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Abstract:Differential Evolution (DE) is currently one of the most popular evolutionary-based global optimization
algorithms being simple to understand and implement as well as having fast convergence and robustness across a
wide range of problems. Although it is classed as an evolutionary algorithm (EA), its genetic operations are atypical
of such classes of algorithms. EAs typically perform crossover followed by mutation where both operations have
an explicitly tunable rate of operation. However in DE, the mutation operation is conducted before the crossover
operation. Moreover, although DE has a crossover rate, it does not have a mutation rate; rather it mandatorily
mutates every gene in its chromosome essentially performing a 100% rate of mutation. Following this line of
observation, we proceeded to experiment with a novel version of DE where the crossover and mutation operations
are reversed to mimic typical EAs as well as to add in an explicitly tunable mutation rate. We have found that this
simple and intuitive yet previously unexplored modification to DE is able to improve its performance, particularly
in more complex search spaces with highly non-uniform fitness landscapes. Non-parametric tests show that the
improvements are statistically significant.

Key–Words:Global Optimization; Differential Evolution; Heuristic Search; Evolutionary Optimization; Genetic
Operations.

1 Introduction
Evolutionary-based optimization methods have be-
come one of the most powerful and popular meth-
ods for solving highly non-linear and complex numer-
ical optimization problems [15, 14, 16, 17]. Storn
and Price first proposed the Differential Evolution
(DE) algorithm in 1995 [19] and has since become
one of the the most widely used evolutionary-based
global optimization algorithms by real-world practi-
tioners [3, 13]. Its popularity and widespread adoption
stems from its following advantageous characteristics
[3, 7, 9, 11]:

1. very simple to understand and implement;

2. highly competitive all-round global optimizer
that performs well across synthetic as well as
real-world problems, including non-linear con-
straints, non-convex, non-differentiable, multi-
objective, and dynamic components;

3. fast convergence speed and robust;

4. very few parameters that need to be tuned;

5. extremely scalable to large dimensions and ex-
pensive problems due to its very low computa-
tional overhead.

There is currently a very large interest in DE with
an average of 190 papers being published monthly
1. Among all of its advantageous properties, the
most commonly cited reason for its high adoption rate
among practitioners is its simplicity factor, where its
critical routines can be implemented in 4-5 lines code
[3]. This is indeed a very important factor when it
comes to biasing non-experts’ decisions in attempting
to implement an intelligent heuristic to solve their op-
timization problems. This is indeed true when one ob-
serves that the most commonly implemented DE ver-
sion when applied in solving real-world problems is
actually the original and most basic version known as
“rand/1/bin” [3, 2, 18]. Simplicity appears to be key in

1Scopus database search for articles with ti-
tle/abstract/keywords “Differential Evolution” within physical
sciences category only for the period of Jan-Feb 2015 returned
382 results.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Jason Teo, Kim-On Chin, 

Shaliza Wahab, Azali Saudi, Siti Hasnah Tanalol

E-ISSN: 2224-2856 339 Volume 12, 2017



real-world adoption of DE where more involved ver-
sions of DE, though providing superior performance,
is much less preferred compared to the basic, original
version of DE.

However, although there is a large body of work
that furthers the state-of-the-art in DE research, prac-
tically all of the recent advancements have diverged
from the original motivations of DE: a “simple yet
powerful” optimization algorithm [18]. Although
these efforts have advanced DE academically, the
numerous modifications, refashioning, tweaking and
variations have added a highly significant level of
complexity to the basic DE algorithm. As notable
from the reviews mentioned above, practically all of
the improved algorithms have added sub-routines (e.g.
self-adaptation of parameters [7]), global population
adjustments [1, 21], specialized functions (e.g. sur-
rogate models [11]) and/or more complex operators
(e.g. aggregation methods [12]). This has made DE
comparatively more difficult to understand and subse-
quently more challenging to implement.

Our work returns to the original motivations of
DE by keeping simple yet attempting to improve its
power in global optimization. Firstly, typical EAs
conduct the crossover operation before they conduct
the mutation operation; however in DE, the reverse is
true. Secondly, typical EAs have two explicitly tun-
able parameters, that is the crossover rate and the mu-
tation rate; however in DE, there is only one explic-
itly tunable parameter in the form of its crossover rate.
Thus, our study explores two basic questions:

1. Does reversing the order of genetic operations
benefit DE?

2. Does having an explicitly tunable mutation oper-
ator benefit DE?

The motivation for attempting to study these effects is
that firstly, macro-operations in the form of crossover
typically conducts larger scale rearrangements of the
genetic material of the child chromosomes before
micro-operations in the form of mutation performs
smaller scale adjustments of the crossover-ed genetic
material in the child chromosomes. We call our novel
implementation of DE which implements crossover
first with explicit mutation as XDEM. We test XDEM
using the CEC 2005 global optimization competition
suite of 25 benchmark test problems comprising uni-
modal, multimodal, expanded and hybrid composi-
tion functions and compare its results against the stan-
dard DE as well as three other commonly used global
search heuristics. A non-parametric statistical test is
conducted followed by 8 related post-hoc procedures.

This paper is presented as follows. Section 2 ex-
plains the basic DE and current methods of augment-

ing DE. Section 3 presents our simple approach to
XDEM. Section 4 provides the experimental results
that compares XDEM to the basic DE as well as three
other heuristics. Finally, some conclusions and future
avenues of exploration are given in Section 5.

2 Background
The basic DE algorithm is a population-based, real-
valued, stochastic global optimizer that conducts the
following operations in the following order after ini-
tialization: 1. mutation; 2. crossover; 3. selection;
4. repeat until termination. It also requires three user-
defined parameters to be set prior to the optimization
run: 1. F: scaling factor; 2. CR: crossover rate; and
3. NP: population size. The reader may refer to [18]
for a detailed treatment of DE. In brief, given a mini-
mization problemf :

f(x)∗ = min
xi∈Ω

f(xi) (1)

wherexi is a vector withD dimensions,x∗ is the
global solution andΩ ⊆ RD, DE will attempt to op-
timize the vector of variablesx = {x1, x2, ..., xD},
wherexG

i = {xG
i,1, x

G
i.2, ..., x

G
i,D} represents theith in-

dividual in the population of solutions of theGth gen-
eration of optimization iteration.

Importantly, a new trial solution is generated in
the following order:

(1) Mutation: for each parentxG
i , a new vector is

created as follows:

vG+1
i = xG

r1 + F · (xG
r2 − xG

r3), (2)

wherer1, r2, andr3 are randomly chosen from
[1, NP ] andi 6= r1 6= r2 6= r3.

(2) Crossover: for each parentxG
i , a trial solution is

created as follows:

uG+1
i,j =

{
vG+1
i,j if Rj ≤ CR or j = jrand.

xG
i,j otherwise.

(3)

whereRj is a uniform random[0, 1] andjrand is
random integer[1, D].

(3) Selection: the new trial solution competes with
the parent for survival to the next optimization
iteration:

xG+1
i =

{
uG+1

i if f(uG+1
i ) ≤ f(xG

i ).
xG

i otherwise.
(4)
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Next, we present the proposed modification to the
basic DE algorithm.

3 XDEM: The Crossover-First Dif-
ferential Evolution Algorithm with
Explicit Mutation

Here we explain the simple proposed modification to
the basic DE algorithm presented above. The only dif-
ference compared to DE is the reversal in the order of
operations between mutation and crossover in the gen-
eration of the trial solution as well as the introduction
of an explicit mutation rate parameter.

In XDEM, a new trial solution is generated in the
following order:

(1) Crossover: for each parentxG
i , a new vector is

created as follows:

vG+1
i,j =

{
xG

r1,j if Rj ≤ CR or j = jrand.

xG
i,j otherwise.

(5)

where where r1 is randomly chosen from
[1, NP ], Rj is a uniform random[0, 1], jrand is
random integer[1, D] andi 6= r1.

(2) Mutation: for each parentxG
i , a trial solution is

created as follows:

uG+1
i,j =

{
xG

R2,j + F · (xG
R3,j − xG

R4,j) if Rj ≤ MR.

vG+1
i,j otherwise.

(6)

wherer2, r3, andr4 are randomly chosen from
[1, NP ], Rj is a uniform random[0, 1] andi 6=
r1 6= r2 6= r3 6= r4. MR denotes the explicit
mutation rate parameter that is tunable.

(3) Selection: the new trial solution competes with
the parent for survival to the next optimization
iteration:

xG+1
i =

{
uG+1

i , if f(uG+1
i ) ≤ f(xG

i ).
xG

i , otherwise.
(7)

In this proposed approach, XDEM functions
more conventionally as an evolutionary optimization
algorithm by first crossing-over the target parent vec-
tor with a randomly chosen individual from the exist-
ing population in Eq. 5. It then takes this crossover-ed

vector and mutates it using the standard DE mutation
operator (as described in Section 2 by Eq. 3) whereby
a scaled differential between two randomly chosen in-
dividuals are added to a third randomly chosen indi-
vidual, which is implemented as described in Eq. 6
to create a new trial solution. In the mutation opera-
tion, there is now an explicitly tunable mutation rate
parameter which we denote as MR. The survivor se-
lection method remains unchanged.

4 Methodology
In order to benchmark the performance of XDEM, we
have chosen the CEC 2005 global optimization com-
petition suite of 25 benchmark test problems [20]. It
contains 25 minimization problems with diverse char-
acteristics ranging from simple unimodal functions
(F1-F5) to straightforward multimodal functions (F6-
F12) as well as expanded functions (F13 & F14) to
the highly complex and non-uniform hybrid compo-
sition functions (F15-F25). XDEM is run three times
separately to test the effects of setting the new muta-
tion rate parameter at low, medium and high settings
of 01, 0.5 and 0.9 (denoted as XDEM1, XDEM5 and
XDEM9) respectively.

Summarized below are the experimental settings
used in this study, which is similar to those of [4]:

• Optimization parameters: D = 10, repeats =
50, termination =f(x) < 10−8 or G = 100, 000.

• DE: rand/1/bin, NP=100, CR=0.9, F=0.5.

• XDEM : rand/1/bin, NP=100, CR=0.9, F=0.5,
MR=0.1,0.5,0.9.

• Classic Particle Swarm Optimization (PSO)
[10]: c1 = 2.8, c2 = 1.3, and w from 0.9 to
0.4, individuals = 100.

• CHC [5]: BLX-α crossover operator,α = 0.5,
individuals = 50.

• Steady-State Genetic Algorithm [6, 8]:BLX-α
crossover operator, negative assortative mating,
BGA mutation,α = 0.5, individuals = 50.

5 Results
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Table1: Average Best Solutions Found Over 50 Repeated Runs
Data-set XDEM1 XDEM5 XDEM9 DE-Bin PSO CHC SSGA

F1 3.47E+01 0.00E+00 0.00E+00 0.00E+00 1.23E-04 2.46E+00 0.00E+00
F2 7.70E+02 0.00E+00 8.72E-05 0.00E+00 2.59E-02 1.18E+02 8.72E-05
F3 3.30E+06 3.40E+05 7.95E+04 0.00E+00 5.17E+04 2.70E+05 7.95E+04
F4 7.31E+02 0.00E+00 2.59E-03 0.00E+00 2.49E+00 9.19E+01 2.59E-03
F5 8.07E+02 6.07E+01 1.34E+02 1.10E-04 4.10E+02 2.64E+02 1.34E+02
F6 7.21E+05 7.47E+00 6.17E+00 2.40E-01 7.31E+02 1.42E+06 6.17E+00
F7 1.27E+02 3.98E-02 1.27E+03 3.46E-01 2.68E+01 1.27E+03 1.27E+03
F8 2.06E+01 2.04E+01 2.04E+01 2.03E+01 2.04E+01 2.03E+01 2.04E+01
F9 5.27E+00 0.00E+00 0.00E+00 1.88E+01 1.44E+01 5.89E+00 0.00E+00
F10 2.91E+01 1.60E+01 1.71E+01 2.64E+01 1.40E+01 7.12E+00 1.71E+01
F11 9.65E+00 8.98E+00 3.26E+00 8.82E+00 5.59E+00 1.60E+00 3.26E+00
F12 2.17E+03 3.76E+02 2.79E+02 9.47E+03 6.36E+02 7.06E+02 2.79E+02
F13 1.22E+00 6.69E-01 6.71E+01 2.02E+00 1.50E+00 8.30E+01 6.71E+01
F14 3.84E+00 3.53E+00 2.26E+00 3.61E+00 3.30E+00 2.07E+00 2.26E+00
F15 2.21E+02 2.55E+02 2.92E+02 3.51E+02 3.40E+02 2.75E+02 2.92E+02
F16 1.59E+02 1.10E+02 1.05E+02 1.48E+02 1.33E+02 9.73E+01 1.05E+02
F17 1.58E+02 1.33E+02 1.19E+02 1.64E+02 1.50E+02 1.05E+02 1.19E+02
F18 9.13E+02 6.36E+02 8.06E+02 8.26E+02 8.51E+02 8.80E+02 8.06E+02
F19 9.19E+02 6.31E+02 8.90E+02 8.26E+02 8.50E+02 8.80E+02 8.90E+02
F20 9.16E+02 6.25E+02 8.89E+02 8.28E+02 8.51E+02 8.96E+02 8.89E+02
F21 8.73E+02 6.42E+02 8.52E+02 1.02E+03 9.14E+02 8.16E+02 8.52E+02
F22 8.25E+02 7.72E+02 7.52E+02 6.07E+02 8.07E+02 7.74E+02 7.52E+02
F23 9.90E+02 7.27E+02 1.00E+03 1.09E+03 1.03E+03 1.08E+03 1.00E+03
F24 4.36E+02 4.09E+02 2.36E+02 4.08E+02 4.12E+02 2.96E+02 2.36E+02
F25 1.39E+03 4.09E+02 1.75E+03 4.08E+02 5.10E+02 1.76E+03 1.75E+03
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Table 1 shows the average best solution found by
all the algorithms over 50 repeated trials over the 25
benchmark test problems. The best results obtained
for each problem is highlighted in bold. XDEM5 has
the highest number of best results with 11 followed
by DE with 9, CHC with 6, XDEM9 and SSG with
3 each and XDEM1 with 2. PSO was not able to ob-
tain any best solution in this particular test setup. It
is interesting to note that although DE came second
with 9 best results, 5 of these came from the sim-
plest class of problems comprising unimodal func-
tions, two from the next simplest class of problems
comprising multimodal functions with only two com-
ing from the most difficult class of hybrid composition
functions. From these results, it appears that having
the crossover-first operation in the novel XDEM algo-
rithm with a medium mutation rate setting (XDEM5)
is able to improve DE’s performance, particularly in
the hardest class of problems which are the expanded
(F13 & F14) and hybrid composition (F15-F25) func-
tions. Inclusion of the tunable mutation rate parame-
ter was also beneficial but only in certain conditions
such as when it was set to a low setting in XDEM1,
it was able to obtain the best results in F12 and F15,
and then on the high setting in XDEM9 in F1, F9 and
F24. Combining all the runs of the XDEM with mu-
tation rates would yield a total 14 best results against
the original DE of only 9. Therefore, these results
do appear to support an initial positive answer to both
questions posed earlier in the introduction section of
this study, that is the crossover-first order of genetic
operation and tunable mutation rates can benefit DE.
Next, some statistical procedures will be conducted to
test the significance of the differences obtained above.

Table 2: Aligned Friedman Average Rankings (F1-
F25)

Algorithm Ranking
XDEM5 54.84
XDEM9 80.70
SSGA 80.70
DE-Bin 85.42

PSO 90.16
CHC 95.66

XDEM1 128.52

The Aligned Friedman procedure [4]was con-
ducted on all the algorithms and the average rankings
are shown in Table 2. The best ranked algorithm was
XDEM5, followed by XDEM9 and SSGA. The worst

ranked algorithm was XDEM1, which is an indication
that although a low mutation rate setting was benefi-
cial in a limited number of cases, it was not ideal in
the majority of the problems. The standard DE algo-
rithm was ranked exactly in the middle of the pack but
importantly, the two of the novel XDEM algorithms
were ranked better than DE.

Next, we proceeded to conduct a non-parametric
statistical test on the results obtained using the
Aligned Friedman procedure. The statistics obtained
are as follows:

• Aligned Friedman statistic (distributed accord-
ing to chi-square with 6 degrees of freedom:
21.036870. P-value computed by Aligned Fried-
man Test: 0.001806.

As the test statistic shows statistically significant dif-
ferences in the results obtained, we then proceeded to
conduct 8 post-hoc test based on the results obtained
from the Aligned Friedman procedure, namely the
Bonferroni-Dunn, Holm, Hochberg, Hommel, Hol-
land, Rom, Finner and Li post-hoc tests [4].
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Table3: Adjustedp-values (F1-F25) (ALIGNED FRIEDMAN)
i algorithm unadjustedp pBonf pHolm pHoch pHomm

1 XDEM1 2.720379E-7 1.632227E − 6† 1.632227E − 6† 1.632227E − 6† 1.632227E − 6†
2 CHC 0.004390 0.026340† 0.021950† 0.021950† 0.021950†
3 PSO 0.013706 0.082241 0.054827 0.054827 0.054827
4 DE-Bin 0.032837 0.197024 0.098512 0.071125 0.071125
5 XDEM9 0.0711256 0.426754 0.142251 0.071125 0.071125
6 SSGA 0.071125 0.426754 0.142251 0.071125 0.071125

Table4: Adjustedp-values (F1-F25) (ALIGNED FRIEDMAN)
i algorithm unadjustedp pHoll pRom pFinn pLi

1 XDEM1 2.7203795E-7 1.632226E − 6† 1.551990E − 6† 1.632226E − 6† 2.928683E − 7†
2 CHC 0.004390 0.021758† 0.020874† 0.013112† 0.004704†
3 PSO 0.013706 0.053710 0.052279 0.027226† 0.014541†
4 DE-Bin 0.032837 0.095312 0.071125 0.048849† 0.034144†
5 XDEM9 0.071125 0.137192 0.071125 0.084731 0.071125
6 SSGA 0.071125 0.137192 0.071125 0.084731 0.071125

Table5: Adjustedp-values (F13-F25) (ALIGNED FRIEDMAN)
i algorithm unadjustedp pBonf pHolm pHoch pHomm

1 PSO 0.003168 0.012673† 0.012673† 0.012673† 0.010706†
2 CHC 0.005353 0.021413† 0.016060† 0.016060† 0.016060†
3 DE-Bin 0.012797 0.051190 0.025595† 0.018546† 0.018546†
4 SSGA 0.018546 0.074187 0.025595† 0.018546† 0.018546†

Table6: Adjustedp-values (F13-F25) (ALIGNED FRIEDMAN)
i algorithm unadjustedp pHoll pRom pFinn pLi

1 PSO 0.003168 0.012613† 0.012084† 0.012613† 0.003217†
2 CHC 0.005353 0.015974† 0.016060† 0.012613† 0.005424†
3 DE-Bin 0.012797 0.025431† 0.018546† 0.017026† 0.012871†
4 SSGA 0.018546 0.025431† 0.018546† 0.018546† 0.018546†
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Taking XDEM5 as the control, a 1xN post-hoc
comparison is conducted among the algorithms. The
unadjusted p-values and p-values adjusted according
to the eight post-hoc procedures based on the Aligned
Friedman test are shown in Tables 3 and 4. Statisti-
cally significant differences at theα < 0.05 level are
denoted with†. Over the 25 test problems, XDEM5
is only statistically better than CHC and XDEM9 on
all tests and better than PSO and DE-Bin using the
more powerful Finner and Li post-hoc tests. In or-
der to observe the significance of the apparently better
performance of XDEM5 in the more difficult classes
of problems (i.e. expanded and hybrid composition
functions), we re-conduct the Aligned Friedman test
using only the subset of results obtained from F13-
F25. The results are presented below.

Tables 5 and 6 show the post-hoc tests conducted
using XDEM5 as the control again and this time com-
paring against non-XDEM runs only on the subset
of F13-F25 test problems representing the two most
challenging classes of problems in the test suite. All
of the post-hoc tests show that XDEM5’s superior per-
formance was statistically significant except for the
Bonferroni-Dunn test against DE-Bin and SSGA. As
such, the raw average results obtained supported by
the non-parametric statistical testing conducted shows
a strong indication that reversing the crossover and
mutation operations in DE in combination with a suit-
ably set mutation rate can be beneficial for the stan-
dard DE algorithm, particularly for the more difficult
classes of problems in which the standard DE typi-
cally displays inferior performance.

6 Conclusion

In this study, we have reversed the order of the muta-
tion and crossover operations in the standard DE algo-
rithm to design a novel DE algorithm called XDEM
where crossover is conducted first before mutation
and also to introduce an explicitly tunable mutation
rate parameter. Testing against the standard DE al-
gorithm as well as three other commonly used global
optimization heuristics over a set of 25 benchmark test
problems showed that the novel XDEM algorithm was
the top-ranked algorithm among all the algorithms
tested and that XDEM was able to improve DE’s per-
formance in solving the most difficult classes of test
problems.

Observing that having a suitable mutation rate in-
fluences the performance of XDEM, our next line of

investigation will be to adapt the new mutation rate
operator. It would also be informative to investigate
the performance of XDEM when solving problems
with higher dimensions as well as to investigate its
suitability when porting to multi-objective optimiza-
tion problems.
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