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Abstract:- this work presents a design and implementation of discrete variable gain controllers, which are used 
for regulating industrial systems. The design is derived from the classical discrete deadbeat response approach. 
The design is based simply on de termining a variable gain for each discrete sample such to accomplish the 
regulation in finite steps equal the system order. The gain computation is performed numerically by solving a 
system of nonlinear coupled equations using one of the known evolutionary techniques, the genetic algorithm 
augmented with Newton-Raphson method. Two industrial control systems are considered to testify the 
designed controller for implementation. The efficacy of the proposed method for parameter variations is 
explored. Moreover, the results are compared with that based on a finite number of control steps. 
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1. Introduction 
In industry practice, most useable machines are 
continuous systems that have to be regulated to 
fulfill certain jobs such as electro-hydraulic 
servomechanism. After the innovation of the digital 
elements, most of these systems became regulated 
by digital controllers, which replace the old 
analogue compensators. The first version of this 
replacement is copying the frequency approach, 
which was used with continuous systems. This 
brings the modeling of the sampled-data system, 
which utilize the z-transform tool. 
For discrete systems, one interesting approach of 
design, which is not correlated to continuous design 
approaches, is that named deadbeat response. It is 
the response, which reaches the desired steady-state 
value in an infinite number of sampling intervals. 
Such response might be included with the time-
optimal approaches, specifically, the H2 linear 
quadratic regulating framework [1, 2]. However, 
analysis shows a crucial problem of demanding an 
excessively high control effort, and consequently, of 
an oscillated inter-sampling response. When 
constraints on the control action are imposed, the 
settling time of the controlled system will be 
prolonged for additional sampling periods. An 
alternative approach to the z-transform is to sample 
a continuous signal; it is the control of a continuous 
system by a discrete controller [3, 4]. 
Depending on the complexity of the control system, 
designers chose the methodology either based the 

transfer function or the state space. For complex 
industrial control system, it i s found that the state 
space approach offers several methods of design, 
including optimum approaches [5].Of the known 
substantial state space advantages, it is also 
mentioned the finite number of control steps, or the 
finite sampling time. On the other hand, in industrial 
systems, not all states are available for control and 
some sort of state estimator has to be included [6]. 
Furthermore, for high-order systems, the 
computation burden of the finite control steps 
becomes large. 

In a sampled data system, the computer function is 
to implement a control strategy, which is a control 
algorithm stored in its memory. For real time 
environments, it is recommended that the control 
algorithm is as simple as possible. Most design 
methods result controllers represented by pulse 
transfer functions, which in turn translated to 
difference equations for computer use.  
In this paper, an alternative way is proposed based 
on assumption that the computer supplies a variable 
gain each sample. Then after, a pulse transfer 
function is obtained for simulation purposes. For this 
purpose, the concept of deadbeat response is 
invoked to determine this variable gain vector. 
Unlike the classical approach of the deadbeat 
response, the proposed approach is a ripple-free one. 
 

2 Discrete Deadbeat Control 
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The deadbeat response receives a large amount of 
works for both continuous and discrete control 
systems [7, 8, 9]. In fact, this response is the 
ultimate of any design irrespective of the 
methodology used. However, the deadbeat response 
is often referred to a certain method of design in 
sampled-data control systems. On the other hand, for 
the discrete control systems, a theory of a finite 
number of control steps replaces the classical 
deadbeat response concepts. In this section, a glint 
review of the ripple-free deadbeat response for 
discrete control systems will be crossed over [8, 9].  

Consider the unity negative feedback sampled-data 
control system shown in figure 1, w here T is the 
sampling period. The continuous actuating signal e 
(t) = r (t) – c (t) is sampled with a sampler T, such 
that e*(t) be an input to the discrete controller. 

