Active damping of controlled mechanic systems

ZDENĚK ÚŘEDNÍČEK
Department of Automation and Control
Tomas Bata University in Zlin
Jižní Svahy, Nad Stráněmi 4511, 760 05, Zlin
CZECH REPUBLIC
urednicek@fai.utb.cz http://www.utb.cz/fai-en/structure/zdenek-urednicek

Abstract: - Paper describes active damping possibility of mechanical system with two not ideally stiffly connected masses. This type of problem can by often see at speed or position servo systems with electromechanical actuators – electrical engines. There controlled values are usually measured directly on actuator and not on loading mass. This is a reason why the control precision depends on elimination of load mass to the actuator torque influence in control system. At many motion control tasks, the problem of oscillations existence in multidimensional system with limited motion control and imperfect or complicated state quantities measurement possibility exists. Paper also describes active damping simple possibility of these type systems and by two-dimensional system physical model shows active damping possibility also with indirect state quantities measurement option.

Key-Words: - Motion control, active damping, physical model, multiport model, observer

1 Introduction

Frequent problem at mechanical system motion precision with speed or position control by actuator formed by electric or hydraulic engines is consequence of fact that controlled value sensing is made commonly on motor, which causes that mechanical part, which is our interest subject, is controlled indirectly.

This problem is presented significantly in moment when between actuator mass (electric machine) and load mass isn't ideally rigid connection. It's in some detail common problem of any transmissivity arrangement containing e.g. the play, but especially significantly such system behavior demonstrates in case of e.g. harmonics gearbox utilization.

This article deals first of all with one simple solution of mentioned problem and forms some simplified starting point for next part, which solves mentioned problem by means of full active damping with incomplete observer.

In second part the paper goal is to introduce some pieces of knowledge relevant to active damping of mechanical systems with more degree of freedom with limited action interventions possibilities and limited or complicated quantities measurement possibility. This problem often occurs at different mechanical systems motion control types serving as optical (surveillance) or other systems porter, which depend on effector systems positional state accuracy, and when actuators functions in some generalized coordinates only.

As such system example can be cameras porter, laser scanning system porter created from no ideally stiff bodies, weapons porter system with uncontrolled projectiles, but also manipulator with no ideally stiff arms for exact assembly application, not to mention, for invasive medicine application.

2 First Problem Formulation

Fig.1 Two rotating masses system with no rigid mechanic interconnection by linear spring.

If we suppose linear (ideal) torsion spring between both masses with stiffness k and with linear friction in its material, then motional equations system describing this arrangement is:

$$J_1 \cdot \ddot{\phi}_1 + (b_1 + b) \cdot \dot{\phi}_1 - b \cdot \dot{\phi}_2 + k \cdot \varphi_1 - k \cdot \varphi_2 = m_{\text{ext}}$$

$$J_2 \cdot \ddot{\phi}_2 + (b_2 + b) \cdot \dot{\phi}_2 - b \cdot \dot{\phi}_1 + k \cdot \varphi_2 - k \cdot \varphi_1 = 0$$

(1)
where b_1, b_2 are viscous friction coefficients in mass m_1 and m_2 bearings,

b is viscous friction coefficient in spring material.

If we think over linear cascade regulator according to Fig. 2, (position P - regulator and speed PI-regulator), then it can be derive for Laplace pictures vector.

$$\phi(s) = \frac{\phi_{ref}(s)}{det A} \left[J_2 \cdot s^2 + (b_1 + b_2) \cdot s + k \right] \left(k_m \cdot k_{pu} \cdot k_p + s + \frac{k_m}{\tau} \cdot k_p \right)$$

where

$$det A = \begin{vmatrix} J_1 \cdot s^3 + (k_m \cdot k_{pu} + b_1 + b_2) \cdot s^2 + & \left(k_m \cdot k_{pu} \cdot k_p + s + \frac{k_m}{\tau} \cdot k_p \right) \\ & \left[J_2 \cdot s^2 + (b_1 + b_2) \cdot s + k \right] \end{vmatrix}$$

For concrete parameters

$J_1 = 10^{-3}$ kgm2; $J_2 = 3 \cdot 10^{-3}$ kgm2; $b_1 = 0.1$ Nm \cdot s/rad

$b_2 = 0.2$ Nm \cdot s/rad; $k = 1500$ Nm/rad; $k_m = 15$ Nm/IV;

