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Abstract: In this paper we consider a nonlinear feedback control called augmented automatic choosing control
(AACC) using weighted gradient optimization automatic choosing functions for a class of nonlinear systems with
constrained input. When designed the control, a constant term which arises from linearization of a given nonlinear
system is treated as a coefficient of a stable zero dynamics. The controller is of a structure-specified type which
has some parameters. Parameters of the control are suboptimally selected by minimizing the Hamiltonian with the
aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system, which
is Ozeki-Power-Plant of Kyushu Electric Power Company in Japan, to demonstrate the splendidness of the AACC.
Simulation results show that the new controller can improve performance remarkably well.
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1 Introduction term is treated as a coefficient of a stable zero dynam-
ics. The given nonlinear system approximately makes
It is generally easy to design the optimal control yp a set of augmented linear systems, to which the
laws for linear systems, but it is not so for nonlin-  gptimal linear control theory is applied to get the lin-
ear systems, though they have been studied for many ear quadratic (LQ) controls[2]. These LQ controls are
years[1]-[7]. One of most popular and practical non-  smoothly united by weighted gradient optimization
linear control laws is synthesized by applying a lin-  aytomatic choosing functions of sigmoid type to syn-
earization method by Taylor expansion truncated at thesize a single nonlinear feedback controller. This
the first order and the linear optimal control method. cgntroller is then limited so as to hold a specified con-
This is only effective in a small region around steady straint.
state points or in almost linear systems[1]-[3]. This controller is of a structure-specified type
As one of approaches to overcome these which has some parameters, such as the number of
drawbacks, an augmented automatic choos- division of the domain, regions of the subdomains,
ing control(AACC) is proposed for nonlinear points of Taylor expansion, coefficients of the zero dy-
systems[7].Moreover, in many practical systems, namics, and gradients of the automatic choosing func-

there are physical constraints such as limitation and
saturations of inputs, so a design of nonlinear control

tion. These parameters must be selected optimally so
as to be just the controller’s fit. Since they lead to a

laws subject to constraints has been urgent but been nonlinear optimization problem, we are able to solve

studied a few[8]. In this paper we consider a design
method of the AACC for nonlinear systems with
constrained inputs. Its process is as follows.

Assume that a system is given by a nonlinear
differential equation. Choose a separative variable,

it by using the genetic algorithm (GA) [9] subopti-
mally. In this paper the suboptimal values of these
parameters are selected by minimizing a Hamiltonian
function.

A power system in transient stability problem is

which makes up nonlinearity of the given system. The one of the typical nonlinear systems with high nonlin-
domain of the variable is divided into some subdo- earity, so the proposed method is successfully applied
mains. On each subdomain, the system equation is to it. Simulation results show that the new controller
linearized by Taylor expansion around a suitable point using the GA is able to improve performance remark-
so that a constant term is included in it. This constant ably well.
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2 Augmented Automatic Choosing
Control Using Zero Dynamics

Assume that a nonlinear system is given by

= f(z)+g(z)u, x €D (@)

subject to

(2)

Uj,min < UL]] < Uj maz (] = 1, s ,T)

where - = d/dt, r = [z[1],---,z[n]]"

is an n-dimensional state vector, u =
[ull],---,ulj],---,ul[r]]T is an r-dimensional
bounded control vectora; ., : the minimum
value of u[j], ujmaer : the maximum value ofi[j],

f : D — R™is a nonlinear vector-valued function
with f(0) = 0 and is continuously differentiable,
g(z) is ann x r driving matrix with g(0) # 0 and is
continuously differentiableD c R™ is a domain ,
andT denotes transpose.

