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Abstract: This study presents a Parametric Dynamic Matrix Controller (PDMCr) to handle inde-
pendently the process gain, time constant and dead time effects over the DMC performance. The
controller is complemented with a fuzzy supervisory module that monitors changes on the process
nonlinear behavior and keeps updated the embedded process model, saving time by avoiding repeating
the open-loop step response identification. The new PDMCr is able to improve regulation and control
tasks, even in those cases when the operation point is far from the initial identification point. Three
examples are used to assess the PDMCr performance, a linear FOPDT and two nonlinear chemical
processes: a mixing tank, and a neutralization reactor. The PDMCr improves the DMC performance,
tracking set point and rejecting disturbances with shorter settling times and less overshoot, it remains
stable when DMCr oscillates; and show more tolerance to noise than the DMCr, keeping a stable
behavior for longer times under noisy input signals. When both performances are comparable, the IAE
values for the PDMCr are until 23% lower compared to the DMCr.

Key-Words: Nonlinear DMC, Nonlinear Chemical Processes, Parametric DMC, Tuning parame-
ters, Fuzzy Logic, Supervisor Module

1 Introduction

Dynamic Matrix Control (DMC) was originally de-
veloped by Cuttler and Ramaker in 1979 [1]. It was
first intended to fulfill requirements of petrochemical

and power plants; more than three decades later, it has
been successfully applied in chemical, food process-
ing, pulp and paper and aerospace industries [2] [3].
DMC is a Model Predictive Control technique, which
decisions are driven by real data of the process dy-
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namics over a future horizon time, this is its key issue
[4]. The essence of DMC is to find the optimal con-
trol output vector using a least squares solution for the
residuals of non-compensated errors coming from the
Dynamic Matrix, a linear combination of future out-
puts and future inputs of the process [2]. It is a Model
Based Control (MBC) which success is due to its abil-
ity to anticipate and eliminate feed forward and feed-
back disturbances [4] with a less aggressive output
and a more robust response compared to other tech-
niques such as the traditional and universally imple-
mented PID control [5]. As a MBC technique, DMC
allows intrinsic dead time compensation [2], and due
to its Dynamic Matrix can be easily extended to mul-
tivariable cases [4]. Industrial processes are nonlin-
ear by nature and DMC approaches them using a lin-
ear step response model. This may result in nega-
tive consequences such as very slow to oscillatory re-
sponses [6] [7] [8] and in some cases, large Integral
Squared Error (ISE) values for set-point tracking due
to steady state error [5]. Ill-conditioned matrices are
also a problem and lead to poor DMC performances
[9].
Currently, many of the DMC improvement alterna-
tives are focused on two points, improvements on how
to deal with nonlinearities in MIMO systems with
strong variable interactions [10], and improvements
on the control parameter tuning for horizon and move
suppression factor [11]in order to avoid fluctuation
and decrease execution frequency [5].
Proposals to solve the DMC weaknesses can be
grouped in two sets: one set is focused on the DMC
algorithm reformulation, and the other one is focused
on the control parameter tuning. Examples in the first
set are McDonald and McAvoy [8], Brengel and Sei-
der [12], Peterson, et. al. [13], Aufderheide and Be-
quette [14]. Some of these proposals suggest the addi-
tion of a disturbance vector to take into account the ef-
fect of nonlinearities in the prediction horizon [13], or
a multiple model structure: standard DMC plus First
Order Plus Dead Time (FOPDT) [14]. McDonald
and McAvoy [8] proposed a gain and time scheduling
technique to update the DMC algorithm and enhance
its control performance. The second set uses the con-
trol parameter tuning to improve DMC performance.
Recently Jeronimo and Coelho [11] used SISO pro-
cesses represented by a FOPDT model to propose
auto tuning and self-tuning methods based on DMC
minimum realization (optimal move suppression fac-
tor and optimal horizon) and online minimization of
the objective function to reduce set-point tracking er-