$b = 3$ Nm \cdot s/rad; $k_p = 5$; $k_{pu} = 4$; $\tau = 10^{-2}$ s, we obtain

$$\phi(s) = \begin{cases} \text{mod}\phi_1(s) = 3.5826 \cdot 10^6 \quad & \text{at } s = 20 \quad \left[\begin{array}{c} -4.9757 \times 10^{-7} \times 10^6 \quad -4.9757 \times 10^{-7} \times 10^6 \\ \end{array} \right] \\
\text{mod}\phi_2(s) = 5.55955 \cdot 10^6 \quad & \text{at } s = 20 \quad \left[\begin{array}{c} 1.14937 \times 10^{-9} \quad 1.14937 \times 10^{-9} \\ \end{array} \right] \\
\end{cases}$$

So, it reads:

$$\phi(s) = \begin{cases} \text{mod}\phi_1(s) = 3.5826 \cdot 10^6 \quad & \text{at } s = 20 \quad \left[\begin{array}{c} -4.9757 \times 10^{-7} \times 10^6 \quad -4.9757 \times 10^{-7} \times 10^6 \\ \end{array} \right] \\
\text{mod}\phi_2(s) = 5.55955 \cdot 10^6 \quad & \text{at } s = 20 \quad \left[\begin{array}{c} 1.14937 \times 10^{-9} \quad 1.14937 \times 10^{-9} \\ \end{array} \right] \\
\end{cases}$$

Consequently, for concrete parameters we obtain the transient and frequency characteristic of $\phi_1(s)$ - Fig. 3 and Fig. 4.

$$\phi(t) = \begin{cases} \text{Mod}\phi_1(t) = 3.5826 \cdot 10^6 \quad & \text{at } t = 20 \quad \left[\begin{array}{c} -4.9757 \times 10^{-7} \times 10^6 \quad -4.9757 \times 10^{-7} \times 10^6 \\ \end{array} \right] \\
\text{Mod}\phi_2(t) = 5.55955 \cdot 10^6 \quad & \text{at } t = 20 \quad \left[\begin{array}{c} 1.14937 \times 10^{-9} \quad 1.14937 \times 10^{-9} \\ \end{array} \right] \\
\end{cases}$$

$$\phi(s) = \begin{cases} \text{mod}\phi_1(s) = 3.5826 \cdot 10^6 \quad & \text{at } s = 20 \quad \left[\begin{array}{c} -4.9757 \times 10^{-7} \times 10^6 \quad -4.9757 \times 10^{-7} \times 10^6 \\ \end{array} \right] \\
\text{mod}\phi_2(s) = 5.55955 \cdot 10^6 \quad & \text{at } s = 20 \quad \left[\begin{array}{c} 1.14937 \times 10^{-9} \quad 1.14937 \times 10^{-9} \\ \end{array} \right] \\
\end{cases}$$

While angle $\phi_1(s)$ is quickly achieving its reference value without oscillations, angle $\phi_2(s)$ oscillates through spring and mass J_2 influence.

3 Problem Power Interactions physical Model

Further we present simulation of rotational masses speed control problem globally, whereas at using of problem physical model we'll study nonlinear spring whose dependence $Q = f(\Delta \phi)$ is on Fig. 7.
Complete system simulation acknowledges problem of linear variant analysis. Because information about motion (angular velocity) is measured on the first mass, second mass, connected over spring, oscillates with damping.

3.1. Simple active Damping Principle

Try to solve introduced problem of mass J_2 oscillation connected over spring on the basis of empiric procedure:

First of all pose question, what’s mentioned behaviour reason! Is evident, that mass J_2 oscillations and by interaction over spring also mass J_1 oscillations causes just mass J_2, which is in torque interaction with the rest of system over torsional spring.

Are we able to reconstruct somehow these effects, that we could damp them subsequently? Is evident, that on mass J_1 functions partly outer torque Q_{ext} (reduced by friction in first masses bearings) and this torque we have under control. We are able to determine it from regulator output u_r.

