number of random samples. This method can
run forever then it may be “countably” infinite,
but practically the expectation is to terminate
the algorithm after considering a finite number
of random samples. Therefore, the planner
generates dense random configurations for any
bounded Cspace. The maximum number of nodes
for each scenario and needed roadmap can be
equated to the mass, therefore, the total number
can be computed as follows:

 Number of Total Nodes = Density ×
Volume of Cfree

(2)

5) Tip Distribution Grid
Although the Beta distribution with tuned

parameters yields to a more uniform

distribution of manipulator’s end-effector, there
is still a dense region of generated nodes around
center towards the right side of the map.

Therefore, the tip distribution grid (TDG)
solution is applied to satisfy the distribution
problem. The TDG controls the random
generation of configurations by controlling the
position of manipulator end-effector to
uniformly distribute it over the entire
workspace. Each TDG cell has a desired and
predefined limit of number of nodes. Hence, if
the limit is exceeded by the generated random
configurations, the generated node will be
discarded and the iteration will continue to
spread nodes until all TDG cells reach the
maximum number of nodes. The maximum
number of nodes for each TDG cell is
considered as a “mass”, thus it can be assumed
that the density multiplied volume can be
calculated as follows:

 Maximum Nodes per Cell = Density ×
TDG Cell Volume

(3)

6) Collision Detection
Once a random configuration is generated

and the location of the created sample is
determined, the collision status of the
configuration should be investigated. Hence,
collision checking is a critical component of
sampling-based planning [8]. The collision
detector checks if the generated configuration
intersects any part of Cobs. If it is collision-free,
it will be added to the total generated collision-
free nodes; otherwise, it will be discarded. The
first step is the calculation of the end-effector’s
position. Then, this position is sent as a point to
the occupancy grid. If the point lies in Cobs that
point will automatically be discarded. Once the
collision detection process is done and the
generated configuration’s end-effector position
is in Cfree; then we need to check if any part of
the robot collides with an obstacle. The
assumption during this process is that the robot
cannot intersect itself or the links have an
appropriate offset to avoid this collision.

7) Finding Neighboring Samples

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2856 396 Volume 12, 2017

Once all random nodes are created and the
collision detection is performed for each one of
them, they can be considered as the valid nodes
and their configuration is placed in the Cfree.
Next crucial step is to find the candidate
neighbors around each node. Each connection
(edge) in the graph indicates a pair of neighbor
nodes (Figure 7). One of the critical factors in
sample-based path planning algorithms is the
process of pairing close nodes. A criterion (i.e.
distance) is required to determine a
neighborhood region for each node and then for
their connection. The strategy that has been
used to find the neighbor nodes in the proposed
methodology is the Tip Distribution Grid
(TDG). Not only the applied TDG technique
solves the problem of random nodes
distribution, but also it can be used as a
criterion to recognize the neighboring nodes in
the workspace.

8) Local Planner
The local planner is in charge of connecting

the neighbor nodes. The straight-line segments
in Figure 7 shows the connections between two
nodes. However, the trajectory between two
neighbor nodes, which is not necessarily a
straight line, is generated by the local planner
while satisfying the collision-free condition.

The quality of the collision detection for the
trajectories depends on the workspace and
obstacles’ geometry. For instance, if there are
obstacles with sharp edges and vertices the local
planner must generate paths with higher
resolution.

9) Cost Function
Path planning for highly redundant

manipulators involves cost functions that have
to be optimized since there are large numbers of
degrees of freedom performing a task. Hereby,
one of the main contributions of the proposed
technique for hyper-redundant robotic arms
motion planning is handling and optimization of
various cost functions simultaneously. In this
study the cost function is defined to be a
function of following parameters:

• Distance: finding the shortest Euclidean
distance between the end-effector positions
from initial to goal configuration.

• Time: finding the shortest trajectory
between initial and goal configuration.

• Total joints displacement: the objective is
having minimum joints displacement in
accordance to the assigned costs for each
link.

2.2. The Query Phase (real-time)
By using the constructed roadmap in the off-line
preprocessing phase, paths are to be found between
any initial and goal configurations during the query
phase. That is, once the roadmap is generated, it
contains occupancy grid, all valid nodes, and all
feasible obstacle-avoiding trajectories between
neighbor nodes and initial robot properties. The
strategy that has been used in the query phase for
connecting any arbitrary pairs of nodes is finding
the shortest/least cost path between any desired start
and goal nodes that involves the graph searching
algorithm A*. The workflow of this phase is shown
in Figure 2.