 
Figure 1 Sampled-data system 

The z-transform of both e* and u* can be expressed 
by the following relations;  

𝐸𝐸(𝑧𝑧) = 𝑒𝑒(0) + 𝑒𝑒(𝑇𝑇)𝑧𝑧−1 + ⋯+ 𝑒𝑒(𝑛𝑛𝑇𝑇)𝑧𝑧−𝑛𝑛            (1) 

𝑈𝑈(𝑧𝑧) = 𝑢𝑢(0) + 𝑢𝑢(𝑇𝑇)𝑧𝑧−1 + ⋯+ 𝑢𝑢(𝑛𝑛𝑇𝑇)𝑧𝑧−𝑛𝑛           (2) 

Then the pulse transfer function of the discrete 
controller and that of the closed-loop are given 
respectively by (3) and (4). 

𝐷𝐷(𝑧𝑧) = 𝑈𝑈(𝑧𝑧)
𝐸𝐸(𝑧𝑧)

= 𝑢𝑢(0)+𝑢𝑢(𝑇𝑇)𝑧𝑧−1+⋯+𝑢𝑢(𝑛𝑛𝑇𝑇 )𝑧𝑧−𝑛𝑛

𝑒𝑒(0)+𝑒𝑒(𝑇𝑇)𝑧𝑧−1+⋯+𝑒𝑒(𝑛𝑛𝑇𝑇)𝑧𝑧−𝑛𝑛
                (3) 

 𝑀𝑀(𝑧𝑧) = 𝐷𝐷(𝑧𝑧)𝐺𝐺𝑝𝑝 (𝑧𝑧)
1+𝐷𝐷(𝑧𝑧)𝐺𝐺𝑝𝑝 (𝑧𝑧)

                             (4) 

Thus, 

             𝐷𝐷(𝑧𝑧) = 1
𝐺𝐺𝑝𝑝 (𝑧𝑧)

𝑀𝑀(𝑧𝑧)
1−𝑀𝑀(𝑧𝑧)

                             (5) 

The necessary and sufficient conditions that the 
discrete-time system exhibits a deadbeat response to 
a polynomial time-domain inputs of degree m (for a 
step and a ramp input m=0 and m =1 respectively), 
are: 
The M(z) must be expressed as a finite polynomial in 
terms of powers in z-1, i.e. 

𝑀𝑀(𝑧𝑧) = ∑ 𝑐𝑐𝑖𝑖𝑧𝑧−1𝑛𝑛
𝑖𝑖=1                                                 (6) 

If and only if the impulse response coefficients ci 
satisfy the following set of m +1 linear algebraic 
equations 

∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑗𝑗𝑛𝑛
𝑖𝑖=1 = �

𝛿𝛿0 = 1
𝛿𝛿𝑗𝑗≠0 = 0

� ,   𝑗𝑗 = 0,1,2 …𝑚𝑚                 (7) 

From condition 6, three important remarks can be 
concluded. The deadbeat response existence is 
independent on T, and a system which exhibits a 
deadbeat response to a time-domain input of degree 
m, will exhibit a d eadbeat response to every time-
domain input of lower degree. The third remark 
(from the solution of 6 for n = m + 1, the usual case 
for industrial plants) is that the deadbeat response 
has ripples of unaccepted magnitudes as the order n 
increases. 
In [10], necessary and sufficient conditions for a 
ripple-freedeadbeat response were derived. In 
summary, it was shown that it is apparent that 
oscillation of the control sequence results only from 
zeros of the plant transfer function that are taking on 
negative values. However, these conditions consider 
only the response after the transient, and hence a 
non-minimum settling time response is obtained.  
Parallel to the above analysis that uses the pulse 
transfer function approach, a finite number of 
control steps (minimum settling time) approach is 
also presented in literatures [11]. This alternative 
approach uses the state space theory of discrete 
linear control. Both cases of regulating and transient 
to steady state are considered for SISO and MIMO 
completely controllable systems. Unless the 
controlling signal is constrained, the time of 
transition from an initial to a final state is reduced 
proportionally to the reduction of the sampling 
interval T. The state feedback controller K is given 
by; 

𝐾𝐾 = [0 0 ⋯ 1]𝑄𝑄−1𝐹𝐹𝑛𝑛                                    (8) 

Where, Q is the controllability matrix of the 
discrete-time system, F is the corresponding 
coefficient matrix and x is the state vector. However, 
for implementing the controller, all system states 
have to be available for control or measurement. 