ror and control ringing.
The work presented here proposes a hybrid approach
that includes changes in the standard DMC’s con-
trol law to isolate the process gain, time constant
and dead time effects; and an auto-tuning module.
The traditional Dynamic Matrix Controller (DMCr) is
transformed into a Parametric Dynamic Matrix Con-
troller (PDMCr). Also an auto tuning technique is
suggested to calculate the optimal move suppression
factor based on regression analysis using a FOPDT
model. The input parameters for tuning come from a
fuzzy supervisor module that monitors changes on the
process nonlinear behavior, detects them and sends
the information to update the PDMCr. The new
PDMCr is able to improve regulation and control
tasks, even in those cases when the operation point
is far from the initial identification point.
The paper is organized as follows: section two shows
how to implement a DMCr for a SISO system. Sec-
tion three describes the proposed PDMCr, and section
four presents the fuzzy supervisor model. Section five
presents the PDMCr performance in a mixing process
and a neutralization reactor compared to the conven-
tional DMCr. The final section shows the noise effect
on the PDMCr, and finally conclusions are presented.

2 Conventional DMC Implementa-
tion

There are many ways to describe the DMC algorithm;
for the purpose of this research, the form suggested
by Sanjuan [15] is used. The following discussion
describes the DMC implementation for Single-Input-
Single-Output (SISO) systems. The process is identi-
fied first using a step change in the signal to the valve
input (∆m), sampling the sensor signal provides the
process response. This data is collected in a sampling
vector (Sv) until a new steady state is reached. A sam-
pling time between one tenth and one fifth of the pro-
cess time constant is usually recommended, resulting
in a Sampling Size (SS) between 25 and 50 samples.
The length of the sample vector is directly related to
the Prediction Horizon (PH), which is the number of
future steps where the process output variable will be
predicted. Each component of the sampling vector
is transformed by subtracting the final steady state.
Each element of this new vector is then divided by
∆m. The final component of this new vector (Av) is
the process gain KP. For the DMC algorithm the vec-
tor Av is used to build the dynamic matrix process A
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as follows:

A =


Av 0 . . . . . . 0
KP Av 0 . . . 0
KP KP Av 0 0
. . . . . . . . . . . . . . .
KP KP . . . . . . Av


PH×CH

(1)

The number of columns of A in Eq.(1) corresponds
to the Control Horizon (CH). For industrial appli-
cations only 5 or 10 step moves are investigated by
the optimizer [13] [16]. The lower CH is, the slower
the controller (less aggressive) will be and vice versa.
Once CH is chosen, the Prediction Horizon (PH) is
defined as:

PH = SS+CH−1 (2)

The dynamic matrix control A Eq.(1) is now used to
find the control output vector ∆M. This task is done
by the minimization of the residuals R from the pre-
dicted error vector E using a least square technique.

A∆M = E +R (3)

The controller output ∆M can be calculated from Eq.
(4)

∆M =
(
AT A

)−1
AT E (4)

Usually a suppression factor λ is used as a tuning pa-
rameter to change the aggressiveness of the controller,
in that case the control move is expressed as:

∆M =
(
AT A+λ

2I
)−1

AT E (5)

Equation (5) is the DMC standard control law pro-
posed by Cutler and Ramaker [1]. This study pro-
poses to isolate the dynamics process characteristics
(process gain KP, time constant τ, delay time to) from
the A matrix, in order to take direct actions over their
specific changes.

3 A New Approach for DMC Struc-
ture

As it was previously mentioned, the DMC control law
in Eq.(5) is built upon the assumption of a fixed linear
process model. This becomes a limitation in some
cases where process are highly nonlinear and there-
fore very sensitive to disturbances. For highly non-
linear processes, a more convenient way to express
the DMC control algorithm could be in a parametric

form, as a function of the process parameters: gain,
time constant and dead time, and the suppression fac-
tor λ [17]:

∆M = f (KP,τ, to,λ) (6)

Once the effect of each process parameter is isolated
from the control law, this algorithm can adapt itself
to specific changes in the process gain, and/or pro-
cess time constant, and/or dead time without the need
of additional identification steps. All of this keeping
the smoothing role of the suppression factor, and the
DMC’s original advantages such as its ability to han-
dle multivariable cases and processes with high delay
times.
The proposal for a new controller algorithm begins
with Eq. (1), where the process gain KP can be fac-
tored out as a common term. The Av can then be ex-
pressed as a function of a vector V whose elements
varies from 0 to 1 and contains information about the
process time constant and the dead time. The dy-
namic process matrix becomes equal to:

A = KP


V 0 . . . . . . 0
1 V 0 . . . 0
1 1 V 0 0
. . . . . . . . . . . . . . .
1 1 . . . . . . V


PH×CH

= KPU

(7)

The DMC control law in Eq.(5) is transformed using
this new process dynamic matrix Eq.(7) into a new
form called Parametric Dynamic Matrix Control law
(PDMC).

