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Università Politecnica delle Marche

Dipartimento di Ingegneria dell’Informazione
Via Brecce Bianche 12, 60131 Ancona

ITALY
{a.bonci, r.deamicis, sauro.longhi}@univpm.it, emanuele.lorenzoni@tin.it

Abstract: The study and analysis of motorcycle’s critical driving situations, falls and accidents, are difficult to be
described analitically because of the simultaneity of different and complex phenomena which make the dynamics
quite elaborate. However, the controllers for active safety systems of motorcycles cannot be synthesized regardless
by a suitable analytic model of the vehicle dynamic. In this paper, an analytic model able to describe the strong
nonlinearities conveyed by the complex dynamic of a two-wheeled vehicle in curve, is presented. The model
takes into account the coupling between the in-plane and out-of-plane dynamics which is accounted for the system
nonlinear behaviour, the rear traction and the nonlinear features of the tyres dynamics. The major steps taken
to derive such a model are described. Two sets of motion equations with different levels of accuracy have been
developed making use of two different linearizations. The first one is obtained as linearization with respect to the
roll and the steer angle around the vertical position, while the second is given by the linearization with respect
to the steer angle only. A comparison between the two models for a given initial condition have been made by
simulating a real scenario representing a critical vehicle condition, the lowside fall. Results show how these two
models have no substantial differences in the description of the low side major dynamics making the simpler model
a feasible choice for a model-based design of motorcycle’s control system.
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1 Introduction
Nowadays, in the automobile industry, active safety
systems have reached a high technological level and
reliability. On the contrary, that has not happened
for the powered two wheelers (PTW), where the most
used available system is the Anti-lock Braking System
(ABS) [1]. According to recent statistics on motorcy-
cles and mopeds fatalities [2], these kind of systems
are desirable to increase rider safety. Currently, the
control system design of safety devices for PTWs rep-
resents a challenging task.

Model-based design of control systems, widely
used in automotive and aerospace sectors, represents
an efficient and suitable approach to cope with this
challenge [3]. Briefly, the model-based design ap-
proach for control systems requires the following
steps: the modeling of the plant, the synthesis of the
controller for the plant, its simulation and the con-
troller deployment.

In such approach, the plant modeling is a core
issue, mainly for systems having complex dynamic
behaviours such as automobiles and motorcycles. In
particular, the analysis of the motorcycle dynamics is

even more complex. While the study of the automo-
bile stability can be addressed adequately by consid-
ering the lateral and yaw degrees of freedom, for a
motorcycle it is also required to add the roll and the
steer angles.

When a motorcycle is leaned over in cornering,
the longitudinal and lateral friction forces acting on
the tyre-road contact point interact each other and this
interaction increases with increased roll angle [4]. As
a consequence of this feature, simple mathematical
models are not suitable to describe high cornering ac-
celerations during critical situations such as accidents
and falls.

In literature [5], analytical models addressing the
issues related to motorcycle’s behaviour in curve usu-
ally makes some major assumptions such as: steady
state cornering condition, the longitudinal and lateral
contact forces acting on the tyres are linearized or do
not interact each other [6]. In general, these works
investigate on the effects related to the balancing of
forces and moments during a turn as shown in Fig-
ure 1, where for a roll angle φ the relevant forces (fric-
tional X , Y , centrifugal and gravitational mg) acting
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Figure 1: Motorcycle in cornering condition.

on the vehicle system are reported. Their balancing
yields the value of the lateral force Y needed to main-
tain in equilibrium the vehicle in curve that is equal
to N tanφ, where N is the vertical load. However,
falls and critical conditions cannot be captured under
the aforementioned assumptions when strong acceler-
ation or braking occur. As a result, a controller able
to prevent falls should be synthesized by using more
appropriate models. On the other hand, commercial
multibody software allow to simulate adequately these
complicated phenomena, but due to their black box
nature they are not suitable for the purpose of synthe-
sis of control systems.

In this paper, after a brief introduction of a clas-
sical linear analytical model well known in literature,
two nonlinear analytical models with different com-
plexity are described and compared. They are suppos-
edly able to capture the main nonlinearities conveyed
by the motorcycle dynamic during falls. Namely, the
vehicle’s motion equations, yielded by lagrangian for-
mulation, are linearized with repect to the roll angle
and the steer angle. That operation gives the first non-
linear model. The second one is derived by linearizing
the equation of motions with respect to the steer angle
only, hence it represents a more accurate and complex
alternative for the motorcycle modelling.

A comparison between the models aforemen-
tioned has been made in order to investigate how the
different linearization affects the model capability of
capturing certain nonlinearities due to the dynamics of
the motorcycle in critical fall. Furthermore, this anal-
ysis allows to better understand whether the simpler
model can possibly represent a righteous trade-off be-
tween complexity and accuracy, which is a required
feature in the model-based synthesis of stability con-
troller for motorcycles.

The paper is organized as follows: the problem
addressed is described in section 2. A description of
the geometry of the motorcycle’s nonlinear model is
summarized in section 3. The steps needed to derive

its equations of motion and a nonlinear model for the
contact forces are given in section 4. The formula-
tions of all the models derived in this paper are given
in section 5. A brief description of the lowside phe-
nomenon and the simulations results are presented in
section 6. Section 7 concludes the paper.

