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Abstract: This paper studies the problems of stability and stabilization of positive general 2D delayed systems.
Necessary and sufficient conditions are proposed for asymptotic stability of positive 2D discrete delayed system.
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1 Introduction

In recent years, two-dimensional (2D) state-delayed
systems have attracted significant attention of many
researchers see for example [1, 2, 3, 4, 5]. Models of
2D delayed systems are derived from the most pop-
ular 2D models presented by Roesser [6], Fornasini-
Marchesini [7] and Kurek [8]. The interest in 2D de-
layed systems stems from the fact that time delays cor-
respond to transportation time or computation time,
encountered for instance during the processing of vi-
sual image which is intrinsically 2D. Moreover, 2D
systems for which the states take only non-negative
values, when starting from any non-negative boundary
condition are called positive 2D systems. These sys-
tems emerge naturally in many practical areas such as
iteration learning control [9, 10], distributed and par-
allel computing [11], analysis of iterative algorithms
[12, 13], signal filtering [14], digital image process-
ing [15], river pollution and self-purification process
[16]. The stability problem has already been studied
in [17, 18, 19, 20] for positive 2D systems without
delays and in [1, 3, 4, 21, 22] for positive 2D sys-
tems with delays. We stress out that the existing re-
sults [1, 2, 23, 24, 25] did not consider the problem
of designing controllers for general 2D delayed sys-
tem, such that the 2D closed-loop system is positive
and stable. Finally, motivated by all these, it becomes
attractive to study 2D state-delayed systems.

In this paper, we present an extension of our re-
sults presented in [2]. Then, we focus on stability and

stabilization of positive 2D delayed system. The study
is carried out by using a change of variable method
through augmentation of states. This approach leads
to a general 2D system without delays but with higher
dimension. Thus, by analyzing the positivity and the
stability of such augmented general 2D system, we
present checkable conditions for the positivity of gen-
eral 2D delayed system. Also, we establish delays-
dependent and delays-independent necessary and suf-
ficient conditions for the asymptotic stability of posi-
tive 2D delayed system. Furthermore, based on these
results, we will develop conditions for the existence of
stabilizing controllers (memory and memoryless) with
some existing results as special case. All the obtained
results are formulated in terms of linear programming
(LP) conditions. An advantage of our method is the
existence of efficient numerical algorithms to solve
them.

This paper is organized as follows. In section
2 basic definition and preliminary results concerning
positive general 2D system without delays are given.
In section 3 checkable conditions for the positivity of
general 2D delayed system are given, and also, neces-
sary and sufficient conditions concerning the asymp-
totic stability of positive general 2D delayed system
are presented. Section 4 studies the synthesis prob-
lem, then memory, non-negative memory and mem-
oryless controllers are established. Finally, section 5
gives some numerical examples to illustrate the pro-
posed results.

The following notations will be used. Z+ denotes
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the set of non-negative integers, Rn×m is the set of
n×m real matrices and Rn×m

+ denotes the set of real
n×m matrices with non-negative entries. AT denotes
the transpose of the real matrix A. ρ(M) denotes the
spectral radius of a matrix M ∈ Rn×n and is defined
as: ρ(M) = max(|λ1|, . . . , |λn|). vec(E) denotes the
vector formed by the columns of a given matrix E.
diag(v) denotes a diagonal matrix with diagonal com-
ponents are the elements of v. 1n is a vector of n ele-
ments equal to 1. 0n×p is a matrix of dimension n× p
where all its elements equal to 0 and finally, the n×n
identity matrix will be denoted by In.

2 Preliminaries results

Consider the free general 2D system [7, 8] described
by the following

xi+1, j+1 = A0xi, j +A1xi+1, j +A2xi, j+1 (1)

with x(i, j) ∈ Rn is the system’s state vector at the
point (i, j), A0, A1 and A2 are known square matrices
with dimension n.