3 Variable Gain Controller 
The discrete-time control system shown in figure 1 
can be described by the state transition equation 

𝑥𝑥(𝑚𝑚𝑇𝑇 + 𝑇𝑇) = 𝐹𝐹𝑥𝑥(𝑚𝑚𝑇𝑇) + 𝐺𝐺𝑢𝑢(𝑚𝑚𝑇𝑇)          (9) 

Where 𝑚𝑚 = 0,1,2.. 

𝑦𝑦(𝑚𝑚𝑇𝑇) = 𝐻𝐻𝑥𝑥(𝑚𝑚𝑇𝑇)                                               (10) 

Gp (z) 
 - 

y u*    
PLANT ZOH Discrete 

Controller 
 

r 

D (z) 

e* 
 
T  
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where x is the state variable column vector and T is 
the sampling period, u is the control signal applied 
to the input of the ZOH device, and the matrix F and 
the vectors G and H are given by 

𝐹𝐹 = 𝑒𝑒𝐴𝐴𝑇𝑇 = ℒ−1(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1|𝑡𝑡=𝑇𝑇 ,                          (11) 

𝐺𝐺 = ∫ [ℒ−1(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1]𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇
0                                (12) 

𝐺𝐺 = �
𝐴𝐴−1(𝐹𝐹 − 𝑠𝑠𝑛𝑛)𝐵𝐵,                                    det⁡(𝐴𝐴) ≠ 0

𝑇𝑇(𝑠𝑠𝑛𝑛 + 𝐴𝐴𝑇𝑇
2!

+ (𝐴𝐴𝑇𝑇)2

3!
+ (𝐴𝐴𝑇𝑇)3

4!
+ ⋯ )𝐵𝐵, det⁡(𝐴𝐴) = 0

�             

    ....... (13) 

𝐻𝐻 = 𝐶𝐶                                                                  (14) 

where n is the plant order, A, B, and C are the 
coefficient matrix, input vector and the output vector 
respectively of the continuous plant, s is the 
Laplace’s operator, and I  is a unit matrix.  

It is proposed that the controller is simply a forward 
gain varies every sample period, then c(mT) = y. 

𝑘𝑘(𝑚𝑚𝑇𝑇) = 𝑢𝑢(𝑚𝑚𝑇𝑇 )
𝑒𝑒(𝑚𝑚𝑇𝑇 )

= 𝑢𝑢(𝑚𝑚𝑇𝑇 )
𝑟𝑟(𝑚𝑚𝑇𝑇 )−𝑐𝑐(𝑚𝑚𝑇𝑇 )

                            (15) 

For simple writing, the variable gain is denoted km 
and the sampling period T is dropped. Therefore, it 
can be written 

𝑢𝑢(𝑚𝑚) = 𝑘𝑘𝑚𝑚 [𝑟𝑟(𝑚𝑚) −𝐻𝐻𝑥𝑥(𝑚𝑚)]                             (16) 

𝑥𝑥(𝑚𝑚 + 1) = 𝐹𝐹𝑥𝑥(𝑚𝑚) + 𝐺𝐺𝑘𝑘𝑚𝑚 [𝑟𝑟(𝑚𝑚) −𝐻𝐻𝑥𝑥(𝑚𝑚)]   (17) 

To realize a deadbeat response, the system error 
must be zero for t ≥ nT, where n is the smallest 
possible positive integer (order of the plant 
n=m+1).This condition is realized if the following 
two conditions are satisfied 

𝑥𝑥1(𝑛𝑛𝑇𝑇) = 𝑟𝑟(𝑛𝑛𝑇𝑇)                                                   (18) 

