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Abstract: In this paper we consider a nonlinear feedback control called augmented automatic choosing control
(AACC) using weighted gradient optimization automatic choosing functions for a class of nonlinear systems with
constrained input. When designed the control, a constant term which arises from linearization of a given nonlinear
system is treated as a coefficient of a stable zero dynamics. The controller is of a structure-specified type which
has some parameters. Parameters of the control are suboptimally selected by minimizing the Hamiltonian with the
aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system, which
is Ozeki-Power-Plant of Kyushu Electric Power Company in Japan, to demonstrate the splendidness of the AACC.
Simulation results show that the new controller can improve performance remarkably well.
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1 Introduction

It is generally easy to design the optimal control
laws for linear systems, but it is not so for nonlin-
ear systems, though they have been studied for many
years[1]-[7]. One of most popular and practical non-
linear control laws is synthesized by applying a lin-
earization method by Taylor expansion truncated at
the first order and the linear optimal control method.
This is only effective in a small region around steady
state points or in almost linear systems[1]-[3].

As one of approaches to overcome these
drawbacks, an augmented automatic choos-
ing control(AACC) is proposed for nonlinear
systems[7].Moreover, in many practical systems,
there are physical constraints such as limitation and
saturations of inputs, so a design of nonlinear control
laws subject to constraints has been urgent but been
studied a few[8]. In this paper we consider a design
method of the AACC for nonlinear systems with
constrained inputs. Its process is as follows.

Assume that a system is given by a nonlinear
differential equation. Choose a separative variable,
which makes up nonlinearity of the given system. The
domain of the variable is divided into some subdo-
mains. On each subdomain, the system equation is
linearized by Taylor expansion around a suitable point
so that a constant term is included in it. This constant

term is treated as a coefficient of a stable zero dynam-
ics. The given nonlinear system approximately makes
up a set of augmented linear systems, to which the
optimal linear control theory is applied to get the lin-
ear quadratic (LQ) controls[2]. These LQ controls are
smoothly united by weighted gradient optimization
automatic choosing functions of sigmoid type to syn-
thesize a single nonlinear feedback controller. This
controller is then limited so as to hold a specified con-
straint.

This controller is of a structure-specified type
which has some parameters, such as the number of
division of the domain, regions of the subdomains,
points of Taylor expansion, coefficients of the zero dy-
namics, and gradients of the automatic choosing func-
tion. These parameters must be selected optimally so
as to be just the controller’s fit. Since they lead to a
nonlinear optimization problem, we are able to solve
it by using the genetic algorithm (GA) [9] subopti-
mally. In this paper the suboptimal values of these
parameters are selected by minimizing a Hamiltonian
function.

A power system in transient stability problem is
one of the typical nonlinear systems with high nonlin-
earity, so the proposed method is successfully applied
to it. Simulation results show that the new controller
using the GA is able to improve performance remark-
ably well.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Toshinori Nawata

E-ISSN: 2224-2856 438 Volume 11, 2016



2 Augmented Automatic Choosing
Control Using Zero Dynamics

Assume that a nonlinear system is given by

ẋ = f(x) + g(x)u, x ∈ D (1)

subject to

uj,min ≤ u[j] ≤ uj,max (j = 1, · · · , r) (2)

where · = d/dt, x = [x[1], · · · , x[n]]T
is an n-dimensional state vector, u =
[u[1], · · · , u[j], · · · , u[r]]T is an r-dimensional
bounded control vector,uj,min : the minimum
value ofu[j], uj,max : the maximum value ofu[j],
f : D → Rn is a nonlinear vector-valued function
with f(0) = 0 and is continuously differentiable,
g(x) is ann × r driving matrix withg(0) ̸= 0 and is
continuously differentiable,D ⊂ Rn is a domain ,
andT denotes transpose.

Considering the nonlinearity off , introduce a
vector-valued functionC : D → RL which de-
fines the separative variables{Cj(x)}, whereC =
[C1 · · ·Cj · · ·CL]

T is continuously differentiable. Let
D be a domain ofC−1. For example, ifx[2] is the el-
ement which has the highest nonlinearity inf , then

C(x) = x[2] ∈ D ⊂ R (L = 1)

(see Section IV). The domainD is divided into some
subdomains:D = ∪M

i=0Di, whereDM = D −
∪M−1
i=0 Di and C−1(D0) ∋ 0. Di(0 ≤ i ≤ M)

endowed with a lexicographic order is the Cartesian
productDi = ΠL

j=1[aij , bij ], whereaij < bij .
Introduce a stable zero dynamics :

ẋ[n+ 1] = −σix[n+ 1] (3)

(x[n+ 1](0) ≃ 1, 0 < σi < 1).