∆M =
1

KP

(
UTU +λ

2I
)−1

UT E (8)

Similarly, when the process dead time changes, those
changes can be included directly into the matrix U
using the vector V .

V =


0
0
...
1


SS×1

=

[
Zun×1

Du(SS−n)×1

]
SS×1

(9)

In Eq.(9) Zu is a a vector with zeros which dimensions
n× 1 are related to the process dead time, because n
represents how many sampling periods Ts correspond
to it. The vector Du is composed by the remaining no
null elements in vector V . A graphical representation
is shown in figure 1. If Eq.(9) is used to build the
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Fig. 1: Discrete Data Contended Inside Vector Av

process dynamic matrix, this becomes equal to:

A = KP



Zu 0 0 0 . . . 0
Du Zu 0 0 . . . 0
1 Du Zu 0 . . . 0
1 1 Du Zu . . . 0
. . . . . . . . . . . . . . . . . .
1 1 1 . . . 1 Zu
1 1 1 . . . 1 Du


PH×CH

(10)

Equation (11) shows that the U matriz is composed of
two matrices, the Z and D matrices. The Z matrix is
composed by Zu vectors, one in each column of the U
matrix; their values are defined by the designer. The
D matrix is composed for the remaining elements in
the U matrix.

A = KP

[
Zn×CH

D(PH−n)×CH

]
PH×CH

(11)

To illustrate how these changes will affect the con-
trol law, we show here how the term

(
UTU

)−1UT

changes if Eq.(11) is included into in the PDMC law
Eq.(8) (without the suppression factor to keep it sim-
ple):

(
UTU

)−1
UT =[ZT

CH×n
... DT

CH×(PH−n)

] Zn×CH

. . .
DCH×(PH−n)

−1

×

[
ZT

CH×n
... DT

CH×(PH−n)

]
(12)

(
UTU

)−1
UT =

(
ZT Z +DT D

)−1
[
ZT ... DT

]
=
[(

DT D
)−1 ZT ...

(
DT D

)−1 DT
]

=
[
Z

...
(
DT D

)−1 DT
]

(13)

After some mathematical manipulations and the ad-
dition of the suppression factor λP the proposed form
for the PDMC law Eq.(8) can be written as:

∆M =
1

KP

([
Z

...
(
DT D

)−1
DT
]
+λ

2
PI
[

ZT ...DT
])

E

(14)

The suppresion factor inside Eq.(14) regulates the
controller aggresiveness, and it is calculated as in
equation (15).

λP =
λ

KP
(15)

Standard DMC tuning equations for λ [16][3][18]
were tested on nonlinear processes in a previous work
and gave very aggressive controller responses [19].
For this reason we used the equation proposed by
Iglesias [17]:

λ = 1.631KP

( to
τ

)0.4094
(16)

Equation (16) is the final result of a two-stage proce-
dure (factorial experiment plus nonlinear regression
analysis) designed to measure the effect of changes in
the process variables due to the controller aggresive-
ness. To measure the controller agresiveness, Iglesias
[17] defined a cost function, called Performance Pa-
rameter (PP). The cost function combines the Inte-
gral of the Absolute Value of the Error (IAE) and the
Integral of the Absolute Value of the Change in Ma-
nipulated Valve signal (IMV). This cost function is
expressed as:

PP =
∫

∞

0
|e(t) |dt +Γ

∫
∞

0
|mss−m(t) |dt (17)