𝑥𝑥2(𝑛𝑛𝑇𝑇) =  𝑟𝑟′(𝑛𝑛𝑇𝑇) … 𝑥𝑥𝑛𝑛(𝑛𝑛𝑇𝑇) = 𝑟𝑟(𝑛𝑛−1)(𝑛𝑛𝑇𝑇)        (19) 

For instance, for unit-step reference input, the above 
conditions are 

𝑥𝑥1(𝑛𝑛𝑇𝑇) = 1                                                           (20) 

𝑥𝑥2(𝑛𝑛𝑇𝑇) = 𝑥𝑥3(𝑛𝑛𝑇𝑇) =  …  𝑥𝑥𝑛𝑛(𝑛𝑛𝑇𝑇) = 0                 (21) 

Thus, the controller will be a vector defined as 

𝑘𝑘𝑣𝑣 = [𝑘𝑘0 𝑘𝑘1 ⋯ 𝑘𝑘𝑛𝑛−1]𝑇𝑇 

The above deadbeat response conditions arise a 
system of n algebraic nonlinear equations, which 
have the form 

𝐸𝐸𝑛𝑛×𝑤𝑤𝐾𝐾𝑤𝑤×1 = �

𝑟𝑟(𝑛𝑛𝑇𝑇)
𝑟𝑟′(𝑛𝑛𝑇𝑇)

⋮
𝑟𝑟(𝑛𝑛−1)(𝑛𝑛𝑇𝑇)

�                                 (22) 

Where the coefficient matrix E is derived from 
equation (17) and the dimension w is given by the 
mathematical expression; 

𝑤𝑤 = ∑ 𝑛𝑛!
𝑗𝑗 !(𝑛𝑛−𝑗𝑗 )!

𝑛𝑛
𝑗𝑗=1                                                   (23) 

𝐾𝐾𝑤𝑤×1 =

⎣
⎢
⎢
⎢
⎢
⎡

𝑘𝑘𝑣𝑣
𝑃𝑃2
𝑃𝑃3
⋮

𝑃𝑃𝑛𝑛−1
∏ 𝑘𝑘𝑖𝑖𝑛𝑛−1
𝑖𝑖=0 ⎦

⎥
⎥
⎥
⎥
⎤

                                               (24) 

Where Pq is a column vector of all combinations 
products of q gains; for example, for 3rd-order 
system 

𝑃𝑃2 = [𝑘𝑘0𝑘𝑘1 𝑘𝑘0𝑘𝑘2 𝑘𝑘1𝑘𝑘2]𝑇𝑇 

Furthermore, the following functions are defined 

𝐹𝐹1 = 𝑓𝑓1(𝑘𝑘0,𝑘𝑘1 …𝑘𝑘𝑛𝑛−1) − 𝑟𝑟(𝑛𝑛𝑇𝑇) 

𝐹𝐹2 = 𝑓𝑓2(𝑘𝑘0,𝑘𝑘1 … 𝑘𝑘𝑛𝑛−1)− 𝑟𝑟′(𝑛𝑛𝑇𝑇) 

⋮ 

𝐹𝐹𝑛𝑛 = 𝑓𝑓𝑛𝑛(𝑘𝑘0,𝑘𝑘1 …𝑘𝑘𝑛𝑛−1)− 𝑟𝑟(𝑛𝑛−1)(𝑛𝑛𝑇𝑇)                 (25) 

It is clear that the nonlinear system (22) has to be 
solved numerically. For this purpose, Newton-
Raphson or any other numerical method may be 
invoked; however, the issue of finding a correct 
initial start represents a problem by itself.  An 
alternative way is to convert the problem to a 
minimum single-objective or a multi-objective 
unconstraint convex optimization one, and then to 
obtain the solution. Therefore, equivalently, for 
single-objective, the solution of the nonlinear system 
can be replaced by either of the followings; 

   𝑚𝑚𝑖𝑖𝑛𝑛�
𝑘𝑘𝑣𝑣

{𝐽𝐽 = (𝐹𝐹1
2 + 𝐹𝐹2

2 + ⋯+ 𝐹𝐹𝑛𝑛2)}          (26-a) 