Considering the nonlinearity of, introduce a
vector-valued functionrC : D — R’ which de-
fines the separative variabl¢€’;(z)}, whereC' =
Ci---Cj--- C1]" is continuously differentiable. Let
D be a domain o> ~!. For example, ifr[2] is the el-
ement which has the highest nonlinearityfinthen

C(z)==z[2e DCR (L=1)
(see Section 1V). The domaib is divided into some
subdomains: D = UM D;, where Dy, = D —
Uij\io_lDi and Cil(Dg) 35 0. Di(O < 3 < M)
endowed with a lexicographic order is the Cartesian
productD; = Hle[aij, bi;], wherea;; < b;;.
Introduce a stable zero dynamics :

z[n + 1] = —oz[n + 1]
(el + 1(0) ~ 1,

Equation(1) combines with (3) to form an aug-
mented system

©)

0<o;<1).

X = f(X) +3(X)u 4)
where
X
X_l:r[n—i—l] eDxR
FX) = [ —Uiﬁ?—{- 1] 1 9(X) = [ g(Ox> 1 ’
We assume a cost function being
J= % /0 T (XTQX +uTRY) At (5)
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whereQ = QT > 0, R = RT > 0, and the values
of these matrices are properly determined based on
engineering experience.

On eachD;, the nonlinear system is linearized by
the Taylor expansion truncated at the first order about
apointX; e C~(D;) andX;, = 0 (see Fig. 1):

f(z)+g(x)u~ Az+w;+B;u on C~YD;) (6)

where
A = Of(x)/0x"| g, wi = f(Xi) — AX;,
B = g(X).

Make an approximation of (4) by

X =A4;X+Bu onC YD) xR 7
where
i Ai w A _ | Bi

An application of the linear optimal control

theory[2] to (5) and (7) yields
u(X) = —R'BI'P,X (8)

where the(n + 1) x (n + 1) matrix P; satisfies the
Riccati equation :

Pif_li + AZTPZ +Q — PiBinlgiTPi =0. (9

Introduce a gradient optimization automatic
choosing function of sigmoid type with weigtif:

L
1
Ii(z) = di]Hl{l 14+ exp (2N; (Cj(z) — aiy))
1
1+ exp (—2N; (Cj(z) —

bij))} (10)
where N;:positive real value,—oo < a;; , b <
oo. I;(z) is analytic and almost unity o6~ (D;),
otherwise almost zero whef) = 1(see Fig. 2).

Uniting {u;(X)} of (8) with {/;(z)} of (10)
yields

WX) = X)), X, aX)r)"
M
=0

We finally have an augmented automatic choosing
control which is satisfied with the constraint condition

(2) by

u(X) = [u(X)[1],

(11)
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where using Eq.(12).
Wimar I AX)[f] > wjmas Thus we can define a performance
uX)[j] = wmin T AKX < wjmin pPI - / [H(X,u,\)|/XTXdX.  (15)
u(X)[j] otherwise P
A set of parameters included in the control of Eq.(11)
1<j<r). is _ ;
Q = {M, Nj,d;,a;j,bij, X;} (16)
O Expansion : P 5 which is suboptimally selected by minimizing/
f(x) [ PO with the aid of GA[9] as follows.

<ALGORITHM>
stepl:Apriori: Set values,,,io- appropriately.
step2:Parameter: Choose C () to be improved
and rewrite

Q= {Niadiaaiabi"}: {Oék tk = ]-aaK}

step3:Coding:Represent each, with a binary bit

: : : \ string of L bits and then arrange them into one

0% — ' string of LK bits.

step4:Initialization: Randomly generate an initial
population ofg strings

{QP ‘p= ]-a 7@7}

step5:Decoding:Decode each element of €2, by

P

=X

£<>
x

Fig. 1 Sectionwize linearization

ap = (ak,ma:(: - ak,min)Akz/(2L - 1) + Ak min

05k i whereay, ,qz-maximum,oy, m,:minimum,
and Aj:decimal values ofv;.
step6:Control: Designu = u(X), (p=1,-,q)
for Q, by using Eq.(11).
step7:Adjoint:Make A = A\(X), (p=1,-,q) for
Fig. 2 Automatic Choosing Function(2¢3.0, 6.0) QP by using Eq.(l3)._
step8:Fitness value calculatiorCalculate