2 Problem statement and related
works

Active safety systems for motorcycles cannot be syn-
thesized regardless by a suitable dynamic model of the
vehicle. The model should be able to describe its be-
haviour even during falls. Now, the following ques-
tions arise. Which analytical model may be suitable
to describe the dynamics of the vehicle in complex
situations such as the fall during cornering? What is
the right trade-off between simulation accuracy and
model’s complexity? This article proposes the analy-
sis of the results obtained by simulating a typical PTW
fall described with a motorcycle’s analytic model. The
model has the minimum degree of complexity needed
to describe these dynamics (two rigid bodies) and two
different assumptions of accuracy have been made on
it: the roll angle dynamic in both conditions linear and
nonlinear have been considered. The comparison of
the two behaviours shows the effects of the roll angle
dynamic on the accuracy of the results of the model
during fall situations when roll angles are involved.

An analytical model is used to address the low-
side phenomenon whose complex dynamics usually
requires the use of multibody software. The model
is based on the author’s prior works. It removes the
condition of steady-state in cornering and introduces
the rear traction given by the engine, the tyre fric-
tion forces and their interaction. The proposed model
has been already tested in several less critical situa-
tions: in [8] the motorcycle dynamics in straight run-
ning, acceleration and braking with slippages have
been considered; furthermore, the cornering situation
with no slippages has been analyzed; in [9] the au-
thor’s model has been compared with a well estab-
lished model proposed in literature considering the
motorcycle in cornering condition with no slippages;
in [10] the same model has been compared with its
nonlinear version with respect the lean angle, here the
pure rolling during the cornering has been assumed
for both the wheels. In this paper a further analysis
of the model in critical cornering condition with slip-
pages has been done.

Generally the analytical study and analysis of crit-
ical driving situations, falls and accidents, is a com-
plex task since these events take place due to the si-
multaneity of different circumstances involving the
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trim of the motorcycle in motion, the speed and the
increase of the lean angle. This analytical complexity
augments when considering the loss of adherence both
in acceleration and braking that may lead the panicked
rider to the typical lowside fall. A lowside may occur
while approaching a curve with excessive velocity and
braking. Due to the wheels loss of adherence, the rider
loses the vehicle control and they both fall laterally.

3 Geometry of the model
As shown in Figure 2, the model uses a multibody
approach and it has been developed in an analytical
way: the considered motorcycle consists of two lon-
gitudinally symmetric rigid bodies which, by means
of appropriate constraints, interact each other:
◦ the rear frame, represented by its mass centre Gr,

includes the engine, the petrol tank, the seat, the rear
wheel with radius Rr and the rider;

◦ the front frame, represented by its mass centre Gf
and constrained to the rear frame by means of a rev-
olute joint. It includes the handlebars, the fork, the
steering mechanism and the front wheel with radius
Rf .
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Figure 2: Geometric parameters of the model.

Besides, the main geometric parameters are the
heights of the two mass centres h and j respect to the
ground level, the wheel base l1 i.e. the distance be-
tween the contact points P and S and the distances
of the wheels from the point A, l and b respectively.
Lastly, the steering mechanism is described by the
steering head angle ε and the normal trail t.

Each rigid body has 6 degrees of freedom (dofs)
q, of which 5 are inhibited by the joint:

q = 6× 2− 5 = 7. (1)

In conclusion, the model that considers the motorcy-
cle composed of two rigid elements has at least 7 dofs.
The dofs chosen are: the longitudinal and lateral ve-
locity of the motorcycle respectively ẋ1, ẏ1, the yaw

rate ψ̇, the roll angle φ, the rotation around the steer δ
and the angular velocities θ̇r, θ̇f . Moreover, the mo-
torcycle moves on a flat road surface, the effects of
suspensions are not considered here and the vertical
and pitch motions are neglected. The latter assum-
pions are not restrictive for the comparative analysis
proposed in the next sections as the considered mod-
els work in the same conditions. Figure 3 shows the
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Figure 3: The reference frames.

reference frames needed to describe the position and
orientation of the two rigid bodies Gr and Gf as re-
ported in table 1. The transformation matrices allow-

reference frame (r.f.) description

Σ0 (O ,X0 ,Y0 ,Z0 ) inertial reference frame
Σ1 (O ,X1 ,Y1 ,Z1 ) rear reference frame rotating Σ0

of a yaw angle ψ wrt Z0

Σ2 (O ,X2 ,Y2 ,Z2 ) rear reference frame rotating Σ1

of a roll angle φ wrt X1

Σ3 (O ,X3 ,Y3 ,Z3 ) rear reference frame rotating Σ2

of a pitch angle ε wrt Y2

Σ4 (O ,X4 ,Y4 ,Z4 ) front reference frame rotating Σ3

of a steer angle δ wrt Z3

Table 1: The reference frames.

ing to switch between coordinate systems are given
by:

Rψ =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1


Rφ =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ


Rε =

 cos ε 0 sin ε
0 1 0

− sin ε 0 cos ε


Rδ =

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

 .