The boundary conditions for (1) are defined by{
xi,0 = xk0, ∀i ∈ Z+,
x0, j = x0t , ∀ j ∈ Z+,

(2)

where xk0 and x0t are given sequences of vectors.

Definition 1 The general 2D system (1) is called a
positive general 2D system if all the trajectories gen-
erated by (1), with the non-negative boundary condi-
tions (2) remain non-negative.

Definition 2 A real matrix M is called a non-negative
matrix

(
M ∈ Rn×q

+

)
if all its elements are non-

negative mi j ≥ 0, i = 1, . . . ,n, j = 1, . . . ,q.

According to Definition 1, the following result
provides checkable conditions for the positivity of the
general 2D system (1), see for example [26].

Proposition 1 The general 2D system (1) is positive
if and only if A0, A1 and A2 are non-negative matrices.

Next, necessary and sufficient conditions con-
cerning the asymptotic stability of the positive 2D sys-
tem (1) are given.

Definition 3 [26] A positive 2D system described by
(1) is called asymptotically stable if the state evolution
corresponding to any set of the non-negative bound-
ary conditions (2) asymptotically tends to zero, i.e.,

lim
i, j→∞

xi, j = 0. (3)

Theorem 1 [24, 2] Assume that the general 2D sys-
tem (1) is positive. Then the following statements are
equivalent

(i) The 2D system (1) is asymptotically stable.

(ii) ρ(A0 +A1 +A2)< 1.

(iii) There exist a vector λ ∈ Rn such that{
(A0 +A1 +A2− In)λ < 0,
λ > 0.

(4)

3 Positive general 2D delayed system

Consider a general 2D delayed system represented by
the following 2D state-space system with q delays

xi+1, j+1 =
q

∑
t=0

(
A0

t xi−t, j−t +A1
t xi+1−t, j−t +A2

t xi−t, j+1−t
)
,

(5)
where i, j∈Z+, xi, j ∈Rn is the state vector at the point
(i, j), A1

t , A2
t , A3

t , t = 0,1, . . . ,q, are known constant
matrices with compatible dimensions and q denote the
number of delay terms in each direction.

In what follows, we will use the method of change
of variables in order to obtain checkable conditions for
the positivity and the asymptotic stability of the 2D
delayed system (5). Thus, by using the new variable

x̃i, j =


xi, j

xi−1, j−1
...

xi−q, j−q

 ∈ RN where N = (q+1)n, (6)

the 2D system (5) with q delays can be reduced to the
following general 2D system without delays

x̃i+1, j+1 = Ã0x̃i, j + Ã1x̃i+1, j + Ã2x̃i, j+1 (7)

with

Ã0 =

[
A0

0 A0
1 . . . A0

q−1 A0
q

Iq∗n 0q∗n×n

]
,

Ã1 =

[
A1

0 A1
1 . . . A1

q−1 A1
q

0q∗n×N∗n

]
,

Ã2 =

[
A2

0 A2
1 . . . A2

q−1 A2
q

0q∗n×N∗n

]
.

(8)

Therefore, the dimension of the new general 2D
system (7) is n(q+1).

Applying to the general 2D system (7) Proposi-
tion 1, we obtain the following result concerning the
positivity of the 2D delayed system (5).
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Proposition 2 The general 2D system with q delays
(5) is positive if and only if Ã0, Ã1 and Ã2 are non-
negative matrices, or equivalently, the matrices A0

t , A1
t

and A2
t are non-negative ∀t = 0,1, . . . ,q.

Also, by considering the new general 2D system
(7), we are now in place to state the following result
concerning the asymptotic stability of the positive 2D
delayed system (5). Then, from Theorem 1 applied to
the new general 2D system (7) we have the following
result.

Theorem 2 The positive 2D delayed system (5) is
asymptotically stable if and only if one of the follow-
ing equivalent conditions holds.

(i) The positive general 2D system (7) is asymptoti-
cally stable.

(ii) ρ(Ã0 + Ã1 + Ã2)< 1.

