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Abstract: -The problem of system identification is addressed for Hammerstein-Wiener systems that involve
memory operator of Backlash type bordered by straight lines as input nonlinearity. The system identification of
this model is investigated by using easily generated excitation signals. Moreover, the prior knowledge of the
nonlinearity type, being Backlash or Backlash-Inverse, is not required. The nonlinear dynamics and the
unknown structure of the linear subsystem lead to a highly nonlinear identification problem. Presently, the
output nonlinearity may be noninvertible and the linear subsystem may be nonparametric. Interestingly, the
system nonlinearities are identified first using a piecewise constant signal. In turn, the linear subsystem is
identified using a frequency approach.
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1 Introduction
Nonlinear systems exist widely in industry and
science applications (Nelles, 2001), among which
the Hammerstein-Wiener (HW) model is one of the
most typical cases (Vörös, 2004). The
Hammerstein-Wiener models consist of a linear
dynamic block sandwiched by two nonlinear
elements (Fig.1). Identification of block-oriented
nonlinear systems has been studied for decades
(Nelles, 2001; Bruls et al., 1999; Wills and Ljung,
2010).

The Hammerstein-Wiener like models are used
in a wide range of applications such as ionospheric
dynamics (Palanthandalam-Madapusi et al., 2005)
and RF power amplifier modelling (Taringou et al.,
2010). The identification of block-oriented
nonlinear systems has been dealt with following
different approaches including half-substitution
iterative technique (Vörös, 2004), subspace and
separable nonlinear least-squares methods (Bruls et
al., 1999), output error and maximum likelihood
algorithms (Wills and Ljung, 2010), frequency
identification (Giri et al., 2014).

The paper here is an expansion of the work
(Brouri et al., 2014a). Relative to (Brouri et al.,
2014a), this paper is more general in its
consideration of the input and output nonlinearities.
Indeed, the input nonlinearity can be Backlash or
Backlash-Inverse, is not required. Further, the
output nonlinearity is not necessarily invertible,

except at a known point. In particular, the paper
provides details of commonly used nonlinearities
and has expanded the simulation study to include
two other commonly used nonlinearities.

The Backlash nonlinearity (Fig.2) can be
classified as a dynamic (i.e., with memory) and hard
nonlinearity, commonly occurs in hydraulic servo-
valves, electric servomotors, magnetic suspensions,
bearings and gears (e.g. Figs.3-4). Backlash often
occurs in transmission systems, it caused by the
small gaps which exist in transmission mechanisms
(Figs.3-4), e.g. the play between the teeth of the
drive gear and those of the driven gear. Then, the
Backlash operators limit the overall performance of
control systems by causing delays, undesired
oscillations and inaccuracy (Ramamurthy and
Prabhakar, 2012; Walha et al., 2009). Backlash
influence identification and modeling is necessary to
design a precision controller for this nonlinearity
(Kalantari and Foomani, 2009; Lewis and Selmic,
2000).

Nonlinear system identification based on HW
models has been an active research topic especially
over the last decade, including the recent
contributions (Wills and Ninness, 2009; Brouri et
al., 2014a; Brouri et al., 2014b). Amongst that are:
iterative approaches (Zhu, 2002; Vörös, 2004),
overparametrization methods (Schoukens et al.,
2012), frequency dommaine methods (Brouri et al.,
2014a; Crama and Schoukens, 2004), subspace
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algorithms (Goethals et al., 2005), and stochastic
methods (Wang and Ding, 2008).

As a matter of fact, all proposed identification
methods are based on several, more or less
restrictive, assumptions concerning the system
nonlinearities (invertible, memoryless), the linear
subsystem (FIR, known structure), the input signals
(Gaussian, PE). Then, most previous works, where
that subsystem is supposed to be a transfer function
of known order (e.g. Bai, 2002; Ni et al., 2013;
Wang et al., 2009; Schoukens et al., 2012).

This paper addresses the more complex case of
nonparametric HW systems involving Backlash
operators (Fig.2). Apart from stability, no
assumption is made on the (nonparametric) linear
subsystem G(s) which may thus be infinite order.
The third main factor motivating this approach lies
in the fact that the output nonlinearity is not globally
invertible (unlike most previous works) but satisfiedℎ (0) = 0. This latter is only supposed to be well
approximated, within any subinterval belonging to
the working interval, with a polynomial of unknown
degree and parameters. Unlike many studies that
consider the invertibility of output nonlinearity is a
usual assumption. The degree p and the parameters
of the polynomial can vary from one subinterval to
another. In this paper we assume a general model of
Backlash which is not required to be symmetric.