   𝑚𝑚𝑖𝑖𝑛𝑛� {𝐽𝐽 =
𝑘𝑘𝑣𝑣

(|𝐹𝐹1| + |𝐹𝐹2| + ⋯+ |𝐹𝐹𝑛𝑛 |)}              (26-b) 

The vector kv that gives a zero minimum value is the 
solution of the nonlinear system. There are several 
optimization methods, including evolutionary 
techniques such as genetic algorithms to solve the 
problem. The used methods often give local 
solution, and special efforts have to be accomplished 
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to reach global solution. However, such efforts are 
changed as the parameters of the problem change. 
When genetic algorithm is used, the setting of the 
genetic parameters plus the several runs of the 
algorithm with random initialization often 
accomplish the task. The solution corresponding to 
the nearest zero value of the objective function J is 
picked up. Furthermore, the genetic solution can be 
used as an  initial point to start Newton-Raphson 
method. 
For multi-objective criterion, the standard Pareto 
dominance relationship between solutions and an 
iterative strategy that evolves some random 
solutions during the search for optimal solution 
represents a logical selection of such efforts. This 
approach has been used efficiently to solve complex 
nonlinear systems [12]. 
 

4  Simulation and Results 
In this section, the proposed approach of designing a 
discrete controller will be explored. Through 
simulation, a comparison with other designs is also 
presented. It is worth mentioning that an MATLAB 
code is developed to design discrete controllers for 
different system orders. The code is a general one in 
the sense that its input is only the continuous plant 
transfer function G(s), the sampling period T, and 
the reference input r(t). 

Example 1: A controlled plant with an industrial 
integrating servomotor is given by the transfer 
function 

𝐺𝐺(𝑠𝑠) =
1

𝑠𝑠(𝑠𝑠 + 0.5)2 

It is to find a discrete controller such that the system 
will exhibit a deadbeat response for a unit step input.  

The sampling period T = 1. The plant has a p ulse 
transfer function (?? a unit feedback) 
 

𝐺𝐺(𝑧𝑧) =
0.13061(𝑧𝑧 + 2.928)(𝑧𝑧 + 0.2072)

(𝑧𝑧 − 1)(𝑧𝑧 − 0.6065)2  

The corresponding discrete matrices F, G ( as in 
equations 11 and 13 b) are 

𝐹𝐹 = �
1 0.9673 0.3608
0 0.9098 0.6065
0 −0.1516 0.3033

� ,   𝐺𝐺 = �
0.1306
0.3608
0.6065

� 

The nonlinear system is defined by 

            𝐸𝐸3×7𝐾𝐾7×1 = �
1
0
0
� 

where the matrix E and the vector K are given 
respectively as 

�
1.4185 0.6985 0.1306 −0.0912 −0.0912 −0.0171 0.0022
0.7117 0.6961 0.3608 −0.0909 −0.252 −0.0471 0.0062
−0.0664 0.1292 0.6065 −0.0169 −0.4237 −0.0792 0.0103

�  

 

𝐾𝐾 = [𝑘𝑘0 𝑘𝑘1 𝑘𝑘2 𝑘𝑘0𝑘𝑘1 𝑘𝑘0𝑘𝑘2 𝑘𝑘1𝑘𝑘2 𝑘𝑘0𝑘𝑘1𝑘𝑘2]𝑇𝑇  

The solution of the three nonlinear equations is 
converted to a single-objective optimization problem 
as it is suggested in equation (26-a). The genetic 
algorithm of 1000 generations, size of 300 
populations, 10-16 tolerance function change, and 0.8 
cross over fraction, is invoked 50 times with 
different random initialization. The results are the 
gain vector kv, the minimum value of J, and the 
values of functions Fi, i = 1, 2, 3 after minimization; 
exactly they should all be zeros. 
𝑘𝑘𝑣𝑣 = [1.6147 −2.4825 4.6430]𝑇𝑇  

|𝐽𝐽𝑚𝑚𝑖𝑖𝑛𝑛 | = 1.6 × 10−4 

[𝐹𝐹1 𝐹𝐹2 𝐹𝐹3] = [−0.1146 −0.0197 0.1096]  × 10−3 

The plot of the discrete output for unit step is shown 
in figure 2. The output achieves in three sampling 
periods the unity step input with very small steady 
state error (less than 0.001) due to the small 
residuals of Fi functions. Implementing this variable 
gain can be easily performed by a digital computer. 
It is only to output a constant value each period up to 
three periods and then to keep the final value to the 
control time end. Considering equations (1-3), a 
pulse transfer function of the controller can be 
obtained 

𝐷𝐷(𝑧𝑧) =
1.6147(𝑧𝑧2 − 1.213𝑧𝑧 + 0.368)

(𝑧𝑧 + 0.5609)(𝑧𝑧 + 0.2282)
 

 
Figure 2. Discrete step response for example 1 
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The ripple-free continuous output can be obtained by 
simulating the system shown in figure 1; a 
SIMULINK modeling result is shown in figure 3.  

 
Figure 3 Continuous step-response for example 1 

 

Example 2: The control of a position Ward-Leonard 
set servomechanism as a displacement machine tool 
is considered [13]. The linear part is described by 
the non-canonical state and equations 

𝑥𝑥(𝑡𝑡)′ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

1
𝑇𝑇𝐷𝐷

0 0   0

1
𝐿𝐿𝑀𝑀𝐷𝐷

−
1
𝑇𝑇𝑀𝑀𝐷𝐷

−
1

𝐿𝐿𝑀𝑀𝐷𝐷𝐾𝐾𝑀𝑀
0

0
0

1
𝐽𝐽 𝐾𝐾𝑀𝑀

0

 0
1

0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑥𝑥(𝑡𝑡) +

⎣
⎢
⎢
⎢
⎡
𝐾𝐾𝐷𝐷𝐾𝐾𝑎𝑎
𝑇𝑇𝐷𝐷
0
0
0 ⎦

⎥
⎥
⎥
⎤
𝑢𝑢(𝑡𝑡) 

𝜑𝜑(𝑡𝑡) = [0 0 0 1]𝑥𝑥(𝑡𝑡) 

Where: 

- TD and KD are the time constant and the linear part 
of the electromagnetic characteristic gain of the 
DC dynamo in seconds and volt/mA respectively. 

- LMD and TMD are the induction and 
electromagnetic time constant of Ward-Leonard 
set circuit in Henry and seconds respectively. 

- J is moment of inertia (kg m2) of the DC motor 
- KM is the gain (rad/Wb) of the motor. 
- Ka is the  power amplifier gain (mA/volt) 
- u(t) is control signal (the output of the power 

amplifier in volt). 
- x (t) isthe state vector, which is defined by the 

following four states  

𝑥𝑥(𝑡𝑡) = �

𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)
𝑥𝑥3(𝑡𝑡)
𝑥𝑥4(𝑡𝑡)

� ≡ �

input voltage of DC dynamo (v)
Leonard anchors urrent(Amp) 
motor angular velocity  (rad/s
 motor rotation angle φ (rad)

� 

 

For the values given in table 1 and a power amplifier 
of a gain Ka = 34 (mA/volt), the plant is sampled 
with T = 0.1 seconds to obtain the discrete matrices 
and vectors as 

𝐹𝐹 = �
1 0.0909 0.00313 0.000045
0 0.7274 0.04104 0.0008
0
0

−4.7139
−3.0950

−0.1359
−5.2807

0.0005
−0.1625

�,  

           𝐺𝐺 = �
0.6756
20.394

352.652
231.544

� 

Table 1 Ward-Leonard set parameters/ value/ unit. 
TD  KD LMD TMD KM J 

0.125 2.000 0.035 0.023 1.100 0.0315 

sec v/mA Henry sec rad/Wb kgm2 

 

For a step response of magnitude δ radian, the four 
nonlinear equations will have the form 

𝐸𝐸4×15𝐾𝐾15×1 = [𝛿𝛿 0 0 0]𝑇𝑇  

For such complicated nonlinear equations, some 
additional efforts have to be done. 

For δ of 0.2 radians, the genetic algorithm is 
parameterized by 3000 generations and a size of 200 
populations and 10-32 tolerance function change. 
After 50 runs of the genetic algorithm, the minimum 
index value is 0.103, which is very high to consider 
that the optimization process is equivalent to the 
solution of the nonlinear equations. Therefore, 
another trail to achieve a deadbeat response is tried. 
Specifically, the obtained genetic solution is used as 
an initial vector to start the numerical Newton- 
Raphson method to reduce significantly the residues 
of the functions, Fi. The results are: 

𝑘𝑘𝑣𝑣 = [0.23497 −0.11982 0.00408 −0.19993]𝑇𝑇  

�

𝐹𝐹1
𝐹𝐹2
𝐹𝐹3
𝐹𝐹4

� = �
−0.0105
   0.0049

  −0.0003 
   0.5962

� × 10−14 

 

𝐷𝐷(𝑧𝑧)  =
0.23497(𝑧𝑧 − 0.4495)(𝑧𝑧2 + 0.02053𝑧𝑧 + 0.0129)

(𝑧𝑧 + 0.03759)(𝑧𝑧2 + 0.8037𝑧𝑧 + 0.1813)  

The accuracy of implementing the variable gain 
controller by a digital computer is very high. 
However, it is not so with implementing the pulse 
transfer function by passive and active elements. 
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Therefore, the robustness of the controlled system 
depends only on the plant parameters.  

In practice, the parameters of industrial plants do 
changing during operation and life time. For 
exploring the design efficacy, changes of parameters 
will be assumed. In Ward-Leonard control system, 
parameter changes are mainly due to the variation of 
the power amplifier gain Ka, the electromagnetic 
characteristic gain KD, and the motor gain KM; 
consequently, TDM ,since the electromagnetic time 
constant depends on K2

M. As it can be noted from the 
state equation, variations in Ka and KD, changes the 
non-zero element of the input vector. Figure 4 
depicts the responses of the nominal and ± 30% 
variations in the gain product KaKD. The nominal 
response exhibits a deadbeat response to achieve 0.2 
radians in 0.4 seconds (4T). All other responses 
exhibit expected behaviors; the controlled system 
has an overshoot for larger variation and sluggish 
behaviors for smaller value of the gain product 
KaKD. However, all responses show a stable and 
ripple-free performance. 

 
Figure 4 Time response for different variations of 
the gain KaKD. 

Next, the effect of motor gain constant KM variation 
will be studied; ± 30% changes in the nominal value 
are suggested. Figure 5 depicts all system responses, 
including the nominal one.Similar comments as with 
previous case of gain variation can be stated; 
however, the system exhibits larger overshoot and 
settling time for the same percentage of parameter 
changing. It can be noticed that the worst case when 
both the forward gain and the motor gain constant 
decrease or increase simultaneously, and the likely 
case when one increases while the other decreases. 
Figure 6 shows the nominal response and the 
responses of the two extreme cases. An excessive 
overshot of 67%, and a sluggish settling time of two 

seconds are taken place when all Ka, KD, and KM are 
increased and decreased by 30% respectively.  

 
Figure 5 Time response for different variation of the 
gain KM 

 
Figure 6 Time response for the two extreme cases of 
parameter variations. 

 
Figure 7 Adjusted responses to compensate 30% 
variations 
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Figure 7 shows again the three responses after 
multiplying the variable gain vector by 2.1 t o 
improve the sluggish response and by 0.52 to reduce 
the excessive overshot. In spite of the responses of 
the two extreme cases are not of deadbeat nature, 
they are good enough for practice implementation. 