Figure 2. Real-time query phase workflow

A* is the best-first graph search algorithm
that has been widely used in pathfinding
because of its performance and accuracy to find
the efficient path. Additionally, other studies
found A* to be superior to other methods [15].
Detailed information about A* can be found in
[16].

3 Implementation
The proposed approach is implemented in a
MATLAB platform because this platform is widely
accepted for academic purposes as well as in

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2856 397 Volume 12, 2017

industry. The overall procedure of implementation
of the proposed algorithm can be listed as follows:

The workflow of the developed modified PRM
planner is depicted in Figure 3 According to this
workflow, the off-line phase starts with the
generation of obstacle-avoiding random
configurations followed by the robot and
environment initialization to create a roadmap to
begin the query phase, which needs a pair of initial
and goal nodes to find the best path.

To efficiently develop and implement the
proposed approach in MATLAB, one should
use the advantages of Object-Oriented
Programming (OOP) since the planner is
dealing with a large number of nodes and
numerous properties for each node as well as
the edges and the trajectories between each pair
of neighbor nodes. Figure 4, demonstrates the
structure overview of this planner including the
classes, relations, and connections.

Figure 3. Overview of presented planning algorithm

Implementing an OOP programming would
also solve the problem of handling the
numerous assigned properties to the nodes,
edges and randomly generated trajectories.
Defining different classes with different
properties is an appropriate approach in dealing
with such problems. These classes function like
a template for creating specific instances of the
classes which are called objects. These objects
contain all or part of the data for a particular
entity that is designed base on that class.
Objects can actively manage the set of data by
calling certain functions and methods to be

executed. Figure 4 illustrates the workflow of
MATLAB implementation. This workflow
includes all the classes and their relationship to
each other and how they feed data to following
classes and objects to perform a trajectory
planner for a user-defined environment and
robot.

Figure 4. Relations of the user-defined classes in MATLAB for

simulation

1) Robot Manipulator Class
To develop a model of the manipulator that

the motion planning is being defined on, the
robot has to be initialized in MATLAB. This
MATLAB class consists of few sub-classes to
set the robot properties including its number of
DOF, the links and their properties, the robot’s
origin, and its other physical properties. Link
class can be considered as a sub-class to this
class which defines some specific link
properties such as their ID number, D-H
parameters, joint types, their weight cost (as one
of the parameters in the Cost Function).

2) Node and Point Classes
As discussed in the previous sections,

creating random nodes to develop a motion
planner for the robot, the corresponding random
configuration of the robot have to be defined.
This step can be done by assigning random
values to the pre-defined properties in the Robot
Manipulator class. In the process of generating
random configurations, one of the most
important issues that should be handled
properly is to determine that the nodes are
uniformly distributed.

In Figure 5.a, a 7-dof manipulator with the
maximum length of 8.25 units was chosen to
illustrate the end-effector position distribution
in black dots. Not only the normal random

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2856 398 Volume 12, 2017

generator has densely generated samples around
the center but also the manipulator end-effector
has barely reached the workspace boundaries.
Hereby, the shape of the distribution needs to be
controlled. Using Beta distribution as a family
of continuous probability distribution that is
parameterized by two positive shape
parameters, denoted by α and β, the result is
much closer to a uniform randomized node
generation. Figure 5.b indicates the effect of
Beta distribution that allows a uniform
distribution all over the workspace and
reachability of the boundaries.

Figure 5.

(a) End-effector position distribution of 6000 generated random
configurations for 7-dof manipulator (maximum length 8.25
units) using simple random generator.
(b) End-effector position distribution of 6000 generated random
configurations for 7-dof manipulator (maximum length 8.25
units) using Beta distribution, α, β=5

3) Occupancy Grid Class
Occupancy Grid class is another class that

has to be defined for the initialization process of
the motion planner. In this class, the
environment properties such as its size, the
obstacle locations, their size, and also the grid
resolution to map the obstacle in the
environment. Discretization resolution of
manipulator workspace defines the number of
cells per axis and the quality of approximation.
The occupied cells are listed in Cobs and marked
with color blue on the roadmap (Figure 6).