Equation(1) combines with (3) to form an aug-
mented system

Ẋ = f̄(X) + ḡ(X)u (4)

where

X =

[
x

x[n+ 1]

]
∈ D×R

f̄(X) =

[
f(x)

−σix[n+ 1]

]
, ḡ(X) =

[
g(x)
0

]
.

We assume a cost function being

J =
1

2

∫ ∞

0

(
XTQX+ uTRu

)
dt (5)

whereQ = QT > 0, R = RT > 0, and the values
of these matrices are properly determined based on
engineering experience.

On eachDi, the nonlinear system is linearized by
the Taylor expansion truncated at the first order about
a pointX̂i ∈ C−1(Di) andX̂0 = 0 (see Fig. 1):

f(x)+g(x)u ≃ Aix+wi+Biu on C−1(Di) (6)

where

Ai = ∂f(x)/∂xT |x=X̂i
, wi = f(X̂i)−AiX̂i ,

Bi = g(X̂i).

Make an approximation of (4) by

Ẋ = ĀiX+ B̄iu on C−1(Di)×R (7)

where

Āi =

[
Ai wi

0 −σi

]
, B̄i =

[
Bi

0

]
.

An application of the linear optimal control
theory[2] to (5) and (7) yields

ui(X) = −R−1B̄T
i PiX (8)

where the(n + 1) × (n + 1) matrix Pi satisfies the
Riccati equation :

PiĀi + ĀT
i Pi +Q−PiB̄iR

−1B̄T
i Pi = 0. (9)

Introduce a gradient optimization automatic
choosing function of sigmoid type with weightdi:

Ii(x) = di

L∏
j=1

{
1− 1

1 + exp (2Ni (Cj(x)− aij))

− 1

1 + exp (−2Ni (Cj(x)− bij))

}
(10)

whereNi:positive real value,−∞ ≤ aij , bij ≤
∞. Ii(x) is analytic and almost unity onC−1(Di),
otherwise almost zero whendi = 1(see Fig. 2).

Uniting {ui(X)} of (8) with {Ii(x)} of (10)
yields

û(X) = [û(X)[1], · · · , û(X)[j], · · · , û(X)[r]]T

=
M∑
i=0

ui(X)Ii(x).

We finally have an augmented automatic choosing
control which is satisfied with the constraint condition
(2) by

u(X) = [u(X)[1], · · · , u(X)[j], · · · , u(X)[r]]T

(11)
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where

u(X)[j] =


uj,max if û(X)[j] ≥ uj,max

uj,min if û(X)[j] ≤ uj,min

û(X)[j] otherwise

(1 ≤ j ≤ r).

Expansion
point

D0 DM

f(x)

xX0 XM
^

D1

^X̂1

f(x)

A1x+w1

AMx+wMA0x

0

Fig. 1 Sectionwize linearization

aij bij aij bij

Ni=3.0 Ni=6.00.5

1

Fig. 2 Automatic Choosing Function(Ni=3.0, 6.0)

3 Parameter Selection by GA

The Hamiltonian for Eqs.(4) and (5) is given by

H(X, u, λ) =
1

2

(
XTQX+ uTRu

)
+λT (

f̄(X) + ḡ(X)u
)
. (12)

Assume that the adjoint vectorλ ∈ Rn+1 is

λ =
M∑
i=0

PiXIi(x). (13)

The necessary condition of the optimality is
∂H/∂u = 0 or u = −R−1ḡ(X)Tλ , which derives
Eq.(11) using Eq.(13) and

H(X, u, λ) =
1

2
XTQX− 1

2
uTRu+ f̄T (X)λ (14)

using Eq.(12).
Thus we can define a performance

PI =

∫
D
|H(X, u, λ)|/XTXdX. (15)

A set of parameters included in the control of Eq.(11)
is

Ω̄ = {M,Ni, di, aij , bij , X̂i} (16)

which is suboptimally selected by minimizingPI
with the aid of GA[9] as follows.