(2)
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In literature, most of the analytical models dealing
with a motorcycle in cornering consider the vehicle in
steady-state conditions [5], hence situations such as
acceleration and braking in curve are not fairly cov-
ered. The model herein presented is able to describe
these conditions by including the input torque Trw
provided by the rear engine. Furthermore, the rider is
rigidly attached to the rear body and he maneuvers the
motorcycle by applying the torque τ on the handlebar.
Finally, referring to Figure 3, Xf , Yf , Xr and Yr are
the longitudinal and lateral friction forces applied on
the tyre-ground contact points S and P respectively,
depicted in Figure 2.

4 Equations of motion
After defining the geometry and the model reference
frames, the equations of motion can be derived by
solving the set of Lagrange’s equations described by:

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+
∂V

∂q
= Qq, (3)

where:
◦ q = [x1 y1 ψ φ δ θr θf ]T is the system’s dofs vector;

◦ T (q̇, q) is the total kinetic energy of the system;

◦ V (q) is the total potential energy of the system;

◦ Qq(q̇, q, u) is the vector of the generalized external
forces acting on each dof qi ∈ q, i = 1 . . . 7;

◦ u = [τ, Trw]T is the inputs vector.
In order to derive the equations of motion, the

system (3) must be solved. The given geometry of
the system and the hypothesis introduced in prior sec-
tion make it possible to approach the solution analiti-
cally despite all the features taken into account by the
model. However, the analytical representation of the
solution of (3) gives a set of lengthy equations which
cannot be reported here due to space limitations. In
the following, the procedure needed to derive these
equations will be provided. The procedure aforemen-
tioned involves the computing of the total kinetic en-
ergy T , the potential energy V and the generalized
forces Qq of the whole system.

4.1 The kinetic energy
In this subsection we derive the expression for the to-
tal kinetic energy of the system. It is given by the sum
of the kinetic energies of the two rigid bodies compos-
ing the system:

T = Tr + Tf . (4)

where the subscripts {r, f} denotes the rear and the
front respectively. For each rigid body including the
wheels, it is possible to write:

Tr = T ∗r + Tωrw

Tf = T ∗f + Tωfw

(5)

where T ∗r and T ∗f are the kinetic energies of the bodies
and Tωrw and Tωfw

are the wheels rotational kinetic
energies not accounted for by T ∗r and T ∗f . Detailing
the expressions T ∗r and T ∗f it gives:

T ∗r =
1

2
Mr v

2
r +

1

2
Ir ω

2
r (6a)

T ∗f =
1

2
Mf v

2
f +

1

2
If ω

2
f , (6b)

where Mr, Mf are the masses of the rigid bodies, vr,
vf are the translational velocities of mass centres Gr
andGf , ωr, ωf are the angular velocities of mass cen-
tres Gr and Gf , Ir, If are the moments of inertia
of the rigid bodies while Tωrw and Tωfw

are the ex-
tra terms due to the rotational kinetic energies of the
wheels. In the next paragraphs, the energies T ∗r , T ∗r ,
Tωrw and Tωfw

will be computed.

4.1.1 The kinetic energy of rear body

Referring to Figure 4, taking into account all the de-
grees of freedom of Gr, the longitudinal and lateral
velocity of the motorcycle ẋ1, ẏ1, the roll φ and yaw
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Figure 4: Geometry of rear rigid body.

ψ angles, the translational velocity vr is:

vr =

ẋ1 − h sinφψ̇

ẏ1 + h cosφφ̇

h sinφφ̇

 , (7)

in which h represents the height of Gr from the
ground considering the vehicle in vertical position. In
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a similar way the angular velocity ωr is:

ωr
∆
=

prqr
rr

 =

 φ̇

sinφψ̇

cosφψ̇

 . (8)

Because the axes of reference frame
Σ2(O,X2, Y2, Z2) are not parallel to the princi-
pal axes through mass centre Gr, the motorcycle’s
matrix Ir is given by:

Ir =

 Irx 0 −Crxz
0 Iry 0

−Crxz 0 Ifz

 . (9)

Sobstituting the expressions (7), (8) and (9) in (6a),
the rear kinetic energy is:

T ∗r = 1
2 Mr[(ẋ1 − h sinφψ̇)2 + (ẏ1 + h cosφφ̇)2 +

(h sinφφ̇)2] + 1
2Irxp

2
r + 1

2Iryq
2
r + Irzr

2
r −

Crxzprrr. (10)

The wheel is a rigid part of the rear body and it rotates
along the y-axis with velocity θ̇r, so its rotational ki-
netic energy is:

Tωrw = iry

(
qrθ̇r +

1

2
θ̇2
r

)
, (11)

where iry is its polar moment of inertia. Adding the
latter’s contribution to (10), the total kinetic energy of
the rear frame Tr becomes:

Tr = 1
2 Mr[(ẋ1 − h sinφψ̇)2 + (ẏ1 + h cosφφ̇)2 +

(h sinφφ̇)2] + 1
2Irxφ̇

2 + 1
2Iry(sinφψ̇)2 +

Irz(cosφψ̇)2 − Crxz cosφφ̇ψ̇ +

iry

(
sinφψ̇θ̇r + 1

2 θ̇
2
r

)
. (12)

