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Abstract: - The objective of this work is to describe and test a hand rehabilitation device with particular 

attention to the key ingredients for a successful neuro-motor rehabilitation training identified in literature, and 

in particular: i) adjunctive high duration and intensity therapy sessions; ii) functional orientation of the 

training; and iii) patient active involvement. The developed system is composed by a PC, the Gloreha hand 

rehabilitation glove along with its dedicated screen for visual feedback during movements execution, and the 

MYO armband for EMG signals recording. Multiple degrees-of-freedom hand grasp movements (i.e., grasping, 

grasp an object, pinching, wave) were predicted by means of surface EMG signals. Two cascaded artificial 

neural networks were exploited to detect the patient’s motion intention from the EMG signal window starting 

from the electrical activity onset up to the movement onset. The proposed approach was tested on nine healthy 

control subjects (7 females; age range 16-93 years) and it demonstrated an overall mean ± SD testing 

performance of 80% ± 13% for correctly predicting healthy users’ motion intention. A pilot post-stroke patient 

obtained a percentage of correctly classified tasks of 67% ± 16%. The classifier performance was negatively 

correlated with age, with the pilot patient behaving similarly to more aged participants. 

 

Key-Words: Electromyography (EMG), EMG controller, artificial neural networks, hand rehabilitation, 

movement prediction, electromechanical delay 

 

1 Introduction 
Hand functional use plays an important role in 

everyday life activities, and consequently its loss 

might be very limiting for patients, once dismissed 

from the hospital. Indeed, people which experienced 

a sudden or progressive loss of motor capabilities 

attribute high value to the maintenance of a direct 

interaction with daily life objects [1]. Much more 

effort can be done in dealing with hand 

rehabilitation after neurological damage (e.g., 

stroke), with about 65% of patients six months after 

stroke who cannot incorporate the affected hand into 

their usual activities [2]. Several studies have 

demonstrated that motor recovery is associated with 

reorganization of central nervous system networks 

[3], even if with a certain intra-subject variability 

[4]–[6]. Key ingredients for a successful neuro-

motor rehabilitation training, beside the onset, 

where the earlier is the best, include: i) duration and 

intensity (where the more is the best); ii) functional 

orientation of the training; and iii) patient active 

involvement, and effort in contributing with the 

healing process [7]–[9]. In addition and due to 

economic reasons, the duration of primary 

rehabilitation is getting shorter and shorter, and 

therefore home-based rehabilitation is gaining more 
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and more attention [10]. All these constrains makes 

the design of a hand rehabilitation therapy plan one 

of the most challenging issues in 

neurorehabilitation. 

The objective of this work is to describe and test a 

hand rehabilitation robotic device which tackles the 

aforementioned constrains with the following 

hypothesis: 

i) Adjunctive high duration and intensity therapy 

sessions can be delivered through robotic 

devices. Indeed, one of the key advantages of 

neurorehabilitation performed through robotic 

devices is the possibility to deliver much higher 

therapy doses with low supervision, and to 

perform precise and repeatable therapeutic 

exercises. 

ii) Functional orientation of the training can be 

achieved designing the rehabilitation session 

with proper functional tasks. In this study we 

selected grasping, grasp an object, pinching, 

and wave hand functional tasks. 

iii) Patient active involvement might be directly, 

and non-invasively monitored through 

electromyographic (EMG) activity. 

A home-based rehabilitation treatment/device needs 

to be safe, easy to set-up and to use by non-expert 

users (i.e., patients themselves or caregivers). In this 

study these requirements have been considered for 

the design of the hand rehabilitation robotic device, 

and the controller. 

Dealing in particular with surface EMG-based 

controllers, a lot has been done in literature in terms 

of prosthetics [11], [12], while EMG-controlled 

neurorehabilitation devices have had less attention, 

mainly due to difficulties in effective transition from 

a research prototype to effective product. 