Figure 6. Securely occupancy grid mapped obstacle,

resolution: 30 cells per 10-unit-axis

The Point in Polygon (PIP) method in
general uses repeated geometric queries. Given
multiple polygons and a sequence of query
points, PIP finds the status for each query point.
Each cell calls for PIP function and checks if
any vertex of the cell is in the defined polygon.
If the answer value is “1” then that cell is
considered as an occupied cell and marked with
color blue. An extension has been added to this
method that adds all of the surrounded cells of
each occupied cell to the blocked area.

4) Distribution Grid and TDG Cell Classes
As depicted in Figure 5, although the

controlling parameters of α and β makes the
distribution of randomly generated nodes as
uniform as possible, there is still a rather dense
region in the center of the map. TDG class is
defined to control the number of nodes
generated in each cell of the map. This class
uses the Occupancy Grid class and some of its
defined properties (e.g. Density, Walking
Distance, Max. Nodes per Cell) as the input to
construct a new instance of TDG.

5) Neighbor Class
After generating all the random nodes and

detecting collision by performing collision
avoiding procedure explained in the previous
section, the existing nodes on the maps are the
valid nodes that the robot can pass its motion
through them. Next step is assigning the
neighboring nodes to each generated node.
According to TDG Cell method, each cell
contains the nodes that are within the Walking

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2856 399 Volume 12, 2017

Distance to the other nodes in that cell.
Therefore, the local planner is called by the
origin class to connect these nodes and generate
a linear trajectory between them (Figure 7).

Figure 7. A 7-dof manipulator neighbor nodes selection;

workspace dimension= 10 unit by 10 units,
robot origin= (5, 5), density= 1

6) PRM Class
Once all the necessary classes for

initialization are started then the trajectory
planner is called to construct the roadmap by
repeatedly generating random nodes and
checking their collision free feature. The
modified PRM planner runs by calculating an
estimation of needed total nodes with the
desired density. The verified nodes are then
added to an array in this class called All Nodes
which basically contains all the eligible nodes
for the roadmap. Every single trajectory
generated between the neighboring nodes are
checked by collision detector to determine it
does not collide any of the pre-defined
obstacles.

7) A-Star and Path Classes
A* is a graph search algorithm that has been

used in this study to handle the defined cost
function and develop the trajectory planner. A*
is widely used in the graph search applications
and many studies have shown its superiority to
the other approaches. A* is a best-first search
algorithm and finds the path from the start node
to the goal node with the least cost value.

A* traverses the graph, it follows a path of
the lowest expected total cost, keeping sorted
priority queue of alternate path segments along

the way. An amount of cost computed for each
edge in the graph is equal to the summation of
displacement of each joint during local planning
for neighbor nodes, multiplied by the link cost
assigned by the user.

All Nodes array is fed into this class as an
input to construct a new instance of A-Star and
its objects are created as the roadmap and an
empty open list. There are several methods
(functions) in this class that are designed to use
the previous classes output and generated the
best path. These methods include: Is In Path,
Cost to Node, Path Length, Add Node, Sort and
Clone Path.

4 Results and Discussion
The following scenarios are executed in

MATLAB framework. In the resultant figures,
the manipulator and its joints are shown in bold
black line, and green circles, respectively. The
obstacles are shown in cyan line segments.

4.1. Scenario No.1
The first scenario contains a scene populated
with large obstacles and a redundant fixed-base
6-DOF manipulator. The mission is designed
for a situation that a redundant manipulator
operates in a tight area. Figure 8 demonstrates
the capability of the presented general planner
in designing motions for a redundant robot arm
moving along tight workspace from start
configuration at the bottom left corner to top
right corner keeping safe clearance with
obstacles.

Figure 8. The designed trajectory of a 6-DOf manipulator; joints

are shown in green in final configuration

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2856 400 Volume 12, 2017

4.2. Scenario No.2
The second scenario consists of a humanoid
robot arm, which is a 7-DOF redundant
manipulator operating in a crowded workspace
populated with many small obstacles. Figure 9
illustrates the maneuverability of the presented
planner in crowd workspaces. As can be seen in
the bottom right corner of this figure, the
manipulator folds itself perfectly to avoid any
collision whereas the planner is random-based.

Figure 9. The designed trajectory for a 7-DOf manipulator;

joints are shown in green in final configuration

4.3. Scenario No.3
The third scenario is presenting a simulation for
the Canadarm2, manipulating an object form an
initial configuration and move along the free
spaces and then places the object in a tight
location surrounded by obstacles like a box.
Figure 10 presents one of the challenges that
may Canadarm2 can encounter while operating
at ISS which has simply done by the proposed
planner. The final configuration is exactly the
best-obtained configuration to reach that end-
effector position deep inside a narrow space.