And further functions on this mass the J_2 mass over spring. So total dynamic acting force on mass J_1 is

$$Q_{ext} - b \cdot \omega_1 - Q_{react,J_2}$$

But this torque has to be in every instant in balance with mass J_1 inertial torque. So:

$$J_1 \cdot \frac{d\omega_1}{dt} = Q_{ext} - \hat{b} \cdot \dot{\omega}_1 - Q_{react,J_2}$$

Assume, that we know how estimate moment of inertia J_1 size.

Designate this estimation (measurement, catalogue specification) \hat{J}_1. Never mind further reads that we know how "to determine" rotational acceleration $\frac{d\omega_1}{dt}$. Designate it $\hat{\omega}$. Then in every instant reads:

$$Q_{react,J_2} = Q_{ext} - \hat{b} \cdot \dot{\omega}_1 - \hat{J}_1 \cdot \hat{\omega}$$ \hspace{1cm} (3)

By introduction of correction proportional to this reaction to the speed reference value, the active oscillations damping of second mass can be acquire. Then both masses will behave approximately in the same way.
One question remains. How perform \hat{e} reconstruction in real industrial environment?

3.2. Acceleration Reconstruction in industrial Conditions

Because in real conditions is direct derivation signal generation problematic, perform its following reconstruction:

![Fig.12 Derivation reconstruction](image)

Fig.12 Derivation reconstruction

From Fig.12 follows

$$X_1(s) = \frac{1}{s} \left\{ -k_g \cdot [X(s) + X_1(s)] \right\} \Rightarrow$$

$$\Rightarrow Y(s) = -k \cdot \left\{ -k_g \cdot [X(s) + X_1(s)] \right\} = k \cdot \frac{s}{1 + \frac{1}{k_g}} \cdot X(s)$$

So, for this arrangement reads

$$x(t) \xrightarrow{k \cdot \frac{s}{1 + \frac{1}{k_g}}} y(t)$$

Fig.13 Block of derivation reconstruction

and we obtain derivations with 1^{th} order filter.

![Fig.14 Result of signal with noise derivation](image)

Fig.14 Result of signal with noise derivation

On Fig.14 is see that signal with random signal noise is not simple to differentiate! And how signal with noise mathematical derivation would look?

3.3. Application of simple active Damping

On Fig.15 the power interactions multiport model of analysed system is presented, where the active damping is introduced by means of mass J_1 acceleration reconstruction.

![Fig.15. Analysed system power interactions with acceleration reconstruction and active damping](image)

Fig.15. Analysed system power interactions with acceleration reconstruction and active damping

On Fig.16 is response of system with active damping to identical mass J_1 requested speed jump like in Fig. 10.

![Fig.16. Response on first mass position requested value jump with active damping](image)

Fig.16. Response on first mass position requested value jump with active damping

Is evident, that whereas in the event of undamped motion, the mass J_1 speed required (and sensing on it) evokes mass J_2 oscillations, in second case mass J_1 „will wait” on mass J_2 and so it is possible to adjust it also at scanning on actuator (engine) mass.

The first part paper shows and gives reasons for one from simple motion control problem solution with scanning on actuator and forms that way starting point to second part of those motion control way of solution.

4 Active Damping with State Regulator

4.1. Description of system with one directional motion and its active damping principle

For linear system from Fig.17, where force $f(t)$ is created by actuator according to Fig.18 reads:
Fig. 17 Principle of system with motion in one direction.

Fig. 18 Masse M cascade position control.

If mass m is „extended“ to $1m$ in the positive direction and reference value $x_{M_1} = 0$, then after mass m releasing, the regulators in cascade will ensure almost mass M perfect still stand. Mass m after releasing practically oscillates without damping. Mentioned on Fig.19 is seen.

Fig. 19 The mass m undamped oscillation and mass M stabilization after releasing of extended mass m

Fig. 20 System (4) response on mass M required position jump $x_{M_1} = 5m$

On Fig. 20 is response of both mass seen at required mass M position jump $5m$. Again is seen the perfect masses M behaviour and masses m undamped oscillations.