4.1.2 The kinetic energy of front body

Similarly, by repeating the same steps formerly de-
scribed for the rear kinetic energy, after calculating
the translational velocity vf and the angular velocity
ωf of mass centreGf , the front kinetic energy is given
by:

Tf = 1
2 Mf [(ẋ1 − e cos ε sin δδ̇ − (a sin ε sinφ+

e sin δ cosφ+ e sin ε cos δ sinφ+ f cos ε sinφ)ψ̇)2 +

(ẏ1 +a sin ε cosφφ̇− e sin δ sinφφ̇+ e cos δ cosφδ̇+

e sin ε cos δ cosφφ̇− e sin ε sin δ sinφδ̇ +
f cos ε cosφφ̇+(a cos ε +e cos δ cos ε−f sin ε)ψ̇)2+

(a sin ε sinφφ̇+ e sin δ cosφφ̇+ e cos δ sinφδ̇ +

e sin ε cos δ sinφφ̇+ e sin ε sin δ cosφδ̇ +
f cos ε sinφφ̇)2] + 1

2 Ifx[(cos ε cos δφ̇+ sin δ sinφ−
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Figure 5: Geometry of front rigid body.

sin ε cos δ cosφ)ψ̇]2 + 1
2 Ify[− cos ε sin δφ̇+

(cos δ sinφ+ sin ε sin δ cosφ)ψ̇]2 + 1
2 Ifz[δ̇ +

sin εφ̇+ cos ε cosφψ̇]2 + ify[(− cos ε sin δφ̇+

(cos δ sinφ+ sin ε sin δ cosφ)ψ̇)θ̇f + 1
2 θ̇

2
f ], (13)

where:

ify[(− cos ε sin δφ̇+ (cos δ sinφ+

sin ε sin δ cosφ)ψ̇)θ̇f + 1
2 θ̇

2
f ] (14)

represents the extra term Tωfw
due to the front wheel

rotational kinetic energy. Adding up the expres-
sions (12) and (13) it yields the total kinetic energy
of the system.

4.2 Potential energy
The potential energy of the system is the sum of the
potential energies of the two rigid bodies. Indicating
with V the total potential energy and with Vr and Vf ,
the rear and front ones respectively, we can write:

V = Vr + Vf = Mrgzr +Mfgzf , (15)

where g is the gravitational acceleration and zr and zf
are the heights of Gr and Gf respect to the ground.
According to the orientations of the vehicle repre-
sented in figures 4 and 5 the potential energy is given
by:

V = Mrgh cosφ+Mfg(a sin ε cosφ−e sinφ sin δ+
e sin ε cos δ cosφ+ f cos ε cos ε). (16)

In the next subsection the vector of the generalized
forces appearing in equation (3) will be computed.

4.3 Generalized forces
The next step to solve the system (3) requires the com-
puting of the vector of the generalized forces Qq. Its
components act on each dof qi ∈ q and is given by:

Qq = [Qx1 , Qy1 , Qψ, Qφ, Qδ, Qθr , Qθf ]. (17)
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If qi has the dimension of a length, the corresponding
generalized force Qqi is a force, while if qi has the
dimension of an angle, the corresponding generalized
force Qqi is a torque.
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Figure 6: Top view of motorcycle showing the tyre
forces in the ground plane.

In order to make easier the computation of Qx1
and Qy1 the reader can refer to Figure 6. By defin-
ing [Xi; Yi; Zi]

T the forces acting on the tyre contact
point, where the subscript i = r, f indicates the rear
or the front tyre, the generalized forces are computed
simply by considering the balance of the forces along
the x and y-axes:

Qx1 = Xr +Xf cos γ − Yf sin γ

Qy1 = Yr + Yf cos γ +Xf sin γ,
(18)

where the parameter γ is the effective front wheel
steer angle.

Referring to Figure 3 and considering the sub-
set q∗ = [ψ, φ, δ, θr, θf ] of q, and Q∗q =
[Qψ, Qφ, Qδ, Q.θr , Qθf ] of Qq, it yields:

Qψ = l Yf − Yr b
Qφ = −t sin δ(Zf cosφ− Yf sinφ)

Qδ = −Kδ̇ + t[{(Xf cos γ − Yf sin γ) cos ε

+ (Yf sinφ− Zf cosφ) sin ε} sin δ

− (Yf cosφ+ Zf sinφ)] + τ

Qθr = −Trw +RrXr

Qθf = RfXf ,

(19)

where Q∗q are the torques acting on the vehicle, Trw is
the rear traction, τ is the torque applied by the rider to
the handlebar, K is a generic steering damper coeffi-
cient, b, l and t are parameters listed in table 2.

In order to determine the expression of the angle
γ refer to Figure 7 that shows the front wheel in some
generally displaced position. Introducing a unit vector
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Figure 7: The front camber angle.

