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Abstract: - Grinding is one of the most widely employed manufacturing processes when accurate finishing of 
workpieces is required. In order to investigate the effect of processing parameters to grinding performance, soft 
computing methods constitute a reliable and economical alternative to other simulation methods, such as the 
Finite Element Method (FEM). In this study, a comparison between classical Artificial Neural Network (ANN) 
models and Radial Basis Function Neural Network (RBFNN) models is conducted for a case of face grinding 
of various types of steel workpieces, cutting wheel types and depths of cut and their performance towards the 
prediction of surface roughness is evaluated. Results indicate that RBFNN can provide better results than 
classical ANN networks and adequately model the surface roughness during grinding processes. 
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1 Introduction 
Grinding is considered as one of the well-
established manufacturing processes in industrial 
applications. Grinding is classified among abrasive 
machining processes and although it is primarily 
intended for use in finishing applications, it can be 
employed for bulk material removal as well. As a 
finishing process, grinding is often preferred due to 
its ability to produce high dimensional accuracy and 
workpiece surface quality whereas as a bulk 
material removal process it can efficiently machine 
hard-to-cut or very brittle materials. 

Analysis of grinding process is essential to allow 
for the experiments to be conducted under optimum 
conditions or to identify and explain the underlying 

mechanisms responsible for thermo-mechanical 
phenomena that occur during this process. Analysis 
can be conducted either by means of experimental 
measurement techniques, or by means of numerical 
and soft computing techniques such as the Finite 
Element Method [1-3], Artificial Neural Networks 
[4], regression techniques [5], other statistical 
methods [6] etc. One important advantage of non-
experimental methods is significant reduction of 
cost and time and so they are increasingly employed 
along with experimental studies.  

Some examples of ANN applications concerning 
machining processes are described hereafter. Özel 
and Karpat [7] employed ANN to model surface 
roughness and tool wear in hard turning. Ezugwu et 
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al. [8] used ANN to model high speed machining 
process of Inconel 718 alloy. Zuperl et al. [9], 
Adesta et al. [10] and Al Hazza et al. [11] employed 
also ANN to model end-milling processes. Studies 
using RBF neural networks in machining process 
simulations are significantly fewer than these using 
Multi-Layer Perceptron (MLP) networks as the 
aforementioned works, according to Pontes et al. 
[12].  

Gong et al. [13] employed RBFNN with various 
spread factor values to predict cutting consumption. 
Compared to results produced with MLP networks, 
network error and fit values were considerably 
better in cases conducted with RBF models. Parikh 
and Lam [14] conducted a study to determine 
optimal parameters during abrasive water jet 
machining using Back-Propagation (BP) and RBF 
neural networks as well as regression models. They 
concluded that RBF networks outperformed other 
models and that this type of ANN has great 
potential. Dashtbayazi and Ghanbarian [15] 
conducted comparison between RBF networks and 
MLP networks with a single hidden layer and found 
that MLP networks outperformed RBF ones.  

In the current study, several artificial neural 
networks models are created to predict surface 
roughness in cases of surface grinding of various 
steel workpieces. Furthermore, RBF networks are 
created and compared to MLP in order to determine 
optimal predictive model. Performance of created 
models is assessed by prediction error values and 
actual to predicted output correlation. Conclusions 
are drawn concerning the efficiency and 
applicability of these models.  
 
 
2 Artificial Neural Networks 
 
 
2.1 Multi-layer perceptron models 
MLP neural networks consist of a number of 
neurons interconnected via links called synapses. 
As, it can be seen in Fig.1, the neurons are ordered 
in parallel rows called layers; the first and the last 
layer constitute the input and output layers, 
respectively, and are related to the number of input 
and output parameters of the model. The inner 
layers are called hidden layers and are employed for 
the propagation of data between input and output 