For $M = 400$ kg; $m = 1000$ kg; $k = 2.10^6$N/m; and $k_f = 2.10^6$N/1V; $k_p = 3; k_{pv} = 3$ we obtain the system poles:

$$s_1 = -37.498 + j 209.99$$
$$s_2 = -37.498 - j 209.99$$
$$s_3 = -0.00183 + j 14.064$$
$$s_4 = -0.00183 - j 14.064$$

If we’ll require to obtain the new required poles by help of designed complete state regulator

$$s_1 = -50; s_2 = -50$$
$$s_3 = -15 + j 15$$
$$s_4 = -15 - j 15$$

then is possible to create this complete state regulator as

$$R^T = \begin{bmatrix} 0.010444 & 0.008333 & 0.011667 & -0.875 \end{bmatrix}$$

(see Fig. 20).

Fig. 21 Complete state regulator

Control structure from Fig. 21 will ensure the system behaviour for the same mass m, „extending,“ to $1m$ according to Fig.22.
It is evident that mass M controlled then way suppresses mass m oscillations now.

Fig. 23 shows such system response on mass M desired position jump $x_{M\text{ž}} = 5 \text{ m}$.

4.2. Linear observer utilisation for active damping of one dimensional system

Measurement of mass m position and speed (eventually) presents indeed problem in general.

Because for selected parameters is

$$Q_p = \begin{bmatrix}
\xi^T & A & A^{-1}
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
-500 & -25 \cdot 10^7 & 2.49999375 \cdot 10^9 & 3.125 \cdot 10^8
\end{bmatrix}$$

then

$$\det Q_p = \det \begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
-500 & -25 \cdot 10^7 & 2.49999375 \cdot 10^9 & 3.125 \cdot 10^8
\end{bmatrix} = 250000 \neq 0$$

and the system (4) is observable.

We can design complete linear observer system with select observer matrix eigenvalues

$$s_1 = -50 + 300 \cdot i; s_2 = -50 - 300 \cdot i$$

$$s_3 = -1 + i \cdot 15; s_4 = -1 - i \cdot 15$$

we can obtain the observer equation

$$\dot{x}(t) = A \cdot \dot{x}(t) + b \cdot u(t) + \bar{h} \cdot [y(t) - \dot{y}(t)]$$

and we will use only part of reconstructed state quantities from it, so the structure from Fig. 24.

On Fig 25 is seen that active damping with non-measurable variables reconstruction by linear observer give the same result as state controller with full measurable state variables (compare Fig. 23 and Fig. 25).
4.3 Active damping of masses motion system in plane

Study ordering from Fig. 26 and Fig 27, so the system with planar motion without friction, normal to gravitation direction, whereas external mass M is controlled by e.g. electrohydraulic translational positional servo system producing force $f(t)$. This mass can move only in x axis direction.

Fig. 26 Ordering of two masses system with four degree of freedom

Fig. 27 Two masses system with four degree of freedom scheme

Inside of this material „frame” is mass m, „hung” on two linear springs without dissipative damping, whose axes are, in quiescent state (mass M and m centres of gravity are in identical point, point $[0, 0]$, angle $\phi = 0$) displaced in a parallel way from coordinates axes. Mass m positive rotation direction is counter-clockwise.

Create physical simulation model of given ordering by means of simulation system for multiport simulation physical models DYNAST [6]:

Fig. 28 Multiport physical model of system from Fig.27

„Extend” at first the inner mass m to 0.3 m in positive x axis direction, require by frame M driving servo to remained this frame quiescent and release mass m in time $t = 0$.

On Fig. 29 and Fig. 30 is result of this experiment. Is see, that inner mass m oscillates undamped after releasing, whereas the oscillations energy subsequently „overflows” from x axis to the y axis and inner mass „spins” (angle ϕ).

It’s seen that the outer M mass fast movement to required position produces not only mass m oscillations in x axis, but also in y axis. In addition, thanks to asymmetric springs bearing, at this mass m yaw- ing oscillation happens and successively mechanical energy “flows” between both axes.

Fig. 29 The mass m undamped two dimensional oscillations and mass M stabilization after releasing of extended mass m
Fig. 30 Centre of mass undamped m trajectory in plane for mass M stabilization after releasing of extended mass m

Fig. 31 shows system undamped response on mass M required position jump in time t=0s; x_M=3m.