<ALGORITHM>
step1:Apriori: Set values̄Ωapriori appropriately.
step2:Parameter:ChooseΩ ⊂ Ω̄ to be improved

and rewrite

Ω = {Ni, di, ai, bi · ·} = {αk : k = 1, ··,K}.

step3:Coding:Represent eachαk with a binary bit
string ofL̃ bits and then arrange them into one
string ofL̃K bits.

step4:Initialization: Randomly generate an initial
population ofq̃ strings

{Ωp : p = 1, ··, q̃}.

step5:Decoding:Decode each elementαk of Ωp by

αk = (αk,max − αk,min)Ak/(2
L̃ − 1) + αk,min

whereαk,max:maximum,αk,min:minimum,
andAk:decimal values ofαk.

step6:Control: Designu = u(X)p (p = 1, ··, q̃)
for Ωp by using Eq.(11).

step7:Adjoint:Make λ = λ(X)p (p = 1, ··, q̃) for
Ωp by using Eq.(13).

step8:Fitness value calculation:Calculate

PIp =

∫
D

∣∣∣1
2
XTQX− 1

2
u(X)TpRu(X)p

+f̄T (X)λ(X)p
∣∣∣/XTXdX (17)

by Eqs.(14) and (15), or fitnessFp = −PIp.
Integration of (17) is approximated by a finite
sum.

step9:Reproduction:Reproduce each of individual
strings with the probability of

Fp/
∑q̃

j=1 Fj .

step10:Crossover:Pick up two strings and exchange
them at a crossing position by a crossover
probabilityPc.

step11:Mutation:Alter a bit of string (0 or1)
by a mutation probabilityPm.
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step12:Repetition:Repeat step5∼step11 until
prespecifiedG-th generation. If unsatisfied,
go to step2.

As a result, we have a suboptimal controlu(X)
for the string with the best performance over all the
past generations.

4 Numerical Example

Consider a field excitation control problem of power
system. Fig.3 is a diagram of Ozeki-Power-Plant of
Kyushu Electric Power Company in Japan. This sys-
tem is assumed to be described[6] by

M̃
d2δ

dt2
+ D̃

dδ

dt
+ Pe = Pin

Pe = E2
IY11 cos θ11 + EI Ṽ Y12 cos(θ12 − δ)

EI + T ′
d0

dE′
q

dt
= Efd

EI = E′
q + (Xd −X ′

d)Id

Id = −EIY11 sin θ11 − Ṽ Y12 sin(θ12 − δ)

D̃ = Ṽ 2
{T ′′

d0(X
′
d −X ′′

d )

(X ′
d +Xe)2

sin2 δ

+
T ′′
q0(Xq −X ′′

q )

(Xq +Xe)2
cos2 δ

}
,

Fig. 3 Diagram of Ozeki-Power-Plant

whereδ: phase angle,̇δ: rotor speed,̃M : inertia co-
efficient,D̃(δ): damping coefficient,Pin: mechanical
input power,Pe(δ): generator output power,̃V : refer-
ence bus voltage,EI : open circuit voltage,Efd: field
excitation voltage,Xd: direct axis synchronous reac-
tance,X ′

d: direct axis transient reactance,Xe: exter-
nal impedance,Y11 ̸ θ11: self-admittance of the net-
work, Y12 ̸ θ12: mutual admittance of the network,
and Id(δ): direct axis current of the machine. Put
x=[x[1], x[2], x[3]]T=[EI − ÊI , δ − δ̂0, δ̇]

T andu =

Efd − Êfd, so that ẋ[1]
ẋ[2]
ẋ[3]

 =

 f1(x)
f2(x)
f3(x)

+

 g1(x)
0
0

u (18)

where

f1(x) = − 1

kTd0
(x[1] + ÊI − Êfd)

+
(Xd −X ′

d)Ṽ Y12
k

X3 cos(θ12 − x[2]− δ̂0)

f2(x) = x[3]

f3(x) = − Ṽ Y12

M̃
(x[1] + ÊI) cos(θ12 − x[2]− δ̂0)

−Y11 cos θ11

M̃
(x[1] + ÊI)

2 − D̃

M̃
x[3] +

P0

M̃

g1(x) =
1

kTd0
, k = 1 + (Xd −X ′

d)Y11 sin θ11.

Parameters are

M̃ = 0.016095[pu] Td0 = 5.09907[sec]

Ṽ = 1.0[pu] P0 = 1.2[pu]
Xd = 0.875[pu] X ′

d = 0.422[pu]
Y11 = 1.04276[pu] Y12 = 1.03084[pu]
θ11 = −1.56495[pu] θ12 = 1.56189[pu]
Xe = 1.15[pu] X ′′

d = 0.238[pu]
Xq = 0.6[pu] X ′′

q = 0.3[pu]

T ′′
d0 = 0.0299[pu] T ′′

q0 = 0.02616[pu]

ÊI = 1.52243[pu] δ̂0 = 48.57◦

ˆ̇
δ0 = 0.0[deg/sec] Êfd = 1.52243[pu].