3 Parameter Selection by GA PI, = / ‘%XTQX - %u(X)gRu(X)p
D
The Hamiltonian for Eqgs.(4) and (5) is given by +fT(X))\(X)p‘/XTXdX 17)
1
HX,u.)) = 3 (X"QX +u” Ru) by Egs.(14) and (15), or fitnegs, = —P1I,,.
Integration of (17) is approximated by a finite

+AT (f(X) + g(X)u) . (12) sum.
Assume that the adjoint vectare R"*1is step9:Reproduction: Reproduce each of individual
strings with the probability of

M
2 PXL) 39 RS, B
The necessary condition of the optimality is step10:Crossover:Pick up two strings and exchange
OH/du = 0 oru = —R~'g(X)" X, which derives them at a crossing position by a crossover
Eq.(11) using Eq.(13) and probability P..
1 1 stepll:Mutation:Alter a bit of string (0 orl)
H(X,u,\) = §XTQX - §UTRU + T(X)A (14) by a mutation probability?,,.
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stepl2:Repetition:Repeat stepmstepll until
prespecifieds-th generation. If unsatisfied,
go to step2.
As a result, we have a suboptimal contrg@lX)
for the string with the best performance over all the
past generations.

4 Numerical Example

Consider a field excitation control problem of power
system. Fig.3 is a diagram of Ozeki-Power-Plant of
Kyushu Electric Power Company in Japan. This sys-
tem is assumed to be described[6] by

~d?§  ~dé
M—— +D— + P. =Py
TR T

P, = E%}/ll cosO1 + E[‘7Y12 COS(012 — 5)

| dE,

E;r = E(/] + (Xd — Xcll)Id

Id = *E]YH sin (911 — VYlg sin(912 — 5)

Tio(Xg — X§)
(X5 + Xe)?

Tyo(Xq — X3)
(Xg+ Xe)?

0.064+j0.133  KTr1~3 |§
¥0.414 220kV

D= 172{ sin? ¢

cos? 5},

&Y
o
LDt { —\/

0.9985+0. 1730

0.826+j1.209
v1.396

CB1~3

Fig. 3 Diagram of Ozeki-Power-Plant

whered: phase anglej: rotor speedM: inertia co-
efficient, D(¢): damping coefficientP;,,: mechanical
input power,P.(6): generator output poweY: refer-
ence bus voltagdy;: open circuit voltageF'y,: field
excitation voltage X4: direct axis synchronous reac-
tance,X/;: direct axis transient reactanc®,: exter-
nal impedanceYi;/611: self-admittance of the net-
work, Y12/012: mutual admittance of the network,
and I;(6): direct axis current of the machine. Put

x=[x[1], (2], z[3)])T=[E; — E1,6 — &,6]" andu =
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Efd — Efd, so that

(1] fi(z) g1()
2] | = | falw) | + 0 u (18)
(3] f3(z) 0
where
1 . .
fie) = g (elt) + By~ Bp)
X,— X)VY; R
+( d kd)v 12 X3 COS(912 — .T[Q] — 60)
fo(z) = (3]
oy ) )
f3(z) = - 1\712 (z[1] + Er) cos(f12 — z[2] — &)
Y 9 . D P,
_ZUOST 1] + Ep)? — =a[3] + =2
M M M
1
gl(]}) = —, k=1+ (Xd — Xé)Yn sin 611.
kTao
Parameters are
M= 0.016095[pu] Ty = 5.09907sec]
= 1.0[pu] Py=  1.2[py
Xqg= 0.875[pu] X, = 0.422[pu]
Yii = 1.04276[pu] Yo = 1.03084[pu]
011 = —1.56495[pu] 612 = 1.56189[pu]
X.= 1.15[pu] X" = 0.238[pu]
X, = 0.6[pu] X = 03[py]
T/ = 0.0299[pu] Tl = 0.02616[pu]
Er= 1.52243[pu] do=  48.57°
do = 0.0[deg/sec] E'fd = 1.52243[pu].