The PP depends on process parameters such as KP, τ,
to
τ

, Ts
τ

and Γ (a weighted parameter in the cost func-
tion). A 35 factorial experiment was performed to
study their effect over PP. Only main effects and
second order interactions were considered. The ef-
fect of each variable and their possible interactions
were tested using the optimal λ values (those that
minimize the PP) for each one of the experiments.
All experiments were performed on a FOPDT sys-
tem in SISO control loop under set point changes
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(±10%TransmitterOut put) at different times.
Significant factors (p < 0.05) were the primary vari-
ables and their interactions KPτ, KP

to
τ

, τ
to
τ

and to
τ

Ts
τ

.
The optimal suppression factors (from each one of
the signicant variables and their combinations) were
fit to different nonlinear tuning equations and the best
equation found is presented in Eq.(16) [17] [19].
Once the PDMCr agressiveness was handled, the next
step was to find how the changes in the process time
constant could be compensated in the PDMC algo-
rithm. Due to the complex dynamic behavior of real
processes, there is not an easy way to isolate the infor-
mation concerning to the process time constant, as it
was previously done for the process gain and the dead
time. The matrix D in Eq.(14) contains the process
dynamic information after the dead time. Therefore,
the process time constant is inside this matrix. A non-
linear correction to adjust changes in the process time
constant is proposed:

Dad j = D

1− exp
−kiTs

τnew

1− exp
−kiTs

τprev

 (18)

The terms inside Eq.(18) are ki, the ith term in matrix
D row; Ts, the sampling time used to record process
data; τnew is the new process time constant; τprev is the
new process time constant. The correction factor is a
ratio of two exponential terms with the typical First
Order Plus Dead Time (FOPDT) form. The numer-
ator is a function of the new process time constant,
whereas the denominator is a function of the previous
process time constant value. The exponential form of
the time constant correction was chosen based on the
good agreement between empirical models and the
dynamic behavior of real processes. The effective-
ness of our PDMCr is restricted to those processes
able to be modeled as FOPDT processes. The idea
was to adjust the ith term in the D matrix using its cor-
responding correction factor as expressed in Eq.(18).
The process time constant correction completes the
PDMCr, and its control law is then expressed as:

∆M =
1

KP

([
Z

...
(
DT

ad jDad j +λ
2
PI
)−1

DT
ad j

])
CH×PH

×E

(19)

Eq.(19) is the parametric law of the Dynamic Matrix
Controller. Its mathematical form offers some advan-
tages when it is neccesary to update the process model
after disturbances. If the process gain changes, the
change is included into the PDMC model using the

factors 1
KP

and λP. If the process dead time changes,
the change is included into the PDMC model, Eq.
(14) changing the number of columns n of matrix Z
inside the matrix D. If the process time constant τ

changes, the Dad j matrix is adjusted using the cor-
rection factor. All the adjustments can be done with
no need to recalculate the Process Dynamic Matrix A.
This could save time because the controller algorithm
does not need a new identification procedure after dis-
turbances.

4 Definitions of Function Spaces and
Notation

To use the PDMCr in an efficient way (adjust the
control system to compensate for nonlinearities), it is
necessary to detect and quantify changes in process
parameters on-line, as soon as they happen, and trans-
fer these changes to the PDMCr and tuning equation.
There are several ways to do this, but one of the most
reliable procedures is based on the concept of mod-
eling error [20][21]. Modeling error, em, is defined
as the difference between the actual process output of
c(t), and the controller predictive value cP (t) from
the embedded model inside the controller. This con-
cept applies for all MBC controllers.
In a multivariable model there are several ways to de-
termine the modeling errors. For example, em can be
calculated using the time to reach the steady-state, the
ratio of maximum peak to minimum peak, the damp-
ing ratio, the decay ratio, etc. In this work 19 different
indicators were studied and they are presented in Ta-
ble 1. These indicators, defined as Modeling Error In-
dexes (MEI), were statistically related to the changes
in the process parameters reported in Table 2. Values
for the Modeling Error Indexes were measured from
the process response after each one of the changes in
Table 2 was applied.
A total of 61236 simulations were performed to eval-
uate the 19 indexes in Table 1. Just a set of 15 MEIs
showed statistically significant correlations with the
changes in the process parameters (p < 0.05). Multi-
ple linear regression analyses were applied to these
15 indicators using Equation (20) [17]. Just three
of the MEIs, Time for Maximum Peak/τ, Time for
Minimum Peak/τ and 10th Correlation Coefficient of
modeling error, achieved statistically significant re-
sults and showed the maximum changes in their val-
ues. The multilinear model coefficients for Eq.(20)
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are shown in Table 3.