î directed along the y-axis of the wheel:

î =

 − sin δ cos ε
cos δ cosφ− sin δ sin ε sinφ
cos δ sinφ+ cosφ sin δ sin ε

 (20)

the angle γ can be easily computed from the compo-
nents of (20):

tan γ = − ix
iy

=
sin δ cos ε

cos δ cosφ− sin δ sin ε sinφ
. (21)

The unknown friction forces Xr, Yr, Xf , Yf
of (18) and (19) will be computed in the next para-
graph, while as anticipated in the assumptions, the
vertical motion is neglected and then the forces Zr =
Zf = Z have constant value as reported in table 2.

4.4 The contact forces
In order to describe the motorcycle behaviours on a
curve and in critical situations, the tyre friction forces
have to be modeled adequately. Indeed, they transfer
the power provided by the engine through the tyre-
ground contact and they are needed to push the vehicle
and keep it in balance while running the trajectory in
curve.

Literature proposes several tyre models [14],
among which, purely theoretical models such as the
brush model can be found [11]. This model is able
to describe most of the tyre conditions. Other kinds
of models are empirical hence they do not provide
any theoretic foundamentals but deliver accurate de-
scriptions of the tyres behaviour. Among the empiri-
cal models, the “magic formula” became the standard
for the vehicle dynamic simulations [12]. The model
is described by the following expression:

y(x) = ZD sin(C arctan{Bx
− E[Bx− arctan(Bx)]}), (22)
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where the variables and parameters in the equation
are: x is the input variable, y is the output variable
and B, C, D and E represent the curve parameters
describing the road adhesion conditions as shown in
Figure (8). The equation (22) allows to calculate:
◦ the longitudinal forces Xr and Xf as a function of

the longitudinal slip;

◦ the lateral forces Yr and Yf as a function of the lat-
eral slip and roll angles.

Based on the SAE J670 definitions, the longitudinal
slip λi is defined as:

λi = − ẋi −Riθ̇i
ẋi

, (23)

where ẋi, θ̇i andRi are respectively the wheel forward
velocity, the wheel angular velocity and the wheel’s
radius and the subscript i = f, r refers to front and
rear tyre. The coefficient λi is positive in traction and
negative in the case of braking. The lateral slip αi is
defined as:

αi = − arctan
ẏi
ẋi
, (24)

where ẋi and ẏi are the forward and lateral velocity of
the wheel. Using expressions (23) and (24), the magic
formula (22) for the longitudinal force holds:

X0i = Z Dx sin(Cx arctan{Bxλi
− E[Bxλi − arctan(Bxλi)]}), (25)

where λi is given by (23). For motorcycle tyres, the
roll angle (or camber angle) can reach up to 50◦-55◦ in
extremis cases. In order to take into account the lateral
slip and the camber angle, it is possible to define the
so-called equivalent sideslip as:

αieq = αi +
kφ
kα
φi, (26)

where αi is the lateral slip defined in (24), φi is the
wheel camber angle, kφ and kα are respectively the

camber and the cornering stiffnesses. Using the equiv-
alent sideslip (26), the lateral force becomes:

Y0i = Z Dy sin(Cy arctan{Byαieq
− E[Byαieq − arctan(Byαieq)]}). (27)

Besides, for a tyre running a curve, when both the
longitudinal and lateral forces are present, it is pos-
sible to describe their interaction by considering the
following theoretical slips quantities:

σxi =
λi

1 + λi

σyi =
tanαieq
1 + λi

,

(28)

whose module is:

σi =
√
σ2
xi + σ2

yi. (29)

Therefore, making use of the expressions (28)
and (29), the friction forces hold:

X ′i =
σxi
σi
X0i

Y ′i =
σyi
σi
Y0i,

(30)

whereX0i and Y0i are given by (25) and (27). Finally,
to take into account the elasticity of the tyres the fol-
lowing equations must be introduced:

ξx
ẋ1
Ẋi +Xi = X ′i

ξy
ẋ1
Ẏi + Yi = Y ′i ,

(31)

where ξx and ξy are the tyre longitudinal and lateral
relaxation lengths and X ′i and Y ′i are given by (30).
The expressions ofXi and Yi computed in (31) for the
rear and front tyre are the friction forces of the model
showed in Figure 3.

5 Formulation of the motorcycle
models

In the previous sections all the variables needed to
compute the equations of motion and the forces for
the motorcycle’s model have been explained. Briefly,
sobstituting in (3) the kinetic energy T , the poten-
tial energy V and the generalized forces Qq given
in (4), (15), (18) and (19), a set of 7 nonlinear sec-
ond order differential equations are obtained. Further-
more the expressions (31) describing the dynamics of
the contact forces Xr, Xf , Yr and Yf , add 4 more
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nonlinear first order differential equations to the sys-
tem. Using the dofs q, it is possible to define the state
vector Xq as:

Xq = [φ δ ẋ1 ẏ1 ψ̇ φ̇ δ̇ θ̇r θ̇f ]T . (32)

Besides, by defining the contact forces vector XF as:

XF = [Xr Xf Yr Yf ]T , (33)

it is possible to represent the whole nonlinear system
in a general state-space representation:

S :

{
Ẋq = f1(Xq, u) (34a)

ẊF = f2(XF ) (34b)

where u = [τ Trw]T are the external input. The
subsystem (34a) represents the set of 7 nonlinear la-
grangian equations of the system (3) and the subsys-
tem (34b) represents the 4 nonlinear equations of the
contact forces expressed in (31).