(iii) There exist a vector λ ∈ Rn∗(q+1) such that{
(Ã0 + Ã1 + Ã2− In∗(q+1))λ < 0
λ > 0.

(9)

In the following, from Theorem 2, we present
equivalent necessary and sufficient conditions for the
asymptotic stability of the positive general 2D delayed
system (5).

Lemma 1 The positive 2D delayed system (5) is
asymptotically stable if and only if the following LP
problem in the variables λ0, . . ., λq ∈ Rn is feasible.

(A0
0 +A1

0 +A2
0− In)λ0 +

q

∑
t=1

(A0
t +A1

t +A2
t )λt < 0,

λt < λt+1, t = 0, . . . ,q−1,
λt > 0, t = 0, . . . ,q.

(10)

Proof 1 To show this, we take into account that the
positive general 2D delayed system (5) is asymptoti-
cally stable. Then, by using Theorem 2, we have that
the positive 2D delayed system (5) is asymptotically
stable if and only if there exists λ ∈Rn∗(q+1) such that
the LP conditions (9) holds. Now, by using the ex-
pression of Ã0, Ã1, Ã2 given in (8) and by defining
λ =

[
λ0 . . . λq

]T , with λi ∈ Rn, i = 0, . . . ,q, we
obtain

[
A0

0 +A1
0 +A2

0− In . . . A0
q +A1

q +A2
q
] λ0

...
λq

< 0,


In −In 0n×n . . . 0n×n

0n×n
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0n×n
0n×n . . . 0n×n In −In


 λ0

...
λq

< 0,

λt > 0, t = 0, . . . ,q,

the above inequalities are effectively the same in-
equalities in the LP constraints (10). Finally, the re-
verse implication can be trivially obtained by the sim-
ple matrix manipulation as shown above. Thus, the
proof is complete.

Remark 1 Each of the LP conditions (9) and (10)
present a delay dependent constraints for the asymp-
totic stability of the positive general 2D delayed sys-
tem (5). These LP conditions present an computa-
tional disadvantage in the case of matrices A0

t , A1
t , A2

t ,
t = 0, . . . ,q of high dimensions, and also in the case of
general 2D systems with large time delays.

Next, we state our main result.

Theorem 3 The positive 2D system (5) with q delays
is asymptotically stable if and only if the following LP
problem in the variable λ0 ∈ Rn is feasible.

(
q

∑
t=0

(A0
t +A1

t +A2
t )− In

)
λ0 < 0,

λ0 > 0.
(11)

Proof 2 By using Lemma 1, we have that the posi-
tive 2D delayed system (5) is asymptotically stable
if there exists λ0, . . ., λq ∈ Rn such that the LP con-
ditions (10) holds. Now, by considering the non-
negativity of the matrices At

0, At
1 and At

2 ∀t = 0, . . . ,q
and the second inequality in the LP conditions (10)
λt < λt+1, t = 0, . . . ,q−1, which is equivalent to λ0 <
λt , ∀t = 1, . . . ,q, then, we give (A0

t + A1
t + A2

t )λ0 <
(A0

t +A1
t +A2

t )λt , ∀t = 1, . . . ,q, which leads to

q

∑
t=1

(A0
t +A1

t +A2
t )λ0 <

q

∑
t=1

(A0
t +A1

t +A2
t )λt

Thus, by adding (A0
0+A1

0+A2
0− In)λ0 to both sides of

the above inequality, we have(
q

∑
t=0

(A0
t +A1

t +A2
t )− In

)
λ0 < 0.

The reverse implication can be trivially obtained.
Thus, the proof is complete.

Remark 2 Theorem 3 provide that the stability con-
ditions (11) of the positive general 2D delayed system
(5) are delays-independent.

For A0
t = 0, ∀t = 0, . . . ,q and from Theorem 3 we

have the following Corollary.
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Corollary 1 The positive 2D Fomasini-Marchesini
state-space model with q delays is asymptotically sta-
ble if and only if the following LP problem in the vari-
able λ ∈ Rn is feasible.