MEI = β1 +β2τ+β3
to
τ
+β4∆KP +β5∆τ+β6∆to+

(20)

β7τ
to
τ
+β8τ∆KP +β9τ∆τ+β10τto

The optimal MEI were included in a Fuzzy Infer-
ence System (FIS) to create a Supervisor Module for
predicting on-line changes in process parameters and
readjusting the process model, as well as the suppres-
sion factor in the PDMCr. The Supervisor Module
was designed to work only when a set point change
is detected. This design could seem peculiar because
set points are commonly constant. However the idea
behind this design is to use the set point change as
a tool to test the system for changes in process pa-
rameters that could cause controller aging. From a
practical point of view this mean that when a plant
operator detects an inadequate control loop response
rejecting disturbances, the operator would perform a
set point change in one direction and later the same
change in the opposite direction to return back to the
initial conditions. In this way the supervisor has two
opportunities to evaluate the process parameter and
adjust the PDMCr to the new conditions.

The supervisor records the em values until the sys-

Fig. 2: Nonlinear relationship among two of the MEIs
and γ∆K p

tem reaches the new set point. The data is used to
determine the Time for Maximum Peak/τ (MEI1) ,
Time for Minimum Peak/τ (MEI2) and 10th Corre-
lation Coefficient of modeling error (MEI3). These
values are then used to determine the changes in the
process parameters ∆KP, ∆τ and ∆to by the optimiza-
tion of the cost function CF shown in Equation (21),

Table 1: Modeling Error Indexes used to predict Pro-
cess Parameters Changes
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Table 2: Factors and Levels Used to Record Modeling
Error and Develop the Regression Equations

∆Cset (%TO) KP
(%TO

%CO

)
τ

to
τ

∆KP ∆τ ∆to
-15 0.5 1 0.2 -40 -40 -15
-7.5 1.5 3 0.6 -30 -30 -10
7.5 2.5 5 1 -20 -20 -5
15 -10 -10 0

0 0 5
10 10 10
20 20 15
30 30
40 40

Table 3: Parameters for Regression Equations Used
in Supervisor Module

β Time for Maximum Peak/ τ Time for Minimum Peak/ τ 10th Corr. Coeff. of em
β1 12.5494 7.96350 -0.64086
β2 -2.3297 -1.20200 -0.00542
β3 0.789060 5.31050 0.26446
β4 0.003125 0.19760 0.01052
β5 -0.003750 -0.03070 0.00154
β6 -0.033750 0.14062 0.05056
β7 0.210940 0.18164 0.08960
β8 0.210940 0.00546 0.000924
β9 -0.0003125 -0.04484 0.000354
β10 0.037500 -0.00312 -0.00409

where F1, F2 and F3 are the appropriate regression
equations corresponding to each MEI. All of them
have the same form that Equation (20) with the pa-
rameters defined on Table 3. The results for ∆KP, ∆τ

and ∆to are expressed as a percentage of change in the
respective parameter. Then, the new process param-
eters are estimated using the following expressions,
where γ is a correction factor with value between 0
and 1.

CF = |MEI1calc−F1 (β,∆KP,∆τ∆to) | (21)

+|MEI2calc−F2 (β,∆KP,∆τ∆to) |
+|MEI3calc−F3 (β,∆KP,∆τ∆to) |

KPad j = KP

(
1+

γ∆K p∆KP

100

)
(22)

τad j = τ

(
1+

γ∆τ∆τ

100

)
(23)

toad j = to

(
1+

γ∆to∆to
100

)
(24)