As introduced in section 2, such a system delivers
lenghty and complex equations, hard to be managed.
Its usage as a model in designing a controller is to be
excluded. However, this model could be considered as
a validation tool for less accurate models that should
be used for that purpose. Therefore, in this paper, the
system S will be represented as the starting point for
further derivations and analysis of models with differ-
ent accuracy.

In order to find a reliable analytical model for
the purpose of this paper, three kind of models could
be derived from the system S. A first one has been
widely investigated in literature [7], but it is of poor
practical interest to the purposes of this paper. This
model has the lowest accuracy and the simpler analyti-
cal equations. It has been obtained assuming the vehi-
cle at constant longitudinal speed and only small per-
turbations from straight running are considered. Since
the longitudinal velocity of the vehicle is assumed to
be constant, the longitudinal dynamics disappear and
the longitudinal tyre forces Xr and Xf become zeros.
In addition, the tyres vertical load Z has been consid-
ered constant and no slippages occur. Under these as-
sumptions the subsystems (34a) and (34b) have been
linearized with respect to the roll and the steer angle
around the vertical position (φ, δ) = (0, 0). Defining
the state vector x = [φδ ẏ1 ψ̇ φ̇ δ̇ YrYf ]T , the nonlinear
model (34) leads to the following time invariant linear
system:

S1 : ẋ = A1(ẋ1)x+B1τ, (35)

in which ẋ1 is the longitudinal speed of the vehicle.
Matrix A1(ẋ1) and B1 are reported in appendix. Ma-
trix A1(ẋ1) only depends on the constant longitudinal

speed (ẋ1) hence the simulations in acceleration or
braking situations are not possible. Moreover, analyt-
ical models such as (35) are too simple and then not
able to capture the strong nonlinearities that arise in
cornering conditions where the coupling between the
in-plane and out-of plane dynamics has to be consid-
ered. Based on the aformentioned observations, this
model is excluded from further analysis.

A second kind of model S2 has been derived
from (34) by linearizing the equations of motion (34a)
with respect to the roll and steer angles around the
vertical position (φ, δ) = (0, 0). A nonlinear model
for the friction forces and their interactions have
been considered (equations (31)). Finally by intro-
ducing the rear engine traction Trw has allowed the
description of the motorcycle dynamics in acceler-
ation and braking in straight running or in corner-
ing and the coupling between the longitudinal and
lateral dynamics. Defining the state vector x =
[φ δ ẋ1 ẏ1 ψ̇ φ̇ δ̇ θ̇r θ̇f Xr Xf Yr Yf ]T , leads to the
nonlinear system in the state and affine in the input,
having dynamics:

S2 : ẋ = A2(x)x+B2 u, (36)

where the matrices A2(x) and B2 are reported in Ap-
pendix. As shown, despite the small angle assump-
tion, matrix A2(x) is continuous (Ck, k ≥ 0) and
B 6= 0 ∀x. In particular there are two kind of non-
linearities: the products ẋiẋj which represent the cen-
trifugal effects when i = j and the Coriolis effects
when i 6= j. These kind of effects are inherent non-
linear phenomena and arise directly from the kinetic
energy T of the system 4. Furthermore, the additional
nonlinearities are due to the trigonometric functions
sin(·) and arctan(·) describing the friction forces X ′i
and Y ′i and their interaction.

The third model S3, derived from the system (34),
is the more accurate. It is used in this paper for test-
ing the model S2 by comparison in the simulation of
a critical motorcycle dynamic. This model is given
by linearizing the system S with respect to the an-
gle δ. The roll dynamics is kept non linear as well
as the friction forces dynamics. For a motorcycle on a
curve the steer angle δ remains limited to a few de-
grees endorsing the linearization assumption, while
the lean angle φ usually can assume large values, then
the small approximation for the roll angle may be ex-
cessive. Therefore, linearizing the steer angle δ and
defining the same state vector x as for the system (36),
it yields:

S3 : ẋ = A3(x, cosφ, sinφ)x+B3 u. (37)

Due to the lenght of the matrix A3(x, cosφ, sinφ),
system S3 is not reported in this paper. In addi-
tion to the properties previously described for A2(x),
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in A3(x, cosφ, sinφ) the roll dynamic is entirely de-
scribed by the functions cosφ e sinφ.

Their behavior will be compared and the results
will be shown in the next paragraph.

6 Lowside fall simulations
A motorcycle may experience a lowside fall while en-
tering in a curve with excessive speed and instinc-
tively the rider brakes hard to keep the trajectory. The

Figure 9: The lowside fall. (Source: www.zimbio.com)

strong rear braking results in the rear wheel losing lat-
eral adherence and the increase of the roll and yaw
angles. In case the panicking rider ignores the loss
of adherence and keeps on braking, the slippage never
stops because the lateral force acting on the rear wheel
is always lesser than the force necessary to keep the
vehicle in balance. In particular, the required friction
force is proportional to tanφ (Figure 1). In this case
the roll angle increases progressively and the vehicle
ends up to fall laterally and drag the rider down (Fig-
ure 9).