SetX = [xT , x[4]]T = [x[1], x[2], x[3], x[4]]T ,
n = 3, X̂0 = δ̂0 = 48.57◦, d0 = 1, C(x)=x[2], L =
1, Q=diag(1,1, 1, 1),R=1,σi = 0.33294(0≤ i≤M)
andx[4](0)= 1. Experiments are carried out for the
new control(AACC), and the ordinary linear optimal
control(LOC)[2].

1) AACC(New,umax=5):
M=1,X̂1 = 80◦, D0 = (−∞, a − δ̂0],
D1=[a − δ̂0,∞). The parameters are subopti-
mally selected along the algorithm of section
III. Ω={N1, N2, d1, a},G=100, q̃=100, L̃=8,
Pc=0.8, Pm=0.03. D=[0.0,2.0]×[-0.5,2.0]×[-
5.0,5.0]×[0.0,1.5]. The constrained input value
is umax = −umin = 5. It results thatN1=2.27,
N2=0.22,d1=0.10 anda=50.39◦.

2) AACC(New,umax=10):
The parameters are suboptimally selected by using
the same way of the AACC(New,umax=5). The con-
strained input value isumax = −umin = 10. It results
thatN1=1.78,N2=0.14,d1=0.10 anda=50.00◦.
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Table1: Performances

xT(0) : initial point
Method [0, 0.4, 0] [0, 1.0, 0] [0, 1.3, 0] [0, 1.35, 0] [0, 1.41, 0]

LOC 0.95375 × × × ×
umax=5 AACC(Old) 0.99825 2.19569 1.86642 × ×

AACC(New) 1.16674 3.58263 3.34399 3.06732 2.79791

LOC 0.95375 × × × ×
umax=10 AACC(Old) 0.93595 1.99870 2.18903 × ×

AACC(New) 1.14259 3.39893 3.45338 3.27846 3.16581

× : very large value

3) AACC(Old,umax=5):
The parameters are suboptimally selected by using the
same way of the AACC(New,umax=5) which uses the
fixed weight of the gradient optimization automatic
choosing function [7].Ω={N1, N2, a}. It results that
N1=7.42,N2=0.10 anda=50.00◦.

4) AACC(Old,umax=10):
The parameters are suboptimally selected by using
the same way of the AACC(Old,umax=5). The
constrained input value isumax = −umin = 10. It
results thatN1=1.42,N2=0.10 anda=50.10◦.

Table 1 shows performances by the AACC(New),
the AACC(Old) and the LOC. The cost function of
Table 1 is

J̃ =
1

2

∫ 20

0

(
XTQX+ uTRu

)
dt.

t(sec)

x[
1]

[p
u]

 : 
op

en
 c

ir
cu

it 
vo

lta
ge

AACC(New,umax=5)

AACC(Old,umax=5)

LOC(umax=5)

0 5 10 15 20
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-0.2

0

0.2

Fig. 4Responses of LOC, AACC(Old), AACC(New)
(xT (0) = [0, 1.0, 0])

t(sec)

x[
2]

[r
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] 
: p
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se
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ng
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Fig. 5Responses of LOC, AACC(Old), AACC(New)
(xT (0) = [0, 1.0, 0])
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Fig. 6Responses of LOC, AACC(Old), AACC(New)
(xT (0) = [0, 1.0, 0])
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Fig. 7Responses of LOC, AACC(Old), AACC(New)
(xT (0) = [0, 1.0, 0])
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Fig. 8Responses of AACC(Old), AACC(New)
(xT (0) = [0, 1.35, 0])
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Fig. 9Responses of AACC(Old), AACC(New)
(xT (0) = [0, 1.35, 0])
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Fig. 10Responses of AACC(Old), AACC(New)
(xT (0) = [0, 1.35, 0])
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Fig. 11Responses of AACC(Old), AACC(New)
(xT (0) = [0, 1.35, 0])

Figs. 4, 5, 6 and 7 show the responses in case of
xT (0) = [0, 1.0, 0]. Figs. 8, 9, 10 and 11 show the
responses in case ofxT (0) = [0, 1.35, 0]. These re-
sults indicate that the stable region of AACC(New) is
better than the AACC(Old) and LOC.

5 Conclusions

We have studied an augmented automatic choosing
control with constrained input designed by Hamilto-
nian using the weighted gradient optimization auto-
matic choosing functions for nonlinear systems. This
approach was applied to a field excitation control
problem of power system to demonstrate the splendid-
ness of the AACC. Simulation results have shown that
this controller could improve performance remarkably
well.
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