There is an uncertainty in the β values due to the in-
evitable failures in the goodness of fit. The idea be-
hind the γ factor is improving the process parameter
prediction using Fuzzy Rules. These rules take ad-
vantage of the experience gained by the authors as
control engineers, after running more than 60000 sim-
ulations for different process changes. Every MEI
value is fuzzified using three membership functions:
Zero (Z), Small (S) and Large (L). Once the fuzzy
rules are evaluated for each input, the Fuzzy inference
system gives a set of fuzzy values as a result. For ex-
ample, if the Time for Maximum Peak/τ is Large, the
Time for Minimum Peak/τ is Large and the 10th Cor-
relation Coefficient of modeling error is small, then
the γ∆K p is small. The final defuzzification operation
to transform fuzzy values of γ into crisp values is per-
formed using the centroid method [17].
Figure 2 shows the kind of nonlinear relationship
among MEIs and γ∆K p that can be obtained evaluating
the fuzzy rules. It would be very complex to express
mathematically the relationship among the variables,
but using 12 Fuzzy Logic rules is easy to do so. Once
the initial process parameters are corrected based on
the information provided by the modeling error, the
adjusted process parameters are sent to the PDMCr to
adjust the control law and determine the best tuning
parameter. Figure 3 shows a schematic representation
of the proposed approach.

Fig. 3: Schematic representation of the Parametric
DMC

5 Simulation Results

The process model uncertainty is one the most impor-
tant limitations of all MPCrs, including those based
on the DMC algorithm. Controllers work as well
as the model fits the real process behavior. If non-
representative data from the process dynamic is fed
to the controller at the identification stage, there
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will surely be time, resources and money losses in-
volved on its industrial implementation [2]. Once
the controllers have been implemented, their embed-
ded model cannot be adjusted and validated to vary-
ing process conditions, and therefore suffer signifi-
cant deterioration, leading controllers to unsuccessful
performances [2].
A set of tests were performed to evaluate the PDMCr.
The first test was designed to use a known FOPDT
system as the process in the control loop. A sequen-
tial set of set point changes were induced to the con-
trol loop at different times. Simultaneously, the pro-
cess parameters were modified by +25%, in order
to emulate the nonlinear behavior of the process. A
disturbance was fed to the process at 400s. Figure 4
shows the results when standard DMCr and PDMCr
were used. The standard DMCr could not compen-
sate for the changes in FOPDT parameters and be-
came oscillatory. The PDMCr using the Fuzzy Su-
pervisor Module detected and estimated the process
parameters changes,then compensated for them, al-
lowing a stable process control. Figure 5 shows

Fig. 4: Comparison of standard DMCr and PDMCr
performances applied to a FOPDT process model

the comparison of process parameters estimation per-
formed by the Fuzzy Supervisor Module during the

Fig. 5: Comparison among actual process parame-
ters and estimated parameters by the Fuzzy Supervi-
sor Module applied to a FOPDT process model

test presented in Figure 4. The figure 5 shows that the
parameters are updated after every set point change
is detected.The time to update the process parameter
varies and it depends how long takes to the model-
ing error to settle down. The process parameters pre-
dicted by the Fuzzy Supervisor are accurate enough to
guide the PDMCr and adapt its response to the chang-
ing process condition.
As a second test, the PDMCr and standard DMCr
were incorporated to control the mixing process de-
scribed by Iglesias et. al.[19][22][23] (see Figure 6).
Figure 7 shows the comparison when facing consec-
utive set point changes. Figure 7 shows that every
time the set point was decreased by 5%, the stan-
dard DMCr became more and more oscillatory un-
til finally reached a completely oscillatory behavior.
This was a consequence of the nonlinear characteris-
tic in the mixing process. On the contrary, the PDMCr
showed a smooth response and it was able to track
the set point changes during the test. It also rejected
a cold temperature increment used as disturbance at
time 700s. Every time a set point change was detected
by the Fuzzy Supervisor, the model parameters were
estimated and adjusted to adapt the controller to the
new process conditions. When the disturbances af-
fected the process, the PDMC tracked the set point
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Fig. 6: Schematic representation of a mixing tank

avoiding large deviation. The two controllers were

Fig. 7: Performance comparison between the DMCr
and the PDMCr for the mixing tank process

also tested using the neutralization reactor described
by Iglesias et. al.[19] (Fig. 8). A series of consecutive
set point changes were induced, and a reduction of
15% in acid stream concentration was used as distur-
bance; figure 9 shows the results. PDMCr tracked the
set point with less overshoot that the standard DMCr,
for both set point changes and disturbance rejection.
The IAE values were 4284 for standard DMCr and

Fig. 8: Schematic Representation for a neutralization
reactor

3214 for PDMCr, a difference of about 23%. Figure

Fig. 9: Performance comparison between standard
DMCr and PDMCr for the neutralization reactor

10 shows another test performed using the neutral-
ization reactor. Initially a reduction on acid stream
affects the process as disturbance; later, two consecu-
tive set point changes in opposite directions (reaching
the initial value again), are induced into the control
loop, to allow the PDMCr estimate and update the
process parameters (Fig. 10 a.). Later two consec-
utives changes in acid stream affect again to the pro-
cess. Figure 10 shows that PDMCr tracked set point
with less deviation than the standard DMCr. The total
IAE values were 8080 for standard DMCr and 6717
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for PDMCr; a reduction about 17%. The last two dis-
turbances were compensated in less time and with less
overshoot when PDMCr was used. This test could
represent the way the control engineer should use the
consecutive set point changes to allow the PDMCr
adapt to varying operating conditions.

Fig. 10: Neutralization reactor test for disturbances
Rejection: a.Changes induced on the acid stream
b.DMCr response c.PDMCr response

6 Effect of noise

To test the effect of noise on the DMCr and PDMCr
performance, the mixing process describe in Fig.6
was modified to include a noisy signal in cold stream
F2. The noise used had an ARMA(1,1) structure:
Zn = φ1Zn−1+an−θ1an−1, (φ1 = 0.6,θ1 = 0.3).
Two different values of variance were used to gener-
ate the noise: σ2a = 0.02 y σ2a = 0.03. Figure11
shows cold stream signal affected by the noise. Fig-
ure 12 shows the effect of noise on the DMCr and
PDMCr performances. The same test shown in Figure
7 is now used with the noisy cold water flow shown
in Figure 11. Figures 12(a) and (b) compare stan-
dard DMCr and PDMCr when noise has a variance
equal to 0.02, whereas Figures 12(c) and (d) show the
same test but this time with variance 0.03. The test
shows that the PDMCr was sensitive to the presence
of noise as it was expected for controllers of a discrete
nature. A slight variation on noise variance could
cause oscillatory behavior on the PDMCr, see Figure
12(d). However, compared with the standard DMCr,

Fig. 11: Cold Stream F2 Affected by Noise With
Structure ARMA(1,1)

the PDMCr showed more tolerance to the noise pres-
ence, and kept a stable behavior for longer times.

Fig. 12: Noise Effect on DMCr and PDMCr perfor-
mance when applied to the mixing tank

7 Conclusion
The proposed PDMCr was tested under noisy input
signals and varying process dynamics, common char-
acteristics of real industrial processes. The PDMCr
was able to overcome problems with a better perfor-
mance that the standard DMCr, controlling nonlinear
processes. The PDMCr also showed more tolerance
to continuous noisy input signals, keeping a stable be-
havior for longer times as compared to the DMCr.
The PDMCr tracked set point changes with less de-
viation compared to the standard DMCr, and com-
pensated disturbances in less time and with less over-

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Edinzo Iglesias, Oscar Camacho, Marco Sanjuan, 
Carlos Smith, Silvia M. Calderon, Andres Rosales

E-ISSN: 2224-2856 406 Volume 11, 2016



shoot. The PDMCr kept its stability under conditions
where the DMCr was completely unstable. When
both performances were similar to each other, the IAE
values for PDMCr were up to 23% lower than for the
DMCr.
The PDMCr-Fuzzy Supervisor Module set presented
in this study exerted a continuous supervisory role on
the process model in order to avoid its aging. The su-
pervisory module kept the model updated using only
three MEI values coming from closed-loop set point
change responses. This was an advantage compared
to the conventional procedures, because it was not
necessary to do a new open-loop step-response model
identification. This could save time and effort during
its implementation.
Future studies should be focused on the adaptation
and implementation of the PDMCr to control MIMO
systems.
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