On the other hand, note that several approaches
are proposed in literature in order to compensate the
undesirable effect of Backlash (Nordin and Gutman,
2002). Although most of available control synthesis
techniques require a model of the plant to be
controlled, only few contributions can be found in
literature addressing the identification of HW
systems with Backlash. Then, it is not surprising
that only a few methods are available that deal using
a Backlash operator bordered by two straight-lines.
In (Dong et al., 2009; Cerone et al., 2009), the
nonlinearity is a Backlash operator with straight-line
borders, but the problem of identification is
addressed to Wiener systems. From an identification
viewpoint, the difficulty lies not only in the systems
nonlinearities of the model dynamics but also in its
interconnected structure making its internal signals
inaccessible to measurements.

The proposed identification method performs in
two stages. The systems nonlinearities (i.e. the
output nonlinearity and the Backlash borders) are
identified first using a piecewise constant input. The
linear subsystem is identified in the second stage
using a frequency identification method. The weak
decoupling between the two stages entails an
increased parameter estimation accuracy. The
identification method also enjoys the simplicity of

the required input signals (constant and sinusoidal
excitations are sufficient) and the consistency of all
involved estimators.

The paper is organized as follows: relevant
mathematical tools are described in Section 2;
Section 3 formulates the problem and derives some
preliminary results; the main results are given in
Section 4 along with some remarks and proposition
concerning the scheme applies to identify the
system nonlinearities applied; the linear subsystem
identification is coped with in Section 5. The
performances of the identification method are
illustrated by simulation in Section 6.

Fig.1. Hammerstein-Wiener Model structure with
Backlash input nonlinearity.

Fig.2. Backlash bordered by straight lines.

Fig.3. Example of Backlash nonlinearity occurring in
mechanical systems.

Fig.4. The backlash occurs as result of the gaps
between a pair of mating gears.
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2 Mathematical preliminaries

2.1 Backlash Operator
A Backlash operator is a memory element
characterized by two borders, and is denoted
 , , ( )B v u u t ; where ( )u t is the input signal, ( )v t the

generated signal and ( )u t designates the first
derivative of ( )u t . General characteristic of
Backlash operator bordered by two straight-lines is
shown in Fig.2, and a mathematical model is given
by (Tao and Kokotovic 1996):

( )  if  ( ) 0  and  ( ) ( )
( )           if  ( ) 0  and  ( ) ( )

0   otherwise

a

d

Su t u t v t S u d
v t u t v t S u d





   
   



 

  (1)

One can see that, whenever the input of Backlash
u(t) changes its direction, the output v(t) is delayed
from motion of u(t).

2.2 Backlash-Inverse Operator
The Backlash-Inverse operator is also a memory
element (dynamic system) characterized by a couple
of straight lines (Fig.5), and is denoted
 , , ( )invB u z z t . When submitted to an input signal

z(t), it generates an output signal u(t) defined as
follows:

1 ( )   if  ( ) 0

( ) 1 ( )   if  ( ) 0

( 1)   otherwise

a

d

z t d z t
S

u t z t d z t
S

u t





  

   







(2)

This definition entails no condition on the borders
couple. In particular, these latter may be
nonsymmetrical.

2.3 Compound Operators
In order to cancel the effect of Backlash (or
Backlash-Inverse) in the system, the Backlash pre-
compensator needs to generate the inverse of the
Backlash operator (Tao and Kokotovic, 1996; Tao
and Kokotovic, 1993). The Backlash-Inverse
compensator  , , ( )invB u z z t of  , , ( )B v u u t (Fig.2)
is shown in Fig.5.

Lemma 1. (Tao and Kokotovic, 1996; Tao and
Kokotovic, 1993):

The characteristic  , ,invB u z z , defined by (2) is the
inverse of the characteristic  , ,B v u u (defined by
(1)) in the sense:
   0 0, , ( ) ( )invB B u z z t z t gives

   0, , ( ) ( )invB B u z z t z t t t   ,

   0 0, , ( ) ( )invB B u z z t z t gives

   0, , ( ) ( )invB B u z z t z t t t   . □

Lemma 1 above states that if for some time t0 the
Backlash-Inverse operator is able to invert the
Backlash, then it serves a Backlash-Inverse for all
time thereafter; i.e. the compound operators
   . .invB B I and    . .invB B I , where I being

the identity operator.

Fig.5. Backlash-Inverse operator.

3 Identification Problem formulation
Hammerstein-Wiener systems consist of a linear
dynamic block sandwiched by two nonlinear
elements (Fig. 1). In this study, the input
nonlinearity F[.] is allowed to be a memory
operator of Backlash type bordered by two straight-
lines (Fig.2). The output nonlinearity h(.) is
memoryless and so is entirely characterized by a
single function, denoted h(.).

Analytically, the Hammerstein-Wiener system is
described by the following equations:

 ( ) , , ( )v t F v u u t  (3a)

( ) ( ) ( )w t g t v t  (3b)

 ( ) ( )x t h w t ; ( ) ( ) ( )y t x t t  (3c)

Where       . . ., invF B B ,  1( ) ( )g t L G s and *
refers to the convolution operation. The
identification problem at hand consists in accurately
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identifying the transfer function ( )G s as well as the
system nonlinearities (i.e. the nonlinear operator
parameters ( ,  ,  ,  )a dS d S d  and the output
nonlinearity h(.)). The identification must only rely
on the use of the input and output signals, i.e. the
system input and output signals  ( ), ( )u t y t are
accessible to measurement while the internal signals
v(t), w(t) and x(t) are not (Fig.1). The equation
error ( )t accounts for external disturbances (or
measurement noise) and other modelling effects; it
is supposed to be stationary and uncorrelated with
the control input ( )u t .

The input nonlinearity       . . ., invF B B

undergoes the Backlash  .B or Backlash-Inverse

 .invB forms. At this stage, the transfer function
( )G s assumes no known structure, but it must be

asymptotically stable to make possible open-loop
system identification and (0) 0G  .
The complete system model is analytically
described by equations (3a-c). At this point, it is
worth emphasizing the plurality of the model
 [ , , ], ( ), ( )F v u u G s h w (i.e. the considered
identification problem does not have a unique
solution), defining the Hammerstein-Wiener
systems. Indeed, if  [ , , ], ( ), ( )F v u u G s h w represents
a solution then, any model of the form
 1 2 1 2[ , , ] / , ( ) / , ( )F v u u k G s k h k k w is also a solution
of the above identification problem, whatever 1 0k 

and 2 0k  . To reach this goal, it will prove
judicious to focus on the model  [.], ( ), (.)F G s h
defined as follows:

[ , , ] [ , , ] / aF v u u F v u u S  (4a)

( ) ( ) / (0)G s G s G (4b)

 ( ) (0) ah w h G S w (4c)

Property (4b) means that G(s) is made unit static
gain. To avoid multiplying notations, the unique
model satisfying (4a-c) will still be denoted
 [.], (.), (.)F G h .
Recall that the Backlash behavior is such that, when
the input u(t) starts increasing and the backlash
working point  ( ) , ( )u t v t moves, e.g. on the
descendant border, the point  ( ) , ( )u t v t moves first
along a horizontal path. Once reaches the ascendant

lateral border, the backlash working point
 ( ) , ( )u t v t moves along it until the input u(t) stops
increasing. Similar interpretations hold for the
backlash working point descendant stages.
Obviously, if the input signal u(t) spans
monotonically, in both senses, a sufficiently wide
working interval then, the working point will span a
closed backlash cycle, passing from one border to
the other along two connecting horizontal paths
(Fig.2). If the input working interval [ ]m Mu u is not
sufficiently large, the resulting steady-state internal
signal v(t) will be constant i.e. the backlash working
point  ( ) , ( )u t v t will move along a horizontal
segment (Fig.6a). Then, the system output y(t)
becomes constant (up to noise) after a transient
period. This observation can be based upon in
practice to discard non-suitable choices of
[ ].m Mu u . In the case of Backlash-Inverse operator,
the working point will span a closed backlash cycle,
passing from one border to the other (Fig.6b),
regardless of the working interval. Presently, one
considers a memory operator of Backlash type; a
symmetrical procedure could similarly be described
in the case of Backlash-Inverse type.

Fig.6a. The Backlash cycle reduces to a horizontal
segment.

Fig.6b. Example of obtained backlash cycle for a small
working interval.

mu
u

Mu

v

mu
u

Mu

v
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4 Nonlinear elements Identification
In this section, an identification scheme is proposed
to get estimates of nonlinear elements. Furthermore,
it can be shown that, it is possible to separately
identify the system nonlinearities. In other words,
the identification of the linear subsystem is not
necessary as long as the nonlinear elements are
concerned.

Recall that, the output nonlinearity is supposed to
be well approximated, within any subinterval, with a
polynomial of unknown degree and parameters. The
degree p and the polynomial parameters can vary
from one subinterval to another. For simplicity of
notation, the input nonlinearity [ , , ]F v u u is denoted

[ ]F u . Practically, if the HW system is excited by
any constant input jU , then the transient dynamic
effect of G(s) vanishes, leading to constant
asymptotic values of all system signals. Specifically,
as the linear subsystem is asymptotically stable with
unit static gain (see (4b)), one gets in the steady
state:

and

( )     ( ) ( )

     ( ) ( ) [ ]

j j

j j j

u t U v t w t W

x t X h W h F U

   

   
(5)

It is readily seen from (5) that, the HW system boils
down to the compound function [.]h F .
Accordingly, to identify the input and output
nonlinearities, the suggested protocol involves two
main stages, referred to ascendant and descendant.
Each stage involves a series of constant inputs. In
the ascendant experimental stage, the HW model is
successively excited by a set of constant inputs with
amplitudes:

1 2 ... NU U U   (6)

Using (4a), since F[.] is a backlash operator and the
amplitude sequence  1...;j j NU  is increasing,

there is an integer  1 ,aj N such that:

1 1[ ]jV V F U  for 1... aj j (7a)

j jV U d   for 1...aj j N  (7b)

Then, as the linear block is asymptotically stable
with unit static gain and combining (5) and (7a-b),
one immediately gets:

1 1 1[ ]jW W V F U   

1 1[ ]jX h F U X  for 1... aj j (8a)

j j jW V U d    

 jj U dX h  for 1...aj j N  (8b)

The internal x(t) signal is not directly measurable.
Then, using (3c) and the fact that ( )t is zero-mean,
the steady state undisturbed output jX can be
recovered by averaging y(t) on a sufficiently large
interval. Then, just as suggested in (Ljung, 1999),
the following averaging is considered:

1

1ˆ ( ) ( )
M

j
i

X M y i
M 

  ,  with 1M  (9)

Accordingly, the noise ( )t is presently supposed to
be a zero-mean ergodic stochastic process. This,
together with (9), yields:

1

1ˆ ( ) ( )
M

j j jMi
X M X i X

M





   (w.p. 1) (10)

Remark 1.
1) The set of points  ...( , [ ]); 1j j aj NU F U j 

belong to the Backlash ascendant border. The set of
points  ...( , [ ]); 1j j ajU F U j moves along a
horizontal segment. These results can be observed
practically. Then, the system output y(t) remains
constant (up to noise) for  1 ... ;;

aj jU U U .

2) If h(.) is polynomial function of degree p, then
the compound function ( )h u d  is also a p th
degree polynomial. Accordingly, to estimate the
parameters of the nonlinearity ( )h u d  , the
following requirement must hold:

1aN j p   (11)

Then, the nonlinearity ( )h u d  will be estimated
making use the set of points

  ...ˆ, ( ) ; 1j j aj NU X M j  , where 1 aN p j   .

3) The non-linearity ( )h u d  crosses the x-axis at

the point ( , 0)d  . At this point, it is worth

emphasizing that, 1(0) 0h  allows to determine an
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accurate estimate ˆ ( )d M of d  (Fig.7) using the

estimate ˆ ( )Mh u d  of ( )h u d  .
4)  In the case of Backlash-Inverse operator, one
immediately gets 0a dj j  .

Proposition 1. (Kozen and Landau, 1989)
Let the compound polynomial function h f .
Complete decompositions are not unique. Consider
the examples:
 ( ) ( )hof h x d o f d   .

 p r r po ox x x x .
By Proposition 1, the complete decompositions of

oh f , where h(.) is polynomial function of degree p

and ( )f u u d   , are not unique. It is readily seen

from (4a-c) and 1(0) 0h  that, the complete
decompositions of ( )oh u d  are uniquely
determined. Then, an accurate estimate of the output
nonlinearity h(.) can be provided (Fig.7). Indeed,
using the function changes ˆ( ) ( )a

Mh u h u d   , the
estimate of the output nonlinearity achieved:

( )ˆ ˆ( ) ( )a
M Mh u h u d   (12)

On the other hand, the parameters of the descendant
lateral border dS and d  can be provided using the
descendant experimental stage. Specifically, the
HW model is successively excited by a set of
constant inputs with decreasing amplitudes:

1 1 2 2 2 1 1 2...N N N N N NU U U U U U U           (13)

Similarly, following the same undisturbed output
estimator (9), a set of points along the path of

 ( )( )d d doh S u d h S u S d    can be estimated,

i.e.   ...2ˆ, ( ) ; 1j j dj N NU X M j   where

1 dj N  is an integer, such that:

[ ]j N NV V F U  for ... dN Nj j (14a)

( )d
j jV S U d   for 1... 2dNj j N  (14b)

Accordingly, an estimate  ˆ d d
Mh S u S d  of

  ( )( )d d doh S u S d h S u d    can be easily
determined. Finally, the fact that the output
nonlinearity is known entails the problem of
identifying dS and d  a trivial issue (see Kozen

and Landau, 1989). Specifically, if h(u) is
polynomial of degree p, then ( )( )dh S u d  is also
polynomial of degree p and crosses the x-axis at the
( ,0)d . In which the coefficient of the
highest order term is equal to the leading coefficient
of h(u) multiplied by ( )d pS .

5 Linear subsystem identification
The result of Section 4 is a quite interesting
achievement as it shows that, it is possible to
separately identify the nonlinear elements. In the
present section, a frequency identification method is
proposed to estimate the nonparametric linear
subsystem ( )G j , whatever the frequencies 0  .
Note that the Adaptive compensation is the most
appropriate technique to handle the uncertainty in
the Backlash parameters; however, since Backlash
is not a differentiable nonlinearity, recent nonlinear
control design methodologies cannot be applied.

Then, one key idea is to neutralize the effect of
F[.] (Tao and Kokotovic, 1996; Tao and Kokotovic,
1993) by placing its inverse as pre-compensator
(Fig.8). Doing so, the augmented system, including
the pre-compensator, boils down to a Wiener model.
The result system is excited by the simple sinusoidal
input:

( ) sin( )z t U t (15)

In view of Lemma 1 and from (15), the steady state
of the internal signal can be expressed as follows:

( ) ( ) sin( )v t z t U t  (16)

Then, it follows from (3b) that (in steady-state):

 ( ) ( ) sin ( )w t U G j t     (17)

h(u)h(u-d  )

d+

+

Fig.7. Comparison between h (u) and ( )h u d  .
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where ( ) ( )G j    . At this point, the output
nonlinearity h(.) is known and can be approximated
with a polynomial of degree p. The undisturbed
system output x(t) takes the following form:

     
0

( ) ( ) ( ) sin ( )
p i i

i
i

x t h w t c U G j t   


   (18)

where 0 0c  (see Section 4). On the other hand, the

power formulas 2(sin ) i and 2 1(sin ) i  can be
expressed as:

   
1

2 2 2
2 2 1

0

1 ( 1)sin ( 1) cos 2( )
2 2

i i
i i r i

i ri i
r

C C i r 






    (19a)

   2 1 2 1

0

( 1)sin ( 1) sin (2 1 2 )
4

i i
i r i

ri
r

C i r  




    (19b)

For convenience, let us recapitulate the explicit
signal relationships obtained from (18), using (19a-
b):

    
0

( ) ( ) sin ( ), ( )
p

k k
k

x t A G j k t G j     


  (20)

It is readily checked that, the amplitude kA depends
on ( )G j , ic ( 1,..., )i p and U. Also, the phase k

depends on all these parameters in addition to the
phase ( )  . The rule (20) gets benefit from two
major facts: (i) the only unknown parameters in (20)
are the modulus ( )G j and the phase ( )  ; (ii)
x(t) is the sum of sinusoidal signals and it is worth
considering a single frequency component.
Consequently, an accurate estimate of the complex
amplitudes ( )G j can be obtained by measuring a
single frequency component of x(t).

On the other hand, one can notice that the steady-
state undisturbed output x(t) is periodic of same
period 2 /T   as the input, it can be developed
in Fourier series:

 0
0

( ) sink k
k

x t s s k t 




   (21)

Accordingly, the modulus ( )G j and the phase

( )  in (20) can be accurately estimated if ks and

k are known. One difficulty with the considered
identification problem is that, the undisturbed
system output x(t) is not accessible to measurement
and the system output y(t) is infected by the

disturbance ( )t whose stochastic law is not known.
Then, it follows from (3c), one immediately gets
from (21):

 0
0

( ) sin ( )k k
k

y t s s k t t  




    (22)

Now, to avoid the above complexity, bearing in
mind the fact that ( )u t is a T  periodic excitation
signal. Then, this generates, in steady-state T 
periodic signal ( )x t . Then, just as suggested in
(Ljung, 1999), the following T  periodic averaging
of the undisturbed system output ( )x t is considered:

 
1

0

1ˆ ( )
N

N
l

x t y t lT
N





  ,   for Tt 0 (23a)

ˆ ˆ( ) ( )N Nx t lT x t  ,   otherwise (23b)

for some (large enough) integer N . Bearing in mind
that ( )x t is T  periodic signal, it follows from (3c)
and (23a) that (in steady-state):

1

0

1ˆ ( ) ( ) ( )
N

N
l

x t x t t lT
N






   (24)

Accordingly, the noise ( )t is presently supposed to
be a zero-mean ergodic stochastic process featuring
the T  periodic stationarity (on the set of T 's of
interest). The periodic stationarity means that
 ( ) ( ( ))E t kT E t   ; for all ,t k .  This, together

with zero-mean ergodicity, yields:

1

0

1 ( ) ( ( )) 0
N

Nl
t lT E t kT

N
 






    (w.p.1) k N (25a)

Then, it follows from (21), (24) and (25a) that:

 0
0

ˆ ( ) ( ) sinN k kN k
x t x t s s k t 






    (w.p.1) (25b)

That is, the ks ’s and k ’s turn out to be (w.p.1) the
limits of Fourier-expansion parameters of ˆ ( )Nx t as
N  . The estimates of these parameters are
given by the usual expressions:

2 2( ) ( ) ( )ˆˆ ˆk k kN N Ns a b  ;   for 1, 2 ...k  (26a)

1 ( )
( )

( )

ˆˆ tan ˆ
k

k
k

N
N

N

a
b

   
   

 
;   for 1, 2 ...k  (26b)
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0
0 0

( )
( )

ˆ1ˆ ˆ ( )
2

T

N
N

N
as x t dtT  (26c)

where:

0
( )

2ˆ ˆ ( ) cos( )
T

k NNa x t k t dtT   ;  for 1, 2 ...k  (26d)

0
( )

2ˆ ˆ ( ) sin( )
T

k NNb x t k t dtT   ;   for 1, 2 ...k  (26e)

Finally, the expression (20) holds whatever the
sinusoidal input u(t) provided this leads to a (steady-
state) signal x(t) that is T -periodic and it can be
developed in Fourier series (21). Using the filtered
version ˆ ( )Nx t (given by (23a-b)) of x(t), the Fourier-

expansion parameters ks ’s and k ’s are provided
using (26a-e). Accordingly, the complex amplitudes

( )G j can be obtained by focusing on a single
frequency component of x(t).

Fig.8. The system to be identified augmented with pre-
compensator.

Remark 2.
Practically, it is judicious to limit the Fourier-
expansion of x(t) to those frequencies for which the
Fourier-series coefficients are significant.
Furthermore, it readily follows from (20) that:

    

 

0

0
0

( ) sin ( ), ( )

          sin

p

k k
k

k k
k

A G j k t G j

s s k t

     

 









  





(27)

One immediately gets from (27):

2

1
0

2
k

k p

s

 

 (28)

Then it is reasonable to consider only the most
significant frequency components, specifically, the
coefficient list:

k
s ( 0,1, 2 ... )k p ).

6 Simulation
Presently, the system (3a-c) is characterized by:

0.2( )
( 0.5)( 0.2)

G s
s s


 

(29a)

5 3( ) 0.2 0.42 0.25h x x x x   (29b)

and a Backlash operators [.]F described by (1) and
is shown by Fig.9. The input nonlinearity has the
parameters: 1aS  , 1dS  , 0.5d   and 0.5d   .
The noise ( )t is a sequence of normally distributed
(pseudo) random numbers, with zeromean and
standard deviation 0.01  .

Following Section 3, we focus on the particular
model  [.], ( ), (.)F G s h defined by (4a-c), presently
characterized by:

[ ] [ ]   ( 1)aF u F u S  (30a)

0.1( )
( 0.5)( 0.2)

G s
s s


 

(30b)

5 3( ) 6.4 3.36 0.5h x x x x   (30c)

Fig.9. The Backlash operators considered in simulation.

6.1 Identification of system nonlinearities
According to the developed identification method,
the first stage consists in identifying the input and
output nonlinearities. Then, the Hammerstein-
Wiener system is excited with a piecewise constant
input (Fig.10) with 10N  . The resulting steady-
state output signal y(t) is shown by Fig.11. This
shows that 4aj  . Using the estimator (9) for

100M  , the undisturbed output estimates ˆ ( )jX M

is given by Table 1. This shows that all estimates
are quite close to their true values. Then, the
estimate ˆ ( )Mh u d  of ( )h u d  is obtained using

the set of points   ...ˆ, ( ) ; 1j j aj NU X M j  .

Pre-
compensator

u F[.]
v

G(r)
y

F-1[.] h(.)z

Identified system

xw
+

(t)

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
The input nonlinearity F[.]

v

u+d  = -0.5- d  = 0.5
aS  = S  =1d
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Specifically, let 0 5( ) ( )ˆ ˆ ˆ...
T

M M MC c c    the

coefficients vector of ˆ ( )Mh u d  . The vector ˆ
MC is

readily obtained as follows:

12 5
55 5 5

2 5
6 6 6

2 5
10 10 10 10

5
1

10

ˆ ( )1
1ˆ

ˆ1 ( )
ˆ ( )

ˆ ( )

M

X MU U U
U U U

C

U U U X M

X M
V

X M





  
  
     
  
     
 
 

  
 
 





    





(31)

where V is Vandermonde matrix. Presently,
ˆ ( )Mh u d  is given as follows:

5 4 3

2

ˆ ( ) 6.39 16.01 12.66

                    2.97 0.022 0.029
Mh u d u u u

u u

   

  
(32)

which  is  close  to  the  true nonlinearity:
5 4 3 2( ) 6.4 16 12.64 2.96 0.02 0.03.h u d u u u u u      

Then, one gets the estimate ( )ˆ 0.503Md   . It readily
follows from (12) that, the estimate ˆ ( )Mh u of the
output nonlinearity is achieved. Specifically, the
output nonlinearity estimate ˆ ( )Mh u is ˆ ( )Mh u d 
horizontally shifted at the origin. For convenience,
the nonlinearities ( )h u , ( )h u d  and ˆ ( )Mh u , and
the set of points   ...10ˆ, ( ) ; 5j j jU X M  are plotted

in Fig.12. These results show that, the output
nonlinearity estimate ˆ (.)Mh is close to the true

nonlinearity (.)h , which clearly confirms
satisfactory model accuracy.

Fig.11. The measured system output signal y(t).

Similarly, using set of decreasing points
  ˆ, ( )j jU X M , the descendant border parameters

can be accurately estimated. Specifically, apply the
decreasing sequence as illustrated in Fig.13 to the
above nonlinear system. The system output signal is
displayed in Fig.14. Then, applying the estimator (9)
(with 100M  ), the undisturbed output estimates
ˆ ( )jX M have been got and a sample of them is

shown by Table 1, which is close to the true value.
The value of dj corresponding to the decreasing
experiment is 5dj  . It follows Section 4, the HW
system boils down to the compound polynomial
function  ( )d d

jh S u S d U for

1... 2 1dNj j N   ( 1dN p j   ). It turns out
that this latter involves two unknown quantities, the
slope of the descending border dS , on the one hand,
and the parameter d  , on the other. Accordingly,
using data acquisition (i.e. jU and ˆ ( )jX M ), one
gets the estimate:

0 200 400 600 800 1000 1200 1400 1600 1800
-1

-0.5

0

0.5

1

Time (s)

Input sequence

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

The true system output

0 0.2 0.4 0.6 0.8 1 1.2

-0.05

0

0.05

0.1

0.15

0.2

0.25 h   (u)
(U  , X  )
h(u-d   )
h(u) to be identified

d+

j

^
M

^
j

+

Fig. 14.  The measured system output corresponding
to the decreasing input signal.

Fig.12. The nonlinearities ( )h u (to be
identified), ( )h u d  and ˆ ( )Mh u , and the set

of points   ( )ˆ,j j MU X .

Fig.10. Input signal used for the identification
of the system nonlinearities.
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  5 4 3

2

( ) ( )ˆ ˆˆ 6.6 16.7 13.52

       3.36 0.04 0.031

( )( )d
M M Mh S u d u u u u

u u

   

  



Consequently, using these data and knowing
ˆ (.)Mh , estimates of the parameters dS and d  are

readily obtained. The estimate of dS can be
achieved using solely the leading coefficient of
 ( ) ( )ˆ ˆˆ ( )d

M M Mh S u d  . ( )ˆ Md  can be given making

use any other coefficient. The estimate of the
descending border parameters can also be obtained
making use the complete decompositions of

 ( ) ( )ˆ ˆˆ ( )d
M M Mh S u d  (Kozen and Landau,

1989). Then, one gets the estimates of the
descending border parameters: ( )ˆ 1.01d MS  and

( )ˆ 0.49Md    . 6.1 Identification of the linear transfer )(sG
The second stage consists in identifying the system
transfer function ( )G s . Following the procedure of
Section 5, the first step consists in placing the
Backlash-Inverse operator (Fig.5) as pre-
compensator (Fig.8). The augmented system is
excited with a sine input 1 1( ) sin( )z t U t . Presently,
the choice 11 U and 1 0.01 /rd s  is made. The
resulting steady-state output signal ( )y t is shown by
Fig.15a and its filtered version ˆ ( )Nx t , obtained from

( )y t using (23a-b) with 50N  , is plotted in
Fig.15b. The internal signal ( )w t turns out to be:

 1 1 1 1( ) ( ) sin ( )w t U G j t     . Accordingly,
knowing the estimate of the output nonlinearity, the
undisturbed system output x(t) can be expressed as
follows:

     
5

1 1 1 1
0

ˆ ˆ( ) ( ) ( ) sin ( )
i i

M i
i

x t h w t c U G j t   


   (33)

with  0 5
ˆ ˆ ˆ... T

MC c c is the coefficients vector of
ˆ (.)Mh and 5p  . Indeed, using the standard

trigonometric linearization formulas, equation (33)
rewrites:

    
5

1 1 1 1
0

( ) ( ) sin ( ), ( )  (34)k k
k

x t A G j k t G j     


 

where:

 55 5 1 1
1 ˆ ( )

16
A c U G j ; 5 15 ( )    (35a)
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Fig.13. Input signal used for the identification
of the Backlash descendant border.

Fig.14. The measured system output corresponding
to the decreasing input signal.
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 44 4 1 1
1 ˆ ( )
8

A c U G j ; 4 14 ( )
2
     (35b)

   5 3
3 5 1 1 3 1 1

3 1

5 1ˆ ˆ( ) ( ) ;
16 4
3 ( )

A c U G j c U G j 

  

  

 

(35c)

   4 2
2 4 1 1 2 1 1

2 1

3 1ˆ ˆ( ) ( ) ;
8 2

2 ( )
2

A c U G j c U G j 

  

 

  

(35d)

 

 

2
0 0 2 1 1

4
4 1 1

1ˆ ˆ ( )
2

3 ˆ      ( )
8

A c c U G j

c U G j





 



(35e)

2 2
1 1 1

1
1 1

( )  ;

( ) tan

A U G j a b

b
a



   

 

     
 

; (35f)

with:

   

 

2 4
1 3 1 1 5 1 1

3
4 1 1

3 5ˆ ˆ ˆ( ) ( ) ;
4 8

1 ˆ ( )
8

a c c U G j c U G j

b c U G j

 



  

 

(35g)

Note that, all (undisturbed) resulting signals ( )u t ,
( )v t , ( )w t and ( )x t are 12 /  -periodic in steady-

state. Consider the Fourier transforms of the
periodic steady-state signal ( )x t (see(21)):

    

 

5

1 1 1 1
0

0
0

( ) ( ) sin ( ), ( )

      sin       (36)

k k
k

k k
k

x t A G j k t G j

s s k t

     

 







 

  





This equality can be made beneficial if one can
obtain accurate estimate of the (steady-state) signals

( )x t . Fortunately, this is possible using the
periodicity of undisturbed system output ( )x t .
First, operating the averaging (23a-b) on the
resulting system output ( )y t , one gets an estimate
ˆ ( )Nx t of ( )x t . Then, estimates of the modulus

( )G j and the phase ( )  are readily obtained
using only one frequency component, e.g. the
harmonic of 5th order:

1/5

5
1

1 5

ˆ161ˆ ( )
ˆN
sG j

U c


 
  

 
; 1 5

1ˆ ˆ( )
5N    (37)

Then, for the couple 1 1( , ) (1 , 0.01 / )U rd s  ,
plotting the Fourier transform modulus and phase
spectra of the undisturbed output estimate ˆ ( )Nx t
(Fig.16a-b), the frequency gain estimate 1

ˆ ( )NG j is
obtained using (37). The above procedure can be
repeated for as many times as necessary. Doing so, a
number of estimates )(ˆ

iN jG  have been got and a
sample of them is shown by Table 2. This shows
that all estimates are quite close to their true values.
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Fig.15a. Steady-state output ( )y t obtained
with ),( 11 U over one period.

Fig.15b. Undisturbed output estimate ˆ ( )Nx t
over one period of time.
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7 Conclusion
The problem of system identification is addressed
for Hammerstein-Wiener systems including memory
operator of Backlash type bordered by straight lines.
The proposed identification method is developed
using frequency and Fourier analysis techniques. All
involved estimators are shown to be consistent.
Moreover, the input nonlinearity can be Backlash or

Backlash-Inverse. The identification method also
features the fact that the linear subsystem
identification is made decoupled from the nonlinear
elements identification.

The originality of the present study lies in the
fact that the linear subsystem is of structure totally
unknown. To the author knowledge the output
nonlinearity may be noninvertible except at only
one point. Another feature of the method is the fact
that the exciting signals are easily generated and the
estimation algorithms can be simply implemented.
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