In the following it will be investigated the effect
of the roll angle on the motorcycle dynamic by sim-
ulating the vehicle during a lowside fall and compar-
ing the behaviour of the linearized model against the
nonlinear model. In the following figures the trends
of the variables involved in the simulations are com-
pared. The subscripts “L” and “NL” stand for the lin-
ear and the nonlinear case respectively, “r” and “f”
stand for rear and front. The trajectory, the roll angle
φ, the yaw angle ψ, the lateral forces Yr and the lon-
gitudinal forces Xr acting on the rear wheel, the rear
wheel’s angular velocity θ̇r, the front wheel’s angular
velocity θ̇f have been compared. The simulations start
with the motorcycle runnnig the trajectory depicted in
Figure 10. The vehicle engages the curve at 40 m/s
(144 km/h) with roll angle φ of about 40◦, as shown
in Figure 12.

The trends of the variables yield by the linear
model and the nonlinear model are very similar till
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the brake is applied. Figure 11 shows the strong neg-
ative rear torque applied on the rear wheel in the time
window 5-6.5 seconds. This torque simulates the hard
braking applied by the rider. As shown in Figure 13,
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Figure 13: The rear lateral and longitudinal forces.

during the same time window the longitudinal forces
XrL , XrNL acting on the rear wheel (also known as
the braking forces) show a fast growing trend as ex-
pected. Figure 14 shows that the braking action leads
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Figure 14: The rear theoretical slips.

to an increase in the rear longitudinal slip angles σxL ,
σxNL . As a result of the longitudinal slip, the rear lat-
eral slips σyL , σyNL increase as well because the rear
lateral force Yr needed to maintain the vehicle in bal-
ance are reached with a greater rear slip angle in both
linear and nonlinear cases. The rear wheel’s angular
velocities θ̇rL , θ̇rNL decrease more strongly with re-
spect to the relevant front wheel’s angular velocities

θ̇fL , θ̇fNL
(Figure 15). As the braking force reaches
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Figure 15: The rear and front angular velocities.

its maximum at 6 seconds (Figure 11), a slight dif-
ference on the rear wheel’s angular velocities can be
observed between the linear and nonlinear cases, but
still they maintain the same trend. The roll angles
drop progressively in both cases although the trends
are slightly different as shown in Figure 12. In Fig-
ure 13 the lateral forces YrL and YrNL acting on the
rear wheel are shown. During the braking, the force
YrL starts decreasing more rapidly than YrNL but in
both cases these values tend to decrease progressively
and they are not sufficient to keep the motorcycle in
balance hence the slip angle of the rear wheel contin-
ues to grow as well as the roll angles φL and φNL. At
6.5 seconds the rider starts decelerating but the roll an-
gle has now reached such a value that it is impossible
for the rider to regain the correct attitude of the vehicle
in both cases. Indeed, around 6.2 seconds the motor-
cycle reaches 90◦ in the roll angle hence it falls down
and the simulation ends. The trajectories depicted in
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Figure 16: The longitudinal velocity.

Figure 10 show little difference between the linear and
the nonlinear case, precisely in the first case the fall
occurs slightly sooner than in the nonlinear case. The
graphs clearly show that the linearization on the roll
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angle φ is able to describe most of a lowside fall dy-
namic, in particular this event occurs slightly in ad-
vance respect to the nonlinear case, but the trajectory
run by the vehicles are very similar. The major dif-
ference stands on the final longitudinal velocity that
in the linear case reaches a smaller value (Figure 16).
It is worth noting that the general vehicle dynamic in
this critical condition is strongly affected by the tyres
friction forces. The trends of the dynamics variables
obtained in the simulations are in line with what was
expected. This results push the authors to address a
deeper analysis of the model in future works.

7 Conclusion
The most of the works dealing with motorcycle’s dy-
namic simulation and synthesis of controllers are be-
ing carried out with the aid of software multibody and
at the best of author’s knowledge, simulations of criti-
cal situations such as the lowside fall have never been
treated by means of analytical tools. In order to plug
this lack, in this paper a nonlinear model of a motor-
cycle has been presented along with the foundamental
steps which are to be taken to derive the set of its dif-
ferential equations of motions (model S). Given the
complexity of such a model, in this paper the analysis
has involved other two nonlinear models, herein called
S2,S3, derived from S and presenting increasing ac-
curacy. The model S2 represents a nonlinear model
derived by linearizing the system S with respect to
the roll and steer angles around the vertical position
and the modeling of the friction forces has been kept
non linear. Such a model is able to capture the most
of the motorcycle dynamic with a degree of accuracy
which has to be evaluated in the perspective of a possi-
ble usage in the design of stability controllers. To this
purpose, in this paper, the system S2 has been com-
pared with the more accurate model S3 in the simu-
lation of the low side fall of a motorcycle. The sys-
tem S3 has been derived by keeping the roll dynamic
nonlinear. The comparison of the low side simulation
have shown that the model S2 is able to capture with
fair accuracy the critical phenomenon at issue hence it
could represent a good trade-off between complexity
and accuracy. Further analysis towards the properties
of the system S2 have to be investigated in order to
evaluate a possible usage of this system in a model-
based design of a stability controller.
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A Physical parameters
The motorcycle physical parameters are listed in ta-
ble 2.

parameter notation value u.m. (SI)

Mf mass of front frame 30.6472 kg
Mr mass of rear frame 217.4492 kg
Z vertical force −1005.3 N
Irx rear frame inertia x axis 31.184 kg m2

Irz rear frame inertia z axis 21.069 kg m2

Crxz product of inertia xz 1.7354 kg m2

Ifx front frame inertia x axis 1.2338 kg m2

Ifz front frame inertia z axis 0.442 kg m2

ify = iry front and rear wheel inertias 0.7186 kg m2

Crxz product of inertia xz 1.7354 kg m2

ε caster angle 0.4715 rad
a distance between A and B 0.9485 m
b distance between A and P 0.4798 m
e x position of Gr 0.024384 m
f z position of Gf 0.028347 m
h z position of Gr 0.6157 m
l distance between A and S 0.9346 m
Rr rear wheel radius 0.3048 m
Rf front wheel radius 0.3048 m
t trail 0.11582 m

Table 2: Motorcycle physical parameters.
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B Dynamical matrices of the derived systems

A1(ẋ1) =



0 0 0 0 1 0
0 0 0 0 0 1

9.005 0.6321 0 0.3104ẋ1 0.00222ẋ1 0.02− 0.01163ẋ1

−12.1 −3.382 0 −0.3692ẋ1 0.003937ẋ1 0.03373ẋ1 + 0.3491
0.7212 −0.05211 0 −1.6ẋ1 −0.02379ẋ1 0.01685− 0.005704ẋ1

280.6 128.8 0 −1.715ẋ1 4.58ẋ1 −0.04993ẋ1 − 15.57
5441ẋ1 0 −64933 31155 0 0
3911ẋ1 43266ẋ1 −46566 −43522 0 5393

0 0
0 0

−0.006248 −0.003382
−0.009621 0.02997
0.008337 0.003054
0.02176 −0.317
−4.101ẋ1 0

0 −4.167ẋ1


B1 =



0
0

0.008737
−0.05537
−0.01646

2.302
0
0



A2(x) =



0 0 0 0 0
0 0 0 0 0

0 0 0 ψ̇ 6e−3δ̇ + 0.11ψ̇

−27.0 −1.9 0 5.8e−3ψ̇δ 5.6e−3δ̇δ − 0.02θ̇r − 1.0ẋ1 − 0.011θ̇f + 6.1e−4ψ̇δ

−0.29 −2.6 0 −0.037ψ̇δ 4.7e−3θ̇r − 0.015θ̇f + 5.6e−16ẋ1 − 1.5e−3δ̇δ − 3.9e−3ψ̇δ

43 2.9 0 −0.011ψ̇δ 0.017θ̇f + 0.033θ̇r − 2.0e−15ẋ1 − 9.2e−3δ̇δ − 1.2e−3ψ̇δ

266.0 133.0 0 1.5ψ̇δ 0.74θ̇f − 0.017θ̇r − 6.7e−16ẋ1 + 0.014δ̇δ + 0.16ψ̇δ
0 0 0 0 0

0 0 0 0 −0.45δ̇
0 0 10X ′r 0 0
0 0 10X ′f 0 0

0 0 4.1Y ′r 0 0
0 0 4.2Y ′f 0 0

1 0 0 0 0 0
0 1 0 0 0 0

1.2ψ̇ 2.7e−3δ̇ 0 0 4.0e−3 4.0e−3

5.6e−3θ̇r − 1.8e−3θ̇f − 0.011δ̇δ + 0.019ψ̇δ 1.6e−5δ̇δ − 0.01θ̇f − 0.059 0 0 2.3e−5δ −4.3e−3δ

0.017θ̇f − 0.027θ̇r + 2.6e−3δ̇δ − 0.047ψ̇δ 0.38− 9.9e−5δ̇δ − 5.6e−3θ̇f 0 0 −1.5e−4δ −4.6e−3δ

7.3e−3θ̇f − 4.7e−3θ̇r + 0.018δ̇δ − 0.033ψ̇δ 0.019θ̇f − 2.9e−5δ̇δ + 0.11 0 0 −4.4e−5δ 6.7e−3δ

0.058θ̇r − 1.4θ̇f − 9.4e−3δ̇δ + 1.8ψ̇δ 7.5e−3θ̇f + 4.1e−3δ̇δ − 16.0 0 0 6.2e−3δ 0.24δ

−ψ̇ 0 0 0 0.29 0

0.89δ̇ − ψ̇ 0 0 0 0 0.42
0 0 0 0 −10.0ẋ1 0
0 0 0 0 0 −10ẋ1

0 0 0 0 0 0
0 0 0 0 0 0
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0 0
0 0
0 0

0.019 0.01
−0.018 0.026
−0.021 −0.013
0.035 −0.31

0 0
0 0
0 0
0 0

−4.1ẋ1 0
0 −4.2ẋ1



B2 =



0 0
0 0
0 0

8.7e−3 0
−0.055 0
−0.016 0

2.3 0
0 −0.95
0 0
0 0
0 0
0 0
0 0


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