Finally, the proposed method is compared with the 
results of using the theory finite number of control 
steps. Applying equation 8, the state feedback gain 
vector is 

𝐾𝐾 = [0.23497 0.03503 0.001156 0.00003]𝑇𝑇 

Figure 8 shows unit step responses for both finite 
control steps and the proposed method. As it can be 
seen the output reaches the same values in each 
sample period, and both responses have deadbeat 
behaviors. In spite of this validation, one may argue 
that the proposed method has large computation 
burden. However, the proposed method has the 
advantages of lower hardware demands; most plants 
may require sensors to measure the plant states 
accurately.  

 
Figure 8 Responses of finite control steps and 
proposed method 

 

5  Implementation  
In this section the empirical considerations are 
discussed, it is focused on the practical design of the 
variable gain sample and hold unit. A digitally 
controlled variable gain amplifier (VGA) is injected 
before the sampler to get the proposed structure as in 
Figure 9. The gain and sampling circuit is 
implemented by a microcontroller. The gain values 
and sampling time are offline calculated and loaded 
in the microcontroller memory and its internal timer 
respectively.  

Figure 9 The proposed system control BD. 

 
In the experimental simulation, the gain is selected 
from a l ookup table containing a p re calculated 
deadbeat gain values, and synchronized by a high 
precision timing circuit. The dead beat frequency is 
based on the sampling period (T) that is calculated 
from the process transfer function.   
  
   The essential properties for the VGA are the speed 
and gain resolution. The wide bandwidth, large 
dynamic range, and excellent noise-linearity 
HMC960LP4E Automatic Gain Control is selected 
to satisfy the required properties of variable gain 
values is selected. It supports discrete gain steps 
from dB in precise 0.5 dB steps with exceptionally 
smooth gain transitions, a gain of 0-40 dB and 0.5 
dB step is applied through a parallel digital port. 
Gain can be controlled via either a parallel gain 
control interface (GC[6:0]) or via the read/write 
serial port (SPI) as shown in Figure 10.   
  

 
Figure 10 The HMC960LP4E architecture [14] 
 

The gain is composed by three stages, second stage 
generates up to 10dB fully determined by the user, 
while first and third stages are adjusted to 0, 10, 20 
dB values, automatically selected by the gain control 
code, as in Figure 11, or  without using decode logic 
gain can be allocated arbitrarily. 
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Figure 11 Gain allocations by programming code. 

The main problem facing the practical 
implementation is the exact value justification of the 
gain. It is limited by the VGA resolution (0.5 dB).    
Hence a wide range, precise and linear varying gain 
is almost cannot be reached.    

To overcome this problem we proposed a multi 
channels VGA algorithm to handle the problem by 
partitioning the gain into fractions < 9.5 dB 
belonging to the linear continuous ranges of the 
VGA stages. This will be investigated by truncating 
the   gain digit with    values ≤ (0.5+ß) dB resolution 
(ß is adjusting parameter), and apply them to the 
next VGA stage.  The output of the parallel stages 
then gathered to form the high precision gain.  The 
value of ß is selected to satisfy the accuracy criteria 
(k(ß)/ k) <0.0001.  
 
 6  Conclusions 

 
In this paper, a method of design a discrete variable 
gain is introduced. In each sample, the controlled 
computer delivers a constant value in the forward of 
the closed-loop control system. The method is based 
on a numerical approach of solving nonlinear 
equations that are derived from the theory of 

achieving a d eadbeat response. The numerical 
approach is to convert the problem to a single or 
multi-objective unconstraint convex optimization. 
The genetic algorithm followed, if necessary, by 
Newton-Raphson method is proposed as a very high 
accurate solution of the nonlinear equations. The 
proposed method is testifying first with one 
illustrative example, and then it is used to control a 
Ward-Leonard servomechanism. Due to simplicity 
of design, a simple solution is suggested to resolve 
the problem of parameter variations that are usually 
taken place in industrial systems.  Finally, it is also 
shown that the proposed method gives the same 
results as the design based on the theory of the finite 
number of control steps. 
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