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Abstract: - The aim of this paper is to establish, on the basis of Lagrange method for solving partial difference 
equations, conditions under an asymptotic stability analysis procedure to investigate conditions for the 
existence of a solution to 2-D (two dimensional) discrete system whose state space representation is composed 
by a non-singular matrix. To accomplish it, the concept of generalized inverse of matrices and Jordan canonical 
transformation are applied on the original system and then Lagrange solutions to the transformed systems are 
pursued. Once the conditions are determined on the grounds of the transformed system and the existence 
conditions of solutions for this system is accomplished, the conditions for the original system is obtained by 
back transformation. A numerical example is given to show how the procedure works. 
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1 Introduction 
The pioneering research on the stability of 2-D 
discrete systems described by the state space state 
space model paralleling the ordinary 1-D discrete 
system model that appears in engineering goes back 
to the early 1960s when the concept of multivariable 
positive real functions was introduced to study the 
stability of electrical networks with varying 
parameters [1]. This framework was then further 
extended and generalized to allow one to investigate 
more methodically the stability of these kinds of 
systems with two as well as more indices [2].  In 
this scope, basically two state space models, which 
are equivalent to each other, stood out in automatic 
control, digital signal processing and other related 
fields of engineering as frame of references for 
studying the stability and control design of 2-D 
discrete systems; namely, FM [3] and Roesser [4] 
models. 

As far as the tools for delving into the stability of 
2-D discrete systems are concerned, z-transform 
was, and still is to some extent the most widely 
adopted formalism [5] [6]. As for the ordinary 1-D 
systems case, this approach has provided a wide 
range of techniques and apparatus for testing the 
stability of systems. However, when there are 
multiple state variables composing the state space 
model that depend on the same index, say i, the 
analysis is in general neither straightforward or 
explicitly achievable. To cope with it the energy 
methods [7], which is essentially a generalization of 

Lyapunov based procedures developed in the ambit 
of 1-D systems, was intensively used in the 1980s. 
These in turn eventually evolved into linear matrix 
inequalities methods in the 1990s and early 2000s 
(see for example [8] and references therein). 
Powerful mechanisms in their own rights, they 
provide only sufficient conditions to inspect the 
stability of systems.  

In order to deal with this shortcoming, Izuta [9-
12] have investigate the solutions to 2-D discrete 
control systems of Roesser type from the Lagrange 
solution method perspective. Briefly, the philosophy 
is to transform the system matrix into a diagonal 
matrix by means of control feedback design and 
then determine the stability conditions under which 
the overall feedback control systems is 
asymptotically stable in the sense of Lagrange 
method for solving partial difference equations. This 
scheme makes it clear not only the role of the 
eigenvalues of the system matrix but also provides 
an explicit solution, when it exists. Yet, recently the 
authors [13] focused on 2-D systems with singular 
system matrix and established asymptotic stability 
conditions for the case in which the eigenvalues of 
the non-singular matrix block composing the 
original system matrix are all mutually different. 

Motivated by the investigations so far, this paper 
aims to extend the previous paper [13] in the sense 
that, we aim here to establish an analysis method to 
check the existence of a solution. In addition, unlike 
considering the similarity transformation, the Jordan 
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canonical form is exploited to embrace a larger class 
of matrix blocks. In a few words, the original 
system is re-arranged in a suitable format such that 
there will be a non-singular matrix block at the 
upper left corner of the system matrix; then, Jordan 
canonical transformation is applied on the sub-
system defined by this matrix block. Thus since this 
procedure allows us to establish the conditions for 
the existence of a Lagrange solution to the 
transformed sub-system, this solution, if any, will in 
turn lead to an asymptotically stable solution to the 
original system.  

Finally, this paper is organized as follows. 
Section 2 states the definitions relied on in the 
sequel, section 3 writes down the mathematical tools 
needed to unfold the suggested theoretical reasoning, 
and section 4 presents the results, and section 5 
shows a numerical example. 
 
 
2 Preliminaries and Problem 
In this section the definitions and concepts required 
hereafter are presented.  Firstly, consider the system 
as follows. 

Definition 1. Let the 2-D discrete system be 
described by the following real valued state space 
model with indices being natural numbers.  

⎣
⎢
⎢
⎢
⎢
⎡

x1(i + 1, j)
⋮

xk(i + 1, j)
xk+1(i, j + 1)

⋮
xn(i, j + 1) ⎦

⎥
⎥
⎥
⎥
⎤

= �
a11 … a1n
⋮ ⋱ ⋮

an1 … ann

�
�����������

Anxn

⎣
⎢
⎢
⎢
⎢
⎡

x1(i, j)
⋮

xk(i, j)
xk+1(i, j)

⋮
xn(i, j) ⎦

⎥
⎥
⎥
⎥
⎤

    (1) 

rank (Anxn ) = p, 1 ≤  p ≤ n 

where the over-braced An x n stands for short notation 
of the matrix under it. 