Fig. 31 Undamped system from Fig. 26 and Fig. 27 behaviour for required M mass jump of position

If cuboid side size of mass m is equal 2a_m, then motional equations of described system are

\[
M \cdot x_M \cdot k \cdot \left[(x_T - a_m \sin \phi + a \cos \phi - x_M) + (x_T - a_m \sin \phi - b \cos \phi - x_M) \right] = f(t) \\
M \cdot y_T \cdot k \cdot \left[(y_T - a_m \cos \phi + a \sin \phi - y_M) + (y_T + a_m \cos \phi - b \sin \phi - y_M) \right] = 0 \\
J \cdot \phi \cdot k \cdot \left[(x_T - a_m \sin \phi - a \cos \phi + a) + (y_T + a_m \cos \phi - b \sin \phi + b) \right] = 0
\]

where

x_M is coordinate of M mass

x_T, y_T are centre of m mass coordinates

\(\phi \) is angle of m mass body with regard to global x axis.

Simplify this nonlinear system thinking \(\phi \) small, so

\[
\cos \phi = 1; \sin \phi = \phi
\]

and use cascade position controller with two proportional regulators

\[
f(t) = k_1 \cdot \left(k_{pv} \cdot \left[k_p \cdot \left(x_{M2} - x_M \right) + 1 \right] - \frac{1}{200} \cdot \nu_M \right) = k_1 \cdot k_{pv} \cdot k_p \cdot \frac{x_M - x_{M2}}{200} \nu_M
\]

Then we obtain state system equations of 8th order

\[
\begin{bmatrix}
\dot{x}_M \\
\dot{y}_M \\
\dot{\phi}
\end{bmatrix} =
\begin{bmatrix}
\dot{x}_M \\
\dot{y}_M \\
\dot{\phi}
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_M \\
y_M \\
\phi
\end{bmatrix} +
\begin{bmatrix}
k_1 \cdot k_{pv} \cdot k_p \cdot \frac{x_M - x_{M2}}{200} \nu_M
\end{bmatrix}
\]

With regard of this both material bodies linear description and their possible motion control way with complete linear observer, simplify problem and use only x axis for active damping.

It's withal whole rows of real motional systems possibility, when we have available not only measurement at limited points, but also limited operational intervention.

Employ piece of knowledge from previous one-dimensional case. Design complete state regulator for control and active damping in x axis and subsequently propose linear observer for \(x_{Tm} - x_M \) and \(\nu_{Tm} - \nu_{xM} \) reconstruction. It means, we suppose that we are able to measure mass M position and
speed in x axis and differences $x_{Tm} - x_M$ and $v_{Tm} - v_{SM}$ we will obtain from observer.

Require the same mass M jump as in Fig. 31, but with above mentioned active dumping with state regulator and observer in x axis. On Fig. 32 is seen that system mechanical behaviour is damped. Not perfectly, because we dumped only part of energy.

Fig. 32 Behaviour of system from Fig. 26 and Fig. 27 damped in one axis at M position desired jump

5 Conclusion

Paper shows controlled mechanical systems' active damping simple possibilities, applicable in case those state variables measurement is made on actuator and the action interventions are available only in one axis. Designed one-dimensional complete state regulator is able- thanks „energy overflow“ of unsymmetrical embedded springs- to damp significantly also oscillations of mass, which it is impossible to influence directly by action quantities.

This is frequent problem at mechanical system motion precision with speed or position control by actuator formed by electric or hydraulic engines and it is consequence of fact that controlled value sensing is made commonly on motor, which causes that mechanical part, which is our interest subject, is controlled indirectly.

This problem is presented significantly in moment when between actuator mass (electric machine) and load mass isn't ideally rigid connection. It's in some detail common problem of any transmissivity arrangement containing e.g. the play, but especially significantly such system behavior demonstrates in case of e.g. harmonics gearbox utilization.

This article forms some simplified starting point for next part, which solves mentioned problem by means of full active damping with incomplete observer.

In second part some pieces of knowledge relevant to active damping are introduced. There are the knowledge relevant to active damping of mechanical systems with more degree of freedom with limited action interventions' possibilities and limited or complicated quantities measurement possibility.

This problem often occurs at different mechanical systems motion control types serving as optical (surveillance) or other systems porter, which depend on effector systems positional state accuracy, and when actuators functions in some generalized coordinates only.

As such system example can be cameras porter, laser scanning system porter created from no ideally stiff bodies, weapons porter system with uncontrolled projectiles, but also manipulator with no ideally stiff arms for exact assembly application, not to mention, for invasive medicine application

References:

