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Abstract: In this paper we introduce a second order constraint qualification which yields necessary conditions for
optimal control problems with inequality and equality constraints in the time variable and the control functions.
The second order conditions are shown to hold on a cone of critical directions which properly contains not only
the cone obtained by considering only active constraints but also the usual one which depends on the sign of the
corresponding Lagrange multipliers.
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1 Introduction
In this paper we derive second order necessary condi-
tions for certain optimal control problems posed over
piecewise C1 trajectories and piecewise continuous
controls. For these problems, the integrand of the cost
function is independent of the state variable and the
constraints are expressed in terms of the dynamics,
fixed endpoint conditions, and inequalities and equal-
ities depending on the time variable and the control
functions.

First order conditions for such problems are well
established in the literature (see, for example, [6, 7,
11] and, more recently, [3] where mixed constraints
with nonsmooth data are studied). Our aim in this
paper is to derive in a simple way second order con-
ditions which an extremal, if solving the problem,
should satisfy. The main idea relies on linking up the
properties that characterize the extremals with any so-
lution to the underlying problem of minimizing the
same functional over the set of equality and inequality
constraints without dynamics or endpoint conditions.

Second order necessary conditions in terms of
the accessory problem can be found, for example, in
[14] for problems posed over controls in L∞(T,Rm).
However, for the problem we shall deal with, the con-
trol functions are piecewise continuous and so do not
form a Banach space. Thus, the technique used for
L∞ controls where results from abstract optimization
theory on Banach spaces are applied to the optimal
control problem, does not work for our problem.

There is an extensive literature on second order
conditions for optimal control problems and how the

theory can be applied to practical problems (see, for
example, [1–7, 9–14] and references therein) but some
fundamental questions remain unanswered. In partic-
ular, when dealing with such conditions, one usually
faces two main features: (1) the normality assump-
tions imposed on the solution to the problem which
imply, in particular, a positive cost multiplier, and (2)
the set of critical directions where, under those nor-
mality assumptions, the second order conditions hold.

As we shall see, a weak notion of normality usu-
ally imposed for first order conditions is not enough
to ensure the validity of the second order necessary
conditions, and a stronger notion is needed. How-
ever, once this stronger assumption is imposed, the
set of critical directions may be too restrictive. One
is then, of course, interested in enlarging that set and,
if possible, in weakening the normality assumptions.
In this paper we show how, for the problem we shall
deal with, these two aspects can be achieved. The re-
sults obtained here correspond to a generalization of
second order conditions first derived in [13] (and with
more detail in [4]) for optimal control problems where
the constraints depend only on the control functions.

Let us point out that, in some of the references
mentioned above, the approach followed to derive
second order conditions is based precisely on that
stronger notion of normality by taking into account
only equality constraints for active indices and impos-
ing normality assumptions with respect to the corre-
sponding set of tangential constraints. The conditions
one encounters in those cases will be said to be of a
“weak type” since, as we shall see, the assumptions
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and the critical directions can be modified and, in the
two senses mentioned above, improved.

2 Statement of the problem

Suppose we are given an interval T := [t0, t1] in R,
two points ξ0, ξ1 in Rn, and functions L and ϕ =
(ϕ1, . . . , ϕq) mapping T ×Rm to R and Rq (q ≤ m)
respectively, and f mapping T ×Rn ×Rm to Rn.

Denote by X the space of piecewise C1 func-
tions mapping T to Rn, by Uk the space of piecewise
continuous functions mapping T to Rk (k ∈ N), set
Z := X × Um,

D := {(x, u) ∈ Z | ẋ(t) = f(t, x(t), u(t)) (t ∈ T ),

x(t0) = ξ0, x(t1) = ξ1},

S := {(x, u) ∈ D | ϕα(t, u(t)) ≤ 0,

ϕβ(t, u(t)) = 0 (α ∈ R, β ∈ Q, t ∈ T )}

where R = {1, . . . , r}, Q = {r + 1, . . . , q}, and con-
sider the functional I:Z → R given by

I(x, u) :=

∫ t1

t0
L(t, u(t))dt ((x, u) ∈ Z).

The problem we shall deal with, which we label (P), is
that of minimizing I over S. Note that the functional
I is independent of x but we use the notation I(x, u)
to emphasize the fact that we shall be concerned with
elements of Z = X×Um satisfying the dynamics and
endpoint constraints defining membership of D. In
other words, the problem is posed over those u ∈ Um
satisfying the inequality and equality constraints given
in S and for which, if x is the unique solution of the
differential equation ẋ(t) = f(t, x(t), u(t)) (t ∈ T )
together with the initial condition x(t0) = ξ0, then
x(t1) = ξ1.

Elements of Z will be called processes and of
S admissible processes. We shall say that a process
(x, u) solves (P) if (x, u) is admissible and I(x, u) ≤
I(y, v) for all admissible process (y, v).

Given (x, u) ∈ Z we shall find convenient to use
the notation (x̃(t)) to represent (t, x(t), u(t)), and ‘∗’
will be used to denote transpose. We assume that L, f
and ϕ are C2 and the q× (m+ r)-dimensional matrix(

∂ϕi
∂uk

δiαϕα

)
(i = 1, . . . , q; α = 1, . . . , r; k = 1, . . . ,m) has rank
q on A (here δαα = 1, δαβ = 0 (α 6= β)), where

A := {(t, u) ∈ T ×Rm | ϕα(t, u) ≤ 0 (α ∈ R),

ϕβ(t, u) = 0 (β ∈ Q)}.
This condition (see [7, 10] for details) is equivalent to
the condition that, at each point (t, u) inA, the matrix(

∂ϕi
∂uk

)
(i = i1, . . . , ip; k = 1, . . . ,m)

has rank p, where i1, . . . , ip are the indices i ∈
{1, . . . , q} such that ϕi(t, u) = 0.

3 Necessity and normality

Usually first order conditions for this problem are es-
tablished in terms of the Hamiltonian function (see,
for example, [3, 6, 7, 11]), and one version can be
written as follows. For all (t, x, u, p, µ, λ) in T×Rn×
Rm ×Rn ×Rq ×R let

H(t, x, u, p, µ, λ) := 〈p, f(t, x, u)− λL(t, u)−

〈µ, ϕ(t, u)〉.

Theorem 3.1 Suppose (x0, u0) solves (P). Then there
exist λ0 ≥ 0, p ∈ X , and µ ∈ Uq, not vanishing
simultaneously on T , such that

a. µα(t) ≥ 0 and µα(t)ϕα(t, u0(t)) = 0 (α ∈
R, t ∈ T ).

b. On every interval of continuity of u0,
we have ṗ(t) = −H∗x(x̃0(t), p(t), µ(t), λ0) and
Hu(x̃0(t), p(t), µ(t), λ0) = 0.

This result assures the existence of multipliers
(p, µ, λ0) associated to a solution to the problem.
Let us denote by M(x, u) the set of such multipli-
ers and define a set E of “extremals” as the set of all
(x, u, p, µ) which have associated a nonzero cost mul-
tiplier normalized to one.

Definition 3.2 For all (x, u) ∈ Z let M(x, u) be the
set of all (p, µ, λ0) ∈ X × Uq ×R with λ0 + |p| 6= 0
satisfying

a. µα(t) ≥ 0 and µα(t)ϕα(t, u(t)) = 0 (α ∈
R, t ∈ T );

b. For t ∈ T , ṗ(t) = −H∗x(x̃(t), p(t), µ(t), λ0)
and Hu(x̃(t), p(t), µ(t), λ0) = 0.

Denote by E the set of all (x, u, p, µ) ∈ Z ×X ×
Uq such that (p, µ, 1) ∈M(x, u), that is,

a. µα(t) ≥ 0 and µα(t)ϕα(t, u(t)) = 0 (α ∈
R, t ∈ T );

b. ṗ(t) = −f∗x(x̃(t))p(t) and f∗u(x̃(t))p(t) =
L∗u(x̃(t)) + ϕ∗u(t, u(t))µ(t) (t ∈ T ).

The notion of “normality” is introduced so that
the non-vanishing of the cost multiplier can be as-
sured. This is accomplished by having zero as the
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unique solution to the adjoint equation whenever λ0
is equal to 0.

Definition 3.3 A process (x, u) ∈ S will be said to
be normal relative to S if, given p ∈ X and µ ∈ Uq
satisfying

i. µα(t) ≥ 0 and µα(t)ϕα(t, u(t)) = 0 (α ∈
R, t ∈ T );

ii. ṗ(t) = −f∗x(x̃(t))p(t) (t ∈ T );
iii. 0 = f∗u(x̃(t))p(t)− ϕ∗u(t, u(t))µ(t) (t ∈ T ),

then p ≡ 0. In this event, clearly, also µ ≡ 0.

From Theorem 3.1 and the above definitions it
follows that, if (x0, u0) solves (P) and is normal rela-
tive to S, then there exists (p, µ) ∈ X × Uq such that
(x0, u0, p, µ) ∈ E . Note also that uniqueness of the
pair (p, µ) cannot be assured and, for that purpose, a
stronger notion of normality is required or, as we shall
see below, the definition of normality given before but
applied to a set S0 involving only equality constraints.

Denote the set of active indices at (t, u) ∈ T ×
Rm by

Ia(t, u) := {α ∈ R | ϕα(t, u) = 0}

and, given (x0, u0) ∈ S, consider the set

S0 := {(x, u) ∈ D | ϕγ(t, u(t)) = 0

(γ ∈ Ia(t, u0(t)) ∪Q, t ∈ T )}.

Note that (x0, u0) is normal relative to S0 if, given
(p, µ) ∈ X × Uq satisfying

i. µα(t)ϕα(t, u0(t)) = 0 (α ∈ R, t ∈ T );
ii. ṗ(t) = −f∗x(x̃0(t))p(t) and f∗u(x̃0(t))p(t) =

ϕ∗u(t, u0(t))µ(t) (t ∈ T ),
then p ≡ 0.

To be consistent with other references (see, for
example, [4–6, 12, 13]), we shall refer to normality
relative to S and S0 as “weak” and “strong normality”
respectively. The following proposition is crucial. It
is a simple consequence of Theorem 3.1 and the defi-
nitions given above (see also [12]).

Proposition 3.4 If (x0, u0) solves (P) then M(x0, u0)
is not empty. If also (x0, u0) is strongly normal then
there exists a unique (p, µ) ∈ X × Uq such that
(x0, u0, p, µ) ∈ E .

For second order conditions let us consider, for
all (x, u, p, µ) in Z × X × Uq and (y, v) in Z, the
quadratic form defined as

J((x, u, p, µ); (y, v)) :=

∫ t1

t0
2Ω(t, y(t), v(t))dt

where, for all (t, y, v) ∈ T ×Rn ×Rm,

2Ω(t, y, v) := −[〈y,Hxx(t)y〉 + 2〈y,Hxu(t)v〉+

〈v,Huu(t)v〉]

and H(t) denotes H(x̃(t), p(t), µ(t), 1).
The following result was derived in [6] by reduc-

ing the original problem into a problem involving only
equality constraints in the control. In what follows,

the notation ϕγu(t, u0(t)) is short for
∂ϕγ
∂u

(t, u0(t)).

Theorem 3.5 Let (x0, u0) be an admissible process
for which there exists (p, µ) ∈ X × Uq such that
(x0, u0, p, µ) ∈ E . If (x0, u0) is a strongly normal
solution to (P) then

J((x0, u0, p, µ); (y, v)) ≥ 0

for all (y, v) ∈ Z satisfying
i. ẏ(t) = fx(x̃0(t))y(t)+fu(x̃0(t))v(t) (t ∈ T ),

and y(t0) = y(t1) = 0;
ii. ϕγu(t, u0(t))v(t) = 0 (γ ∈ Ia(t, u0(t)) ∪

Q, t ∈ T ).

It is of interest to see if, in Theorem 3.5, the as-
sumption of strong normality can be weakened and
the set of critical directions where the second order
condition holds can be enlarged.

4 Second order conditions

For any (t, u) ∈ T ×Rm define

τ(t, u) := {h ∈ Rm | ϕαu(t, u)h ≤ 0 (α ∈ Ia(t, u)),

ϕβu(t, u)h = 0 (β ∈ Q)}.

Definition 4.1 Let (x, u) ∈ Z and set A(t) :=
fx(x̃(t)), B(t) := fu(x̃(t)) (t ∈ T ). We shall say
that (x, u) is τ -regular if there is no nonnull solution
z ∈ X to the system

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h ≤ 0 for all h ∈ τ(t, u(t)) (t ∈ T ).

As one can show, the notions of weak normality
(normality relative to S) and τ -regularity are equiv-
alent (for a simpler case we refer to [12]). The set
τ(t, u) defined above is a cone of “critical directions”
associated with S. In a similar way, for any (t, u) ∈
T ×Rm, let

τ0(t, u) := {h ∈ Rm | ϕγu(t, u)h = 0
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(γ ∈ Ia(t, u) ∪Q)}.
By Definition 4.1, (x, u) ∈ Z is τ0-regular if there is
no nonnull solution z ∈ X to the system

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h = 0 for all h ∈ τ0(t, u(t)) (t ∈ T ).

Recall that the notion of strong normality, or normal-
ity relative to the set S0 depends on a given admissible
process (x0, u0). Note that (x0, u0) is τ0-regular ⇔
(x0, u0) is strongly normal.

Suppose now that we are given µ ∈ Uq with
µα(t) ≥ 0 (α ∈ R, t ∈ T ), and we define

S1 = {(x, u) ∈ D | ϕα(t, u(t)) ≤ 0

(α ∈ R, µα(t) = 0, t ∈ T ),

ϕβ(t, u(t)) = 0

(β ∈ R with µβ(t) > 0, or β ∈ Q, t ∈ T )}.
Associate with this set, for all (t, u) ∈ T × Rm and
µ ∈ Rq, the cone of directions

τ1(t, u, µ) := {h ∈ Rm | ϕαu(t, u)h ≤ 0

(α ∈ Ia(t, u), µα = 0),

ϕβu(t, u)h = 0 (β ∈ R with µβ > 0, or β ∈ Q)}.
If there is no nonnull solution z ∈ X to the system

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h ≤ 0 for all h ∈ τ1(t, u(t), µ(t)) (t ∈ T )

then (x, u) is called τ1-regular.
Note that, if µ ∈ Uq is such that µα(t) ≥ 0

(α ∈ R, t ∈ T ) and (x, u) ∈ S1, then (x, u) is
τ1-regular⇔ (x, u) is normal relative to S1. Also, as
one readily verifies, if (x0, u0) is normal relative to S0
(strongly normal) then it is normal relative to S1 (with
µ as above) which in turn implies normality relative
to S (weakly normal).

Now, in this section we shall derive second or-
der necessary conditions for problem (P). Our main
result will be proved with the help of an auxiliary re-
sult established in [4] and partially based on the theory
presented in [8]. It is a consequence of the full rank
assumption mentioned in Section 2.

Let us consider the problem, which we label (C),
of minimizing

∫ t1
t0
L(t, u(t))dt on the set

C := {u ∈ Um | (t, u(t)) ∈ A (t ∈ T )}.

Lemma 4.1 Let u0 ∈ C. Then u0 solves (C) ⇔
L(t, u) ≥ L(t, u0(t)) (t ∈ T ) whenever (t, u) ∈ A.

In this event, there exists a unique µ ∈ Uq such that
Fu(t, u0(t), µ(t)) = 0 (t ∈ T ) where

F (t, u, µ) := L(t, u) + 〈µ, ϕ(t, u)〉.

Moreover, µα(t) ≥ 0 and µα(t)ϕα(t, u0(t)) = 0
(α ∈ R, t ∈ T ), and

〈h, Fuu(t, u0(t), µ(t))h〉 ≥ 0

for all h ∈ τ1(t, u0(t), µ(t)) (t ∈ T ).

Note that, if (x0, u0) is admissible for (P) and u0
solves (C), then (x0, u0) solves (P). However, we may
have a solution (x0, u0) to the problem (P) but u0 does
not solve (C). In fact, it may even afford a maximum
to I on C. A simple example illustrates this fact.

Example 4.2 Consider the problem of minimizing
I(x, u) =

∫ 1
0 u(t)dt subject to (x, u) ∈ Z and

ẋ(t) = u2(t), x(0) = x(1) = 0, u(t) ≤ 0.

Then (x0, u0) ≡ (0, 0) is a solution to (P), being the
only admissible process, but u0 ≡ 0 does not solve
(C), that is, it does not minimize

∫ 1
0 u(t)dt over the

set
C = {u ∈ U1 | u(t) ≤ 0 (t ∈ T )}.

In this example, u0 maximizes I on C. Note also that
(x0, u0) is not normal with respect to S since B(t) =
fu(x̃0(t)) = 0 (t ∈ [0, 1]).

The following example illustrates an opposite sit-
uation where, though one can exhibit a solution to the
problem (C), the original problem (P) may fail to have
a solution.

Example 4.3 Consider the problem of minimizing
I(x, u) =

∫ 1
0 u

2
2(t)dt subject to (x, u) ∈ Z and

ẋ(t) = u3(t)− u1(t) + u21(t)u2(t) (t ∈ [0, 1]);

x(0) = x(1) = 0;

u3(t)− u1(t) ≤ −2, −u3(t) ≤ 1,

u21(t)u2(t) ≤ 2 (t ∈ [0, 1]).