Secondly, the definition of stability given next is 
the multidimensional version of the one used to 
study systems of difference equations [14]. 

Definition 2. System (1) is asymptotically stable 
as far as its solutions x*(i, j)’s (for all *) fulfill the 
following condition. 

lim(i+j)→∞|x∗(i, j)| → ∞ , for all ∗= 1, … , n    (2) 

Thirdly, the theoretical framework relies on the 
Lagrange method for solving partial difference 
equations, which consists basically in defining 
candidate solutions and then testing them for 
stability conditions. If those are satisfied then the 
candidates are in fact a solution to the system. This 
corresponds to the exponential functions that are 

assumed as solutions to partial differential equations 
in continuous settings. 

Definition 3. A general form of a non-null 
Lagrange candidate solution is given by the 
following equation. 

x(i, j) = ∑ Ik
n
k=1 αk

i βk
j                     (3) 

 Ik’s stand for the initial values and αk’s and βk’s 
are non-null real valued numbers. 

Taking these into consideration, the problem to 
be tackled in this paper is as follows.  

Problem. To establish, on the basis of Lagrange 
method for solving partial difference equations, 
conditions under which there exists an 
asymptotically stable solution to 2-D discrete 
systems. 
 
 
3 Mathematical Facts 
In this section, we present the mathematical tools 
that will be used thereafter. 

First of all, note that algebra of matrices allows 
one to rewrite systems of equations with singular 
matrix in such a form that the top left matrix block 
of the resulting matrix is non-singular so that the 
system described by equation (1) can be written to 
have its non-singular matrix portion expressed as a 
matrix block as follows. 

�
𝐱𝐱𝐮𝐮(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏)
𝐱𝐱𝐯𝐯(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏)� 

�
𝐀𝐀pxp 𝐁𝐁px (n−p)

𝐂𝐂(n−p)xp 𝐂𝐂(n−p)xp𝐀𝐀pxp
−1 𝐁𝐁px (n−p)

�
�����������������������

A�

�
𝐱𝐱𝐮𝐮(𝐢𝐢, 𝐣𝐣)
𝐱𝐱𝐯𝐯(𝐢𝐢, 𝐣𝐣)�    (4) 

in which Apxp is a non-singular matrix block 
composing matrix Anxn and such that  

rank �𝐀𝐀pxp � = p, 1 ≤  p ≤ n 
holds and the vectors are defined as given hereafter. 

𝐱𝐱𝐮𝐮(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏) ≝

⎣
⎢
⎢
⎢
⎢
⎡

x1(i + 1, j)
⋮

xr(i + 1, j)
xr+1(i, j + 1)

⋮
xp (i, j + 1) ⎦

⎥
⎥
⎥
⎥
⎤

 

𝐱𝐱𝐮𝐮(𝐢𝐢, 𝐣𝐣) ≝

⎣
⎢
⎢
⎢
⎢
⎡

x1(i, j)
⋮

xr(i, j)
xr+1(i, j)

⋮
xp (i, j) ⎦

⎥
⎥
⎥
⎥
⎤
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𝐱𝐱𝐯𝐯(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏) ≝

⎣
⎢
⎢
⎢
⎢
⎡
xp+1(i + 1, j)

⋮
xs(i + 1, j)

xs+1(i, j + 1)
⋮

xs(i, j + 1) ⎦
⎥
⎥
⎥
⎥
⎤

 

𝐱𝐱𝐯𝐯(𝐢𝐢, 𝐣𝐣) ≝

⎣
⎢
⎢
⎢
⎢
⎡
xp+1(i, j)

⋮
xs(i, j)

xs+1(i, j)
⋮

xs(i, j) ⎦
⎥
⎥
⎥
⎥
⎤

 

It is worth noting that nevertheless, for the sake 
of clarity and without loss of generality, the vector 
xu(i+1,j+1) has the entries defined by the state 
variables written sequentially from x1(i+1,j) to 
xr(i+1,j)  followed by variables from xr+1(i,j+1) to 
xp(i,j+1), in practice the computations lead in 
general to a different ordering with the state 
variables appearing in a mixed up fashion rather 
than aggregated as written here. In addition, should 
it be the case, the state variables composing the 
entries of vector xu(i,j) will also follow the 
corresponding arrangement. The same remarks 
apply to vectors xv(i+1,j+1) and xv(i,j). 