(
q

∑
t=0

(A1
t +A2

t )− In

)
λ < 0,

λ > 0.
(12)

4 Stabilization of general 2D delayed
system

Consider the following forced general 2D linear sys-
tem with q delays described by

xi+1, j+1 =
q

∑
t=0

(
A0

t xi−t, j−t +A1
t xi+1−t, j−t +A2

t xi−t, j+1−t
)

+B0ui, j +B1ui+1, j +B2ui, j+1,
(13)

where i, j ∈ Z+, xi, j ∈ Rn and ui, j ∈ Rm are the state
vector and the control input at the point (i, j) respec-
tively. The matrices A0

t , A1
t , A2

t , t = 0,1, . . . ,q, B0, B1

and B2 are known matrices.

4.1 Memory state feedback controller

The problem addressed in this section is that of de-
signing a feedback controller of the form

ui, j =
q

∑
t=0

Ktxi−t, j−t . (14)

for which 2D closed-loop system is positive and sta-
ble.

Applying the control (14) to the forced general
2D delayed system (13) yields the 2D closed-loop sys-
tem

xi+1, j+1 =
q

∑
t=0

(
(A0

t +B0Kt)xi−t, j−t +(A1
t +B1Kt)xi+1−t, j−t

+(A2
t +B2Kt)xi−t, j+1−t

)
.

(15)
In the following, necessary and sufficient condi-

tions are developed for the positivity and the asymp-
totic stability of the 2D closed-loop system (15).

Theorem 4 The 2D closed-loop system (15) is posi-
tive and asymptotically stable if and only if the fol-
lowing LP problem in the variables λ ∈ Rn, Z0, . . .,
Zq ∈ Rm×n is feasible.

(
q

∑
t=0

(A0
t +A1

t +A2
t )− In

)
λ +(B0 +B1 +B2)

(
q

∑
t=0

Zt

)
1n < 0,

A0
t diag(λ )+B0Zt ≥ 0, t = 0, . . . ,q,

A1
t diag(λ )+B1Zt ≥ 0, t = 0, . . . ,q,

A2
t diag(λ )+B2Zt ≥ 0, t = 0, . . . ,q,

λ > 0.
(16)

Moreover, the gain matrices K0, . . . and Kq satisfying
(15) can be computed as follows:

Kt = Ztdiag(λ )−1, t = 0, . . . ,q. (17)

where λ , Z0, . . . and Zq are any feasible solution to
the above LP problem (16).

Proof 3 Assume that the 2D closed-loop system (15)
is positive and asymptotically stable, we want to show
that the conditions (16) holds. By using Theorem 3,
the positive 2D closed-loop system (15) is asymptoti-
cally stable if and only if there exist λ > 0 such that

(
q

∑
t=0

(A0
t +B0Kt +A1

t +B1Kt +A2
t +B2Kt)− In)λ < 0.

Now, we define Kt = Ztdiag(λ )−1, t = 0, . . ., q. Thus,
the above inequalities are effectively the first and
the fifth inequalities in the LP constraints (16). The
others three inequalities in the LP constraints (16),
are obtained as follows. By using Proposition 2 the
2D closed-loop system (15) is positive if and only if
the matrices A0

t + B0Kt , A1
t + B1Kt , A2

t + B2Kt are
non-negative ∀t = 0, . . ., q, or equivalently, if and only
if (A0

t +B0Kt)diag(λt)≥ 0, (A1
t +B1Kt)diag(λt)≥ 0,

(A2
t + B2Kt)diag(λt) ≥ 0, ∀t = 0, . . ., q. Then, by

recalling Kt = Ztdiag(λ )−1, t = 0, . . ., q, we see that
the above inequalities are equivalent to the others
three inequalities in the LP constraints (16). The
reverse implication can be trivially obtained by a
simple matrix manipulation as shown above.

4.2 Constrained controller

The problem addressed in the following is designing a
nonnegative memory state feedback controller of the
form

ui, j =
q

∑
t=0

Ktxi−t, j−t ≥ 0, (18)

for which the 2D closed-loop system (15) is positive
and asymptotically stable.

Now, we state our result developed for the exis-
tence of a non-negative controller ensuring the posi-
tivity and the asymptotic stability of the 2D closed-
loop system (15).

Theorem 5 There exist a non-negative controller of
the form (18) such that the 2D closed-loop system (15)
is positive and asymptotically stable if and only if the
following LP problem in the variables λ ∈ Rn, Z0 ∈
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Rm×n, . . ., Zq is feasible.

(
q

∑
t=0

(A0
t +A1

t +A2
t )− In

)
λ +(B0 +B1 +B2)

(
q

∑
t=0

Zt

)
1n < 0,

A0
t diag(λ )+B0Zt ≥ 0, t = 0, . . . ,q,

A1
t diag(λ )+B1Zt ≥ 0, t = 0, . . . ,q,

A2
t diag(λ )+B2Zt ≥ 0, t = 0, . . . ,q,

Zt ≥ 0, t = 0, . . . ,q,
λ > 0.

(19)
Moreover, the gain matrices K0,. . . and Kq satisfying
(15) can be computed as follows:

Kt = Ztdiag(λ )−1, t = 0, . . . ,q. (20)

where λ , Z0, . . . and Zq are any feasible solution to
the above LP problem (19).

Proof 4 Note that the control law (18) is non-negative
if and only if K0, . . . and Kq are non-negative ma-
trices. Then, by using the change of variables Kt =
Ztdiag(λt)

−1, t = 1, . . . ,q, we have necessarily that
Z0, . . . and Zq are non-negative matrices. To complete
this proof, we can follow the same line of arguments
as in the Proof of Theorem 4.

4.3 Memoryless controller

In the case when we do not have access to the delayed
states or when the delays are unknown, a memoryless
state feedback controller of the form

ui, j = Kxi, j (21)

can be designed for system (13). In this case, the
matrices A0

t , A1
t and A2

t ∀t = 1, . . . ,q must be non-
negative.

The following result can be derived from Theo-
rem 4 by taking K = K0 and Kt = 0, ∀i = 1, . . . ,q

Theorem 6 Assume that the matrices A0
t , A1

t and A2
t

are non-negative ∀t = 1, . . . ,q. Then the general 2D
delayed system (13) with the memoryless controller
(21) is positive and asymptotically if and only if the
following LP problem in the variables λ ∈Rn and Z ∈
Rm×n is feasible.

(
q

∑
t=0

(A0
t +A1

t +A2
t )− In

)
λ +(B0 +B1 +B2)Z1n < 0,

A0
0diag(λ )+B0Z ≥ 0,

A1
0diag(λ )+B1Z ≥ 0,

A2
0diag(λ )+B2Z ≥ 0,

λ > 0.
(22)

Moreover, the gain matrix K can be computed as fol-
lows:

K = Zdiag(λ )−1, (23)

where λ and Z are any feasible solution to the above
LP problem (22).

Remark 3 By taking A0
k = 0n×n and B0 = 0n×m, the

system described by (13) is the well-known Fornasini-
Marchesini Second model [7] and it can be stabiliz-
ing by using Theorem 4 for a memory state feedback
control, Theorem 5 for a non-negative memory state
feedback control or Theorem 6 for a memoryless state
feedback control.

4.4 Standard LP Formulation

Previously, we have seen that the provided stabiliza-
tion results are formulated as linear matrix constraints.
Specifically, the LP problems (16), (19) and (22) are
not in the standard form because they involve ma-
trix variables. We would like to show that these LP’s
can be re-expressed in the well-known standard form,
which involves vector constraints with a single un-
known vector variable. This can be done by using the
Kronecker product and vec operation.

In what follows, we propose a standard LP form
for the problem (22) q

∑
t=0

(A0
t +A1

t +A2
t )− In 1T

n ⊗ (B0 +B1 +B2)

−In 0n×(n∗m)

w < 0,


−

q

∑
t=0

vivT
i ⊗A0

0vi −In⊗B0

−
q

∑
t=0

vivT
i ⊗A1

0vi −In⊗B1

−
q

∑
t=0

vivT
i ⊗A2

0vi −In⊗B2


w≤ 0,

(24)
where the new vector variable w is defined as

w =
[

λ vec(Z)
]T (25)

Finally, we would like to mention that these
LP programs can be solved, for example, by using
linprog function in Matlab, or by using Yalmip
software.

5 Numerical Examples

The following examples are given for illustrating the
proposed control synthesis design.

5.1 Example 1: stability

Using Theorem 3, we want to check the asymptotic
stability of a positive general 2D system of the form
(5) with q = 2 delays and the following matrices

A0
0 =

[
0.1 0.1
0 0.2

]
, A1

0 =

[
0.1 0.2
0 0.2

]
,
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A2
0 =

[
0 0.2
0 0.2

]
, A0

1 =

[
0 0.1
0 0

]
,

A1
1 =

[
0.2 0.1
0 0.1

]
, A2

1 =

[
0 0.2
0 0.1

]
,

A0
2 =

[
0 0.5
0 0

]
, A1

2 =

[
0.1 0
0 0

]
,

A2
2 =

[
0 0

0.02 0.1

]
.

By using Theorem 3, or equivalently, by solving the
LP problem (11), one feasible solution gives

λ =

[
110.5354
22.4027

]
> 0.

Then, the LP conditions (11) of Theorem 3 are
satisfied and the above positive general 2D system
with q = 2 delays is asymptotically stable.

5.2 Example 2: memory controller

Consider a 2D general model with q = 2 delays de-
scribed by (13) with the following matrices:

A0
0 =

[
0.1 0.2
0.5 0.3

]
, A1

0 =

[
0.2 0.1
0.3 0.4

]
,

A2
0 =

[
0.15 0.3
0.25 0.3

]
, A0

1 =

[
0.1 0.1
0.1 0

]
,

A1
1 =

[
0.2 0
0 0.1

]
, A2

1 =

[
0 0
0 0

]
,

A0
2 =

[
0 0.03
0 0

]
, A1

2 =

[
0.14 0

0 0

]
,

A2
2 =

[
0 0
0 0.1

]
, B0 =

[
0.2 0.3
0.1 0.4

]
,

B1 =

[
0.2 0.1
0.4 0.9

]
, B2 =

[
0.4 0.5
0.4 0.3

]
.

Based on Theorem 4, we have designed a memory
controller to stabilize the 2D system (13) described
with the above matrices. Thus, by solving the LP
problem (16) we obtained the following feasible so-
lution

λ =

[
222.6013
322.8234

]
, Z1 =

[
2.7759 4.4153
1.6741 1.0953

]
,

Z0 =

[
14.5757 −115.1878
−76.5841 −90.8803

]
,

Z2 =

[
−4.3315 −2.8975
10.3211 6.4989

]
.

Then, the following gain matrices can be calcu-
lated

K0 =

[
0.0655 −0.3568
−0.3440 −0.2815

]
,

K1 =

[
0.0125 0.0137
0.0075 0.0034

]
,

K2 =

[
−0.0195 −0.0090
0.0464 0.0201

]
,

which guarantee the positivity and the asymptotic sta-
bility of the 2D closed-loop system.

6 Conclusion

Necessary and sufficient conditions are proposed for
the asymptotic stability of positive general 2D delayed
system. Also, conditions for the existence of stabi-
lizing controllers for general 2D delayed system are
stated. All the obtained results have been developed
in terms of linear programming conditions, which can
be expressed in standard LP form. The obtained re-
sults can be extended to the Roesser model with de-
lays. Several examples are provided in order to illus-
trate the proposed results.
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