SetX = [2", a[4]]" = [a[1], x[2], x[3], x[4]]7,
n=3,Xg=0dy=4857,dy = 1, C(x)=z[2], L =
1, Q=diag(1,1,1,1), R=1,0; = 0.33294(0<i< M)
andz[4](0) = 1. Experiments are carried out for the
new control(AACC), and the ordinary linear optimal

control(LOC)[2].

1) AACC(New,umax=5): .
M=1,X1 = 800, Dg = (—OO,G — (50],
Di=la — &y,00). The parameters are subopti-
mally selected along the algorithm of section
.  Q={Ni, Na,di1,a},G=100, ¢=100, L=8,
P,=0.8, P,,=0.03. D=[0.0,2.0]{-0.5,2.0] x[-
5.0,5.0]x[0.0,1.5]. The constrained input value
IS Umazr = —Umin = O. It results thatN:=2.27,
N3=0.22,d;=0.10 andz=50.39°.

2) AACC(New,umax=10):

The parameters are suboptimally selected by using
the same way of the AACC(New,umax=5). The con-
strained input value i8,,q: = —umin = 10. It results
that V1=1.78,N>=0.14,d,=0.10 andz=50.00°.
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Tablel: Performances

2T (0) : initial point

Method [0,0.4,0] [ [0,1.0,0] | [0,1.3,0] | [0,1.35,0] | [0,1.41,0]

LOC 0.95375 X X X X

umax=5 | AACC(OId) | 0.99825 | 2.19569 | 1.86642 X X
AACC(New) | 1.16674 | 3.58263 | 3.34399 | 3.06732 2.79791

LOC 0.95375 X X X X

umax=10| AACC(OId) | 0.93595 | 1.99870 | 2.18903 X X
AACC(New) | 1.14259 | 3.39893 | 3.45338 | 3.27846 | 3.16581

3) AACC(OIld,umax=5):

The parameters are suboptimally selected by using the
same way of the AACC(New,umax=5) which uses the
fixed weight of the gradient optimization automatic
choosing function [7]1Q2={ N1, N2, a}. It results that
N1=7.42,N5=0.10 andz=50.00°.

4) AACC(Old,umax=10):

The parameters are suboptimally selected by using
the same way of the AACC(Old,umax=5). The
constrained input value i, = —umin = 10. It
results thatV;=1.42,N»,=0.10 andz=50.10°.

Table 1 shows performances by the AACC(New),
the AACC(OId) and the LOC. The cost function of
Table 1is

J= % /020 (XTQX + uTRu) dt.

0.2
AACC(Old,umax=5)

Q
g 0 e
°
>
z
S
S oo} CC(New,umax=>5)
Q
Q.
° i
=
=
T 0441
> 1]

1|

1

I
!
_0'60 5 10 15 20
t(sec)

Fig. 4Responses of LOC, AACC(Old), AACC(New)
(27(0) = [0,1.0,0])
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5Responses of LOC, AACC(Old), AACC(New)
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Fig. 6 Responses of LOC, AACC(Old), AACC(New)
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Fig. 9Responses of AACC(OId), AACC(New)
(z7(0) = [0,1.35,0])
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Fig. 10Responses of AACC(OId), AACC(New)
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Fig. 11Responses of AACC(OId), AACC(New)
(z7(0) = [0,1.35,0])

Figs. 4, 5, 6 and 7 show the responses in case of
27(0) = [0,1.0,0]. Figs. 8, 9, 10 and 11 show the
responses in case af (0) = [0,1.35,0]. These re-
sults indicate that the stable region of AACC(New) is
better than the AACC(OId) and LOC.

5 Conclusions

We have studied an augmented automatic choosing
control with constrained input designed by Hamilto-
nian using the weighted gradient optimization auto-
matic choosing functions for nonlinear systems. This
approach was applied to a field excitation control
problem of power system to demonstrate the splendid-
ness of the AACC. Simulation results have shown that
this controller could improve performance remarkably
well.
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