Clearly u0 ≡ (1, 0,−1) is a solution to the problem
(C) of minimizing

∫ 1
0 u

2
2(t)dt on the set

C = {(u1, u2, u3) ∈ U3 | u3(t)− u1(t) ≤ −2,

−u3(t) ≤ 1, u21(t)u2(t) ≤ 2 (t ∈ [0, 1])}.

However, if (x, u) is admissible, then necessarily
0 < u2(t) ≤ 2 (t ∈ [0, 1]). This can be easily
seen since, by the constraints, we have ẋ(t) ≤ 0
and x(0) = x(1) = 0 implying that x ≡ 0 and so
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u3 − u1 + u21u2 ≡ 0. Therefore u21u2 ≡ 2 and, since
−1 ≤ u3(t) ≤ u1(t) − 2, we have u1(t) ≥ 1. This
proves the claim.

Theorem 4.4 Suppose (x0, u0) solves (P) and there
exists (p, µ) ∈ X × Uq satisfying

a. µα(t) ≥ 0 and µα(t)ϕα(t, u0(t)) = 0 (α ∈
R, t ∈ T );

b. ṗ(t) = −f∗x(x̃0(t))p(t) and p∗(t)fu(x̃0(t)) =
Lu(t, u0(t)) + µ∗(t)ϕu(t, u0(t)) (t ∈ T ).
Suppose also that u0 solves (C). If p ≡ 0 then

J((x0, u0, p, µ); (y, v)) ≥ 0

for all (y, v) ∈ Z with v(t) ∈ τ1(t, u0(t), µ(t)) (t ∈
T ). In particular, p ≡ 0 if (x0, u0) is normal relative
to S1.

Proof: Let

F (t, u, ν) := L(t, u) + 〈ν, ϕ(t, u)〉.

By Lemma 4.1,

L(t, u) ≥ L(t, u0(t)) (t ∈ T )

whenever (t, u) ∈ A, and so there exists a unique ν ∈
Uq such that

Fu(t, u0(t), ν(t)) =

Lu(t, u0(t)) + ν∗(t)ϕu(t, u0(t)) = 0 (t ∈ T ).

Moreover, να(t) ≥ 0 and να(t)ϕα(t, u0(t)) = 0 (α ∈
R, t ∈ T ), and

〈h, Fuu(t, u0(t), ν(t))h〉 ≥ 0

for all h ∈ τ1(t, u0(t), ν(t)). Assume that p ≡ 0. By
(b), we have

Fu(t, u0(t), µ(t)) =

Lu(t, u0(t)) + µ∗(t)ϕu(t, u0(t)) = 0 (t ∈ T )

and so, by uniqueness, µ ≡ ν. Since

H(t, x, u, p, µ, 1) =

〈p, f(t, x, u)〉 − L(t, u)− 〈µ, ϕ(t, u)〉 =

−F (t, u, µ)

we have 2Ω(t, y, v) = 〈v, Fuu(t, u0(t), µ(t))v〉 and
the first part follows.

To show that normality relative to S1 implies that
p ≡ 0 note first that

Lu(t, u0(t)) = −ν∗(t)ϕu(t, u0(t)) (t ∈ T )

and so, by (b),

p∗(t)B(t) =
q∑
1

(µα(t)− να(t))ϕαu(t, u0(t)).

This implies that, for all h ∈ τ1(t, u0(t), µ(t)),

p∗(t)B(t)h =
∑

α∈N(t)

−να(t)ϕαu(t, u0(t))h

where

N(t) = {α ∈ Ia(t, u0(t)) | µα(t) = 0}.

We conclude that p∗(t)B(t)h ≥ 0 for all h ∈
τ1(t, u0(t), µ(t)) and therefore −p is a solution to the
system

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h ≤ 0 for all h ∈ τ1(t, u0(t), µ(t)) (t ∈ T ).

It follows that, if (x0, u0) is normal relative to S1, then
p ≡ 0.

5 Conclusions

In this paper we provide a constraint qualification for
second order necessary conditions which can be ap-
plied to certain classes of optimal control problems in-
volving inequality and equality constraints in the time
variable and the control functions. We show that the
conditions hold on a cone of critical directions which
contains the usual cone which depends on the sign of
the corresponding Lagrange multipliers.
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