An EMG-based controller architecture might be 

based on features extraction which are fed into a 

classifier (or regressor) to identify movement 

intention toward proportional control (i.e., 

continuous following of the activation profile) or 

trigger control. As for the EMG control of the 

neurorehabilitation device, we decided to use the 

trigger approach of multiple-degrees-of-freedom 

functional movements. It is important to note that 

the classification is designed to provide a prediction 

before the real execution of the hand grasp task, and 

therefore exploiting the EMG signal temporal 

window going from muscle activation to kinematic 

effective movement, i.e. the electromechanical delay 

phase. We hypothesize that this approach allows to 

exploit the physiological control loop where the 

central nervous system programs the consequences 

of an intended movement which is actually executed 

instituting a virtuous Hebbian-like motor pathways 

reinforcement [13], and specific motor strategy 

adaptation as observed in modified sensorial 

environment [14]. 

 

  

2 The hand rehabilitation system 
The designed system (Fig. 1) is composed by a PC, 

a hand rehabilitation robotic glove along with its 

dedicated screen for visual feedback during 

movements execution, and electrodes armband for 

EMG signals recording. The PC has different 

functions: it interacts with the operator (the therapist 

or the patient himself); it records and processes the 

EMG signals; and it communicates with the hand 

rehabilitation robotic glove that controls and 

actuates the glove. The hand rehabilitation robotic 

glove and the control PC communicates through a 

TCP/IP dedicated protocol. 

The rehabilitation system has been designed from a 

previous feasibility study performed by authors’ 

research team [15], [16]. Following a user-centered 

approach - the system adapts to the actual residual 

ability of the subject, exploiting any residual control 

of the end-user. In particular, the interaction of the 

patient with the system is performed through EMG 

signals. Two scenarios have been identified: i) no 

residual EMG activity on the paretic side; ii) 

residual EMG activity on the paretic side with 

partial functional movement execution (i.e. EMG 

activity is specific with respect to motor task to be 

executed). In the first scenario EMG electrodes are 

placed on the healthy forearm while in the second 

scenario on the paretic side. 

 

 

2.1 Experimental set-up 
Gloreha hand rehabilitation robotic device - 

Gloreha (GLOve REhabilitation Hand) is a device 

for neuro-motor rehabilitation of the hand, 

developed and produced by Idrogenet Srl 

(Lumezzane, BS, Italy). It is composed by two main 

elements: a comfortable and light glove, and a 

chassis containing electromechanic actuators and an 

electronic board. The device allows the execution of 

all the combinations of joints flexion-extension. 

Specifically, fingers movement is performed thanks 

to 5 electric actuators. Each actuator is linked to a 

wire. In a compartment of the chassis the operator 

can adjust the length of the 5 cables which generate 

the finger movement to set the starting position of 

the hand, that is also the maximum level of 

extension the glove will reach during the therapy. 

EMG module – Electromyography signals were 

recorded with the MYO armband (www.myo.com). 
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MYO device is a bracelet composed by eight  equi-

spaced bipolar dry EMG channels which stream 

data via Bluetooth to the control PC. MYO was 

placed on the subject forearm 2–3 cm from the 

elbow (Fig. 1) after carefully cleaning of the skin. In 

this configuration, the electrodes were not placed 

specifically on a single muscle [8], [15]–[17], but 

instead the information recorded from the electrodes 

was global, and the overall signal was processed to 

record the patient’s motion intention. Since 

electrode placement was not dependent on the need 

to record the signal from particular muscles, the 

starting point was not fixed. Sampling frequency 

was set to 200 Hz. 

 

 

2.2 Participants 
This study enrolled healthy volunteers with no 

neurological or orthopedic impairment from the 

local population, and from the RSA Maria 

Immacolata in Varese, Italy. In addition, the EMG-

based controller was tested on a pilot chronic post-

stroke patient at Villa Beretta Rehabilitation Center, 

who had inefficient control of the hand, in order to 

test the effectiveness of the proposed approach. The 

experiments were conducted with the approval of 

the local Ethics Committee of Villa Beretta 

Rehabilitation Centre, and all study participants 

gave written informed consent after personal 

illustration of the procedure given by the principal 

investigator (M.G.). 

 

 

2.3 Tasks definition 
Participants were asked to sit comfortably in a seat, 

with their arm placed on Gloreha armrest, and the 

hand relaxed with the palm downward (Fig. 1). (i.e. 

the resting position). Four hand functional tasks 

were selected: (i) grasping: a grasping action with 

an empty hand that results in a fist;  (ii) pinching: a 

grasping action performed with the thumb and the 

forefinger to grasp small objects; (iii) grasp an 

object: a grasping action that depends upon the 

movement of all of the fingers to grasp an object 

(e.g. a ball); (iv) wave: sequentially flex the fingers 

starting from the little finger toward the thumb. 

  

 

2.4 Control subjects experimental procedure 
Each healthy control participant, after a period of 

familiarization with the protocol, performed 20 

trials of each hand task. Movements were auditory 

and visually paced with the help of a video every 10 

s. Each hand task was acquired in a different run. At 

least 1 min of rest was provided between each run 

and it was extended upon the subject’s request. 

 
 

Fig. 1. Experimental set-up. A) control PC with 

online feedback of the executed movement; B) 

Gloreha hand robotic rehabilitation device; C) MYO 

armband; D) Gloreha chassis containing actuation. 

 

 

2.5 Neurological patient pilot test procedure 
Neurological patients followed the same 

experimental protocol as healthy control subjects. 

However, in order to obtain the effective movement 

execution, they were supported with the Gloreha 

rehabilitation glove. An EMG-based trigger as 

described in [17] was used to assure that the 

movement was patient initiated and that the signal 

related to the electromechanical delay window was 

effectively produced by the patient him/herself. The 

MYO armband was placed on the affected side. The 

Gloreha was subject-specifically set in order to 

obtain the selected hand grasp functional tasks. 
 

 

2.6 EMG-based task classifier 
The EMG task-selection controller design was based 

on the results obtained from a pilot study on healthy 

controls, and pilot stroke patients previously 

reported . However, the present study is performed 

with different hardware, going toward a low-cost 

set-up easy to wear and to be set-up by non-expert 

users. The EMG task-selection classifier has been 

implemented in Visual C++ environment taking 

advantage of available MYO SDK and libraries. 

In particular, the system predicts the intention to 

perform a certain hand grasp functional task among 

a predefined selection from the EMG signals 

measured in a 100 ms window after the EMG onset. 

The 100 ms window represents the EMG portion 

corresponding to the electromechanical delay, i.e. 

the temporal delay between muscles fiber 

depolarization and effective kinematic onset of 

movement. The task classifier architecture was 

based on a sequence of ANNs. In particular, each 
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trial to be classified was provided as input in the 

form of EMG signal portions corresponding to the 

electromechanical delay – the pattern vector. The 

pattern vector was provided as input to successive 

ANNs with one hidden layer. The first ANN 

classifies the pattern vector in clusters, defined by a 

subject specific clustering algorithm in charge of 

defining subsets of classification groups. Pattern 

vectors associated with clusters that contain more 

than one hand grasp task were input to a second 

ANN in charge of classifying hand grasp tasks 

within the cluster. For example, let us suppose that 

the subject-specific algorithm identifies two clusters 

for subject X, cluster 1 that includes pinching, 

grasping, and wave tasks, and cluster 2 that includes 

grasp an object task. Cluster 1 pattern vectors (i.e. 

pinching, grasping, wave tasks) are input to a 

second ANN that classifies them as pinching, wave 

or grasping. Cluster 2 output directly corresponds to 

the final classification since it only includes one 

hand grasp task (Fig. 2). The EMG task-classifier 

specific architecture includes three steps: (1) EMG 

processing; (2) task-classifier calibration; and (3) 

task classifier testing. The entire EMG signal (i.e. 

all 20 trials) underwent EMG preprocessing 

procedures (i.e. STEP 1), which was then 

partitioned into calibration trials and testing trials. 

The calibration of the classifier is subject-specific. 

Technical details related to each step have been 

previously reported [16]. ANN Parameters setting 

(i.e., 25 neurons in the hidden layer, sigmoid as the 

hidden layer neuron activation function, 0.01 as the 

learning rate, and six trials for cascade ANN 

calibration) has been selected as the combination 

which led to better results among the parameters 

space investigated in the previous work [16].   

 

 

2.7 EMG-based task classifier performance 

The classifier performance has been evaluated in its 

ability to discriminate between two, three or four 

tasks. 

The relationship between the developed classifier 

and age of the end-user has been tested in the 

healthy control group. In particular, the Spearman 

correlation coefficient has been calculated between 

age and the overall mean test performance of the 

classifier for each subject, as well as for two, three 

and four tasks discrimination. 

 

 

 

 

 

 

 
 

Fig. 2. Graphical outline of the electromyography 

(EMG) task-classifier architecture. Suppose that the 

subject-specific algorithm identifies for the depicted 

subject two clusters, namely cluster 1 (C1), which 

includes pinching (T1), grasping (T2), and wave 

(T3) tasks, and cluster 2 (C2), which includes grasp 

an object task (T4). C1 pattern vectors are input to a 

second artificial neural network (ANN) that 

classifies them as pinching, grasping, and wave. C2 

output directly corresponds to the final classification 

since it only includes one hand grasp task. 

 

 

 
Fig. 3. Success percentage in test performance in 

discriminating all combinations of two, three and 

four tasks for the healthy controls group (i.e., S01-

S09), and the post-stroke patients (i.e., P01). The 

grey band represents the results obtained with the 

research EMG device with self-adhesive electrodes, 

as described in [16]. 

 

 

3 Results 
3.1 Participants 
Nine healthy subjects (seven females, two males; 

age range 16-93 years) with no neurological or 

orthopedic impairment volunteered for this study 

and all of them succeeded in completing the 

experimental procedure. One neurological post-

stroke patients was also recruited. He was a 50-year-

old male with a lesion located in the left hemisphere 

in the fronto-parietal lobe obtained in August 2013. 

He had impairment to the upper limb contralateral to 
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the lesion with a Medical Research Council index of 

1 for both the wrist and elbow flexors. 

 

 

3.2 EMG-based task classifier performance 
ANN parameters set was as follows: 25 neurons in 

the hidden layer, sigmoid as the hidden layer neuron 

activation function, 0.01 as the learning rate, and six 

trials for classifier calibration, which resulted in an 

overall mean performance of 98% ± 5% during 

calibration, and 80% ± 13% during testing in 

healthy control subjects. Healthy controls group 

mean calibration performances in discriminating all 

combinations of two, three, and four tasks were 

99%, 97%, and 94% respectively, while testing 

performances were 80%, 79%, and 82% 

respectively (Fig. 3). 

Spearman correlation coefficient resulted to be          

-0.6167 (p-value = 0.0857), -0.5550 (p-

value = 0.1328), -0.8167 (p-value = 0.0108), and -

0.5833 (p-value = 0.1080) respectively for overall 

mean test performance, and two, three and four 

tasks discrimination in the healthy control group. 

Task-selection controller tests on the patient resulted 

in a mean calibration performance of 94% ± 7% and 

a mean testing performance of 67% ± 16%, with 

mean testing performances in discriminating two, 

three, and four tasks equals to 72%, 64%, and 51% 

respectively. 

 

 

4 Discussion and Conclusion 
The proposed approach describes and test a hand 

rehabilitation device which: i) can deliver high 

therapy doses with low supervision, and can deliver 

precise and repeatable therapeutic exercises; ii) is 

able to predict from the electromechanical window, 

and therefore before the movement is effectively 

executed the intended hand task to be performed 

among a set of four hand functional tasks; iii) has a 

non-specific EMG markers placement which allows 

safe easy to set-up and use by non-expert users (i.e., 

patients themselves or caregivers). 

Daily life functional tasks, especially those directly 

involving the hand, always take advantage of the 

simultaneous involvement of multiple degrees-of-

freedom. These considerations lead to the present 

study choosing to use the multiple degrees of 

freedom functional movements that could be 

detected though the controller. 

All participants were able to correctly calibrate the 

EMG task-selection controller, and the experimental 

set-up was correctly working. 

The methodological approach is based on a previous 

study performed by the same research team as the 

present study  [16]. However in this work we used 

the MYO armband instead of the multi-channel 

signal amplifier system (PortiTM; Twente Medical 

System International, Oldenzaal, The Netherlands). 

This choice has several advantages which include 

dry electrodes, easy-to-use device from non-expert 

users (i.e., the MYO armband is worn as a bracelet), 

wireless data communication, and very low cost. 

EMG channels are eight with respect to the five 

acquired from the Porti device for technical reasons, 

but the EMG signal is sampled at 200 Hz with 

respect to 2048 Hz of the previous study. As for the 

performance, the previous study demonstrated an 

accuracy of 76 ± 14% under testing conditions for 

the healthy controls group in discriminating three 

tasks, which are in line with the results obtained 

with the described approach. Indeed, the healthy 

controls group obtained 80% ± 13% of corrected 

classified tasks as the overall mean (i.e., including 

two, three and four tasks discrimination), and mean 

calibration performances in discriminating two, 

three, and four tasks were 99%, 97%, and 94% 

respectively, while testing performances were 80%, 

79%, and 82% respectively. To our knowledge only 

a single previous work attempted to develop an 

EMG-based tasks classifier based on the 

electromechanical delay window [18]. The authors 

described a support vector machine approach to 

predict goal-directed movements in the horizontal 

plane using a 200 ms window, but the classifier 

failed when tested on neurological patients. 

Moreover, the authors used muscle activity recorded 

between -100 ms and 100 ms with respect to the 

movement onset, which makes the approach not 

suitable for real-time use. In this study a classifier 

has been designed with particular attention to 

possible real time application - ANNs have low 

computational load, since, once defined, consist of 

additions and multiplications, and this is important 

when developing real-time applications; moreover, 

onsets identification is implemented with a first 

order low pass filter which allow an on-line onset 

detection with a two-samples overlapping windows. 

With the presented approach, patient’s testing 

performances were depending on the number of 

tasks to be classified, and in particular mean 

calibration performances in discriminating two, 

three, and four tasks were equal to 72%, 64%, and 

51% respectively. The obtained performances are  in 

line with previously described results with the same 

approach [16] taking into account that he was 

severely impaired, and show an improvement with 

respect to literature where severely impaired post-
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stroke patients obtained a mean performance of 

37.9%, using a linear discriminant analysis [19]. 

The EMG task-selection classifier performance 

shows a trend which depends on age, where the 

younger the participant the better the performance 

that is however not statistically significant, probably 

for the small number of subject recruited. As 

expected, post-stroke patient performance is similar 

to aged participants. 

In conclusion, the presented results are encouraging 

toward the development of a hand rehabilitation 

device which can be used at home for a safe, 

patient-involving, intensive and functional oriented 

rehabilitation training. However, for the effective 

exploiting of the proposed approach, higher 

percentage of correctly classified tasks needs to be 

achieved in order not to frustrate the patient while 

using the device for rehabilitation. A possible 

improvement includes the use of information 

derived from inertial sensors which are embedded in 

the MYO armband, and might be exploited so to add 

information about end-user intention. Moreover, 

particular care has to be devoted to electrode-skin 

coupling by carefully cleaning the skin. 
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