Apropos, another mathematical concept that 
plays a key role in this paper is that of generalized 
inverse of matrices [15], which assigned on matrix 
Ā in equation (4) renders straightforwardly the 
generalized inverse matrix G fulfilling the equality 
ĀGĀ=Ā and whose explicit expression is given by 
the following equation.  

G = �
Apxp
−1 0px (n−p)

0(n−p)xp 0(n−p)x(n−p)
�            (5) 

On focusing on this generalized inverse matrix, 
system in equation (4) is solvable if and only if the 
following equality stands up.  

A�G �𝐱𝐱𝐮𝐮(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏)
𝐱𝐱𝐯𝐯(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏)� = �𝐱𝐱𝐮𝐮(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏)

𝐱𝐱𝐯𝐯(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏)�     (6)  

From which it is a simple matter of algebraic 
calculation to reach to the equation given by 

𝐱𝐱𝐯𝐯(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏) = CA−1𝐱𝐱𝐮𝐮(𝐢𝐢+ 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏)      (7) 

which means that the vector xv(i,j) is determined as 
far as the vector xu(i,j) is established. As a matter of 
fact, in order to carry out this task, note first that a 
particular solution to system (4) is accomplished by 
the following system. 

G �𝐱𝐱𝐮𝐮(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏)
𝐱𝐱𝐯𝐯(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏)� = �𝐱𝐱𝐮𝐮(𝐢𝐢, 𝐣𝐣)

𝐱𝐱𝐯𝐯(𝐢𝐢, 𝐣𝐣)�              (8) 

thus it turns out that xu(i,j) is computed from  

𝐱𝐱𝐮𝐮(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏) = A𝐱𝐱𝐮𝐮(𝐢𝐢, 𝐣𝐣)                (9) 

In other words, equations (7) and (9) provide a 
particular solution to system (4), which will allow 
one to draw conclusions regarding the existence of 
asymptotically stable Lagrange solutions. 
 
 
4 Results 
In this section, we present the main results of this 
paper. In fact, they are gathered in the following 
theorem. 

Theorem 1. Consider system (1) and its particular 
solution given by equations (7) and (9). In addition, 
assume that matrix A in equation (9) can be 
transformed into a Jordan canonical form. Then 
there exists an asymptotically stable Lagrange 
solution to system (1) if the initial values of the 
solutions to the system can be set to meet certain 
conditions as well as the eigenvalues of matrix A 
are all non-null numbers with absolute values less 
than unit 

Proof. Since on solving equation (9) for xu(i,j),  
xv(i,j) is promptly obtained and consequently a 
solution to system (1) is achieved, we focus 
specifically on this problem in what follows. For, 
consider the transformation applied on (9) given by  

𝐳𝐳(𝐢𝐢, 𝐣𝐣) = T−1𝐱𝐱𝐮𝐮(𝐢𝐢, 𝐣𝐣)                          (10) 

T: a non-singular matrix composed by generalized 
eigenvectors of matrix A. 

This procedure leads to the Jordan canonical 
form as follows. 

T−1𝐱𝐱𝐮𝐮(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏) = T−1ATT−1𝐱𝐱𝐮𝐮(𝐢𝐢, 𝐣𝐣)        (11) 

which by means of (10) reads 

𝐳𝐳(𝐢𝐢 + 𝟏𝟏, 𝐣𝐣 + 𝟏𝟏) = �
J1

⋱
Jt

�
���������

Jpxp

𝐳𝐳(𝐢𝐢, 𝐣𝐣)        (12) 

in which matrix Jpxp is square matrix of rank p and 
its composing Jordan block Ji is a matrix given by 

   Ji = λi                                  (13) 
or  

Ji = �

λi 1
λi 1

⋱
λi

�                (14) 
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Note that equation (14) has multiple rows and 
the last one is the diagonal entry alone and the 
previous entries have always two values: an 
eigenvalue on the diagonal line and number 1 at the 
right column.  

Despite a little simplified but without loss of 
generality, a solution to (12) is established by 
basically considering the following cases. 

Case 1:  let Ji be given by λi then the possible 
combinations are as follows. 

zs(i + 1, j) = λszs(i, j)              (15) 

or 

zt(i, j + 1) = λtzt(i, j)              (16) 

 to which the Lagrange candidate solutions are taken 
to be 

zs(i, j) = Ksαs
i βs

j               (17) 

and 

zt(i, j) = Ktαt
iβt

j               (18) 

with Ks and Kt being the initial conditions. Now 
substituting (17) into (15) and (18) into (16) lead to 

Ksαs
i+1βs

j = Ksλsαs
i βs

j               (19) 

and 

Ktαt
iβt

j+1 = Ktλtαt
iβt

j               (20) 

from which we obtain 

αs = λs ,  and  βt = λt               (21) 

meaning that (15) and (16) are asymptotically stable 
as far as λs and λt are non-null real numbers with 
absolute values less than unit and αs and βt are 
chosen in the same way. 

Case 2:  let Ji a non-diagonal Jordan matrix 
with the diagonal entry given by λi and (12) have 
the following entries. 

zs(i + 1, j) = λszs(i, j) + zr(i, j)             (22) 
    zr(i + 1, j) = λrzr(i, j)                             (23) 

or 

 zr(i, j + 1) = λrzr(i, j)                (24)  

From case 1, zr is given by  
zr(i, j) = Krλr

i βr
j                       (25) 

or 
zr(i, j) = Krαr

i λr
j                        (26) 

Moreover, assuming the Lagrange solution  

zs(i, j) = Ksαs
i βs

j                       (27) 

equation (22) becomes 

Ksαs
i+1βs

j = Ksαs
i βs

j + Krλr
i βr

j               (28) 

or 

Ksαs
i+1βs

j = Ksαs
i βs

j + Krαr
i λr

j              (29) 

which can be written as 

Ks(𝛼𝛼s − 1)αs
i βs

j = Krλr
i βr

j               (30) 

or 

Ks(𝛼𝛼s − 1)αs
i βs

j = Krαr
i λr

j              (31) 

and since (30) and (31) must hold for all the values 
of indices i and j, we conclude that we get a solution 
if we can define non-null αs and βs with absolute 
values less than unit along with initial conditions 
such that the following are fulfilled. 

αs = λs = 1 + Kr
Ks

,  and  βs = βr               (32) 

or 

αs = αr = 1 + Kr
Ks

,  and  βs = λr               (33) 

Case 3:  dual equations to those given in case 2 
are given by 

zs(i, j + 1) = λszs(i, j) + zr(i, j)             (34) 
    zr(i, j + 1) = λrzr(i, j)                             (35) 

or 

 zr(i + 1, j) = λrzr(i, j)                           (36)  

As in the previous case, zr and zs are given by  

zr(i, j) = Krλr
i βr

j                       (37) 
or 

zr(i, j) = Krαr
i λr

j                       (38) 

and 

zs(i, j) = Ksαs
i βs

j                      (39) 

Thus, it turns out that equation (34) translates 
into the following expression. 

Ksαs
i βs

j+1 = Ksαs
i βs

j + Krαr
i λr

j               (40) 

or 

Ksαs
i βs

j+1 = Ksαs
i βs

j +  Krλr
i βr

j              (41) 

written the other way 

Ks(𝛽𝛽s − 1)αs
i βs

j = Krαr
i λr

j               (42) 

or 

Ks(𝛽𝛽s − 1)αs
i βs

j = Krλr
i βr

j              (43) 

and analogous to the previous case, the conditions to 
be satisfied are 
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 αs = αr , and βs = λr = 1 + Kr
Ks

,          (44) 

or 

  αs = λr , and βs = βr = 1 + Kr
Ks

,           (45) 

All in all, no matter the case, the Lagrange 
solution to equation (12) and the Jordan canonical 
transformation (10) written as xu(i,j)=Tz(i,j) yield 
the solution xu(i,j), which has the general format 
expressed by the following equation. 

 x∗(i, j) =  ∑ I∗gg λ∗g
i β∗g

j +  ∑ I∗hh α∗h
i λ∗h

j        (46) 

in which the terms I’s are constant values resulting 
from the computations. Furthermore, (46) gives a 
solution to equation (7), and consequently the claim 
of theorem follows. □ 

Remark 1: For the sake of simplicity, in cases 2 
and 3, only Jordan block of size of 2 was considered. 
However care should be taken for blocks of greater 
sizes because, in general, they are solvable only if 
the entries of the non-diagonal Jordan canonical 
form block with 1’s in its off diagonal positions, 
which are the rows of the Jordan block not including 
the last one, are given by either zr(i+1,j) = λrzr(i,j) + 
zs(i,j) along with zr(i+1,j) = λszr(i,j) + zt(i,j), or 
zr(i,j+1) = λrzr(i,j) + zs(i,j) along with zr(i,j+1) = 
λszr(i,j) + zt(i,j). Yet if zr is the (n-1)-th row of the 
block, then the n-th row corresponding to zs(i,j) can 
be a vector depending on either index. 
 
 
5 Numerical Example 
Hereafter we present a numerical example to show 
how the analysis procedure works. 

Consider a randomly generated system be 
already written as in equation (4) and given by the 
following expression. 

�

x1(i + 1, j)
x3(i + 1, j)
x2(i, j + 1)
x4(i, j + 1)

� = �A B
C CA−1B� �

x1(i, j)
x3(i, j)
x2(i, j)
x4(i, j)

�          (47) 

in which 

A = �
0.0271647 0.5249944 0.1728464
−0.0956705 0.1749889 0.1456927
0.0271647 0.2749944 0.0978464

� 

B = �
0.3333333
0.5555556
0.4117647

�                                                (48) 

C = [0.2222222 0.3333333 0.2173913] 

Note that matrix A has only one eigenvalue (λ), 
namely λ=0.1, whose algebraic multiplicity is 3 and 

geometric multiplicity given by the dimension of 
kernel of matrix (A-λI), which is given by the 
dimension of matrix A minus the rank of (A-λI), is 
1. Moreover the geometric multiplicity says that 
there is only one Jordan block corresponding to this 
eigenvalue. 

Now as far as the existence of a solution to (47) 
is concerned, it can be solved if and only if  

x4(i, j + 1) = CA−1 �
x1(i, j)
x3(i, j)
x2(i, j)

�                       (49) 

for a particular solution given by 

�
x1(i + 1, j)
x3(i + 1, j)
x2(i, j + 1)

� = A �
x1(i, j)
x3(i, j)
x2(i, j)

�.            (50) 

Now, in order to obtain a solution to (50), we 
consider the linear space basis transformation given 
by the following equation. 

�
z1(i, j)
z3(i, j)
z2(i, j)

� = T−1 �
x1(i, j)
x3(i, j)
x2(i, j)

�.            (51) 

with T being a matrix composed by the generalized 
eigenvectors of matrix A and chosen here to be 

T = �
−0.0635263 −0.1728464 1.4191176
0.0059247 −0.1456927 −0.1323529
−0.0447647 0.0021536 0.0

� 

Thus, (50) and (51) lead to 

�
z1(i + 1, j)
z3(i, j + 1)
z2(i, j + 1)

� = �
λ 1 0
0 λ 1
0 0 λ 

� �
z1(i, j)
z3(i, j)
z2(i, j)

�     (52) 

so, assuming the following Lagrange solution for 
z2(i,j) 

z2(i, j) = K2α2
i β2

j                     (53) 

gives 

K2α2
i β2

j+1 = λ K2 α2
i β2

j                    (54) 
hence 

β2 = λ                       (55) 

which means that β2 must be set to be λ, which in 
turn must be a non-null value of absolute value less 
than unit. As for z3(i,j) we have that 

z3(i + 1, j) = λ  z3(i, j) + z2(i, j)           (56) 

and letting 

z3(i, j) = K3α3
i β3

j                     (57) 

which with equation (56) provides 
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K3(α3 − λ )α3
i β3

j = K2α2
i β2

j                     (58) 

since this equality must hold for all the indices i and 
j, the corresponding terms must be equal. In other 
words, α3=α2, β3=β2. Moreover, there is a solution 
as far as β3 given by the following equation has 
absolute value less than unit. 

α3 = λ + K2
K3

                             (59) 

Finally, let us tackle z1(i,j) which is given by 

z1(i + 1, j) = λ z1(i, j) + z3(i, j)           (60) 

for which, similarly to the previous cases, the 
following Lagrange solution is chosen 

z1(i, j) = K1α1
i β1

j                     (61) 

Now from (57), (60) and (61) we have 

K1(α1 − λ )α1
i β1

j = K3α3
i β3

j                     (62) 

and following the previous reasoning we conclude 
that α1=α3, β1=β3 along with 

α1 = λ + K3
K1

                            (63) 

It turns out that since β1=β3=β2 and β3 is 
established by means of equation (59), the other β’s 
are achieved in a quite natural way. On the other 
hand, for α’s, despite their equality, they must 
satisfy equations (55) and (63), which lead to 

K2
K3

= K3
K1

                            (64) 

subject to the following condition in order to yield 
an asymptotically stable solution. 

�K2
K3
� = �K3

K1
� < 1                            (65) 

which will hold as far as we can set adequately the 
initial values, which in practical terms are, if 
possible, carried out by means of a solution to (47). 
As a matter of fact, a solution to (52) is promptly 
accomplished by (53), (57) and (61) all with a 
common α as well as β followed by substitution into 
(51) not only to compute a particular solution to 
(47), but also to pursue x4(i,j) in equation (49). 
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