Figure 10. The designed trajectory for Canadarm2; joints

are shown in green at the goal configuration

4.4. Scenario No.4
In the 4th scenario the performance and
capability of the proposed motion planner is
going to be checked for an RRP manipulator
having a prismatic joint. Figure 11 shows one of
challenging features of the proposed method
which has not been addressed reasonably in the
past works. This scenario designed to illustrate
the perfect capability of using prismatic joint
for end-effector reaching the farthest boundaries
of the workspace by only sliding.

Figure 11. The designed trajectory for the RRP manipulator

(end-effector is slider); joints are shown in green in goal
configuration

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2856 401 Volume 12, 2017

Figure 12. The designed trajectory for a 10-DOF manipulator;

joints are shown in green at the goal configuration

4.5. Scenario No.5
The fifth scenario is presenting the capability of
planning obstacle avoidance trajectory of the
proposed motion planner for a 10-DOF robot
arm in a crowded environment or highly
constrained workspace. Figure 12 demonstrates
a hyper-redundant 10-DOF robot arm
manipulates an object deep inside a box located
at the bottom left corner and placed deep inside
another box located at the top right corner.

4.6. Scenario No.6
The planner plans an obstacle avoiding path for
an RPR (Revolute-Prismatic-Revolute)
manipulator which means there is a slider
sliding for the second link. The designed robot
arm has 90-degree prismatic joint for the second
link which makes it more constrained for
obstacle avoidance maneuver. As can be seen in
 0 Figure 13, the designed collision-free
trajectory employed the feature of sliding joint
specifically to avoid collisions.

Figure 13. The designed trajectory for the RPR manipulator

(Second link is slider); joints are shown in green in goal
configuration

4.7. Scenario No.7
The last scenario is presenting the capability of
the proposed planner in collision-free trajectory
planning for a 16-DOF hyper-redundant
manipulator which has not been properly
addressed comprehensively in the past studies.
Sharp-edge obstacle avoidance of an unlimited-
DOF robot arm is one of the boldest features of
the introduced efficient and quick path planner.
Figure 14 shows an example for scenarios that
consists of an unlimited-DOF manipulator
avoiding collisions in highly constrained
workspaces including sharp-edge obstacles.

Table 1 shows the performance of the
proposed trajectory planner for selected
scenarios. Its columns represent the total
number of nodes which is one of the most
important parameters in defining the difficulty
of the problem, off-line CPU-time (secs), and
Real-time CPU-time (secs).

According to this table, due to the length of
roadmap trajectories, density and occupancy
grid resolution, the CPU-time (secs) for off-line
phase increases up to nine minutes (scenario
No.7). However, the real-time phase is done in
a quite short period of computation time (secs)
for a 16-dof robotic arm in comparison to other
methods and non-sampling based approaches.
More detailed results can be found in [18].

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2856 402 Volume 12, 2017

Figure 14. The designed trajectory for a 16-DOF

manipulator; joints are shown in green at the goal configuration

Table 1. Comparison between the results of defined scenarios

 Number of
Nodes

Off-line
CPU Time

On-line
CPU Time

Scenario 1 90 28.65 3.20

Scenario 2 187 74.15 0.80

Scenario 3 109 276.4 34.80

Scenario 4 46 39.31 2.70

Scenario 5 65 157.8 26.59

Scenario 6 50 45.96 4.10

Scenario 7 150 539.3 40.30
* All the simulations are executed using Windows 8.1 on a Lenovo
ThinkPad W530 processing with Intel Core i7-3820QM 2.70 GHz (64-
bit) processor and 8 GB of RAM.

Please take notice that motion planning and
obstacle avoidance in 2-D; in general, can be
more difficult and restrictive than in the 3-D
space. This is widely acknowledged worldwide.
Still, the proposed approach can be easily
extended to motion planning and obstacle
avoidance in 3-D, for redundant and hyper-
redundant manipulators [18].

5 Conclusions
In this paper, a novel approach has been
presented for setting a MATLAB framework
and developing an efficient collision-free
trajectory planner for redundant and hyper-
redundant manipulators. An innovative method
has been presented based on a modified
multiple query PRM which is capable of

dealing with a wide range of variety of the
problem; including robots with different
number of DOF, joint types, and cost functions.
A MATLAB framework has been developed to
get the user defined robot characteristics, and
simulation environment features. The trajectory
planner has been applied to seven scenarios
using an A* search algorithm and the
corresponding results have been presented. This
study can be expanded by implementing a 3D
collision detection function and including the
dynamics of the manipulators.

Acknowledgements
The authors would like to express their appreciation
to Mr. Mehrdad Bakhtiari for his valuable
suggestions and advice on the path planner
programming.
This paper research has been supported by a grant
(No: 155147-2013) from the Natural Sciences and
Engineering Research Council of Canada (NSERC).

References
[1] T. Lozano-Perez, "A simple motion-planning

algorithm for general robot manipulators," Robotics
and Automation, IEEE Journal of, 3(3), pp. 224-
238, 1987.

[2] A. Feizollahi and R. V. Mayorga, "Optimized
Motion Planning of Manipulators in Partially-
Known Environment Using Modified D* Lite
Algorithm", WSEAS Transactions on Sy stems, vol.
16, no. 10, pp. 69-75, 2017.

[3] J. H. Reif and H. Wang, "Social potential fields: A
distributed behavioral control for autonomous
robot," Robotics and Autonomous Systems, vol. 27,
no. 3, pp. 171-194, 1999.

[4] J. N. Pires, “Industrial robots programming:
building applications for the factories of the future”
Springer, 2007.

[5] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and
N. M. Amato, "A machine learning approach for
feature-sensitive motion planning," In Algorithmic
Foundations of Robotics VI, pp. 361-376, 2005.

[6] R. Bohlin and E. E. Kavraki, "Path planning using
lazy PRM," in ICRA'00. IEEE International
Conference on Vol. 1, 2000, pp. 521-528.

[7] G. Song, S. Miller, and N. M. Amato, "Customizing
PRM roadmaps at query time," in Proceedings 2001
ICRA. IEEE International Conference on Vol. 2,
2001, pp. 1500-1505.

[8] M. S. Branicky, S. M. LaValle, K. Olson, and L.
Yang, "Quasi-randomized path planning," in
Proceedings 2001 ICRA. IEEE International
Conference on Vol. 2, 2001, pp. 1481-1487.

[9] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour,
"An integrated approach to inverse kinematics and

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2856 403 Volume 12, 2017

path planning for redundant manipulators," in
Proceedings 2006 IEEE International Conference,
2006, pp. 1874-1879.

[10] S. Karaman and E. Frazzoli, "Sampling-based
algorithms for optimal motion planning," The
International Journal of Robotics Research, 30(7),
pp. 846-894, 2011.

[11] F. Gómez-Bravo, G. Carbone, and J. C. Fortes,
"Collision free trajectory planning for hybrid
manipulators," Mechatronics, 22(6), pp. 836-851,
2012.

[12] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H.
Overmars, "Probabilistic roadmaps for path
planning in high-dimensional configuration spaces,"
Robotics and Automation, IEEE Transactions on,
12(4), pp. 566-580, 1996.

[13] S. M. LaValle, Planning algorithms. Cambridge
university press, 2006.

[14] F. C. Samavati, A. Feizollahi, P. Sabetian, and S. A.
A. Moosavian. "Design, Fabrication and Control of
a Three-Finger Robotic Gripper." In Robot, Vision
and Signal Processing (RVSP), 2011 First
International Conference on, pp. 280-283. IEEE,
2011.

[15] W. Zeng and R. L. Church, "Finding shortest paths
on real road networks: the case for A*,"
International Journal of Geographical Information
Science, pp. 531-543, 2009.

[16] P. E. Hart, N. J. Nilsson, and B. Raphael, "A formal
basis for the heuristic determination of minimum
cost paths," Systems Science and Cybernetics, pp.
100-107, 1968.

[17] R. V. Mayorga, F. Janabi-Sharifi, and A. K. Wong,
"A Fast Approach For The Robust Trajectory
Planning Of Redundant Manipulators," Journal of
Robotic Systems, vol. 12, no. 2, pp. 147-161, Feb.
1995.

[18] M. F. Ghajari, "Trajectory Planning for Hyper-
Redundant Manipulators in Constrained
Workspaces", M.A.Sc. Thesis, Industrial Systems
Engineering, University of Regina, Canada, March,
2015.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2856 404 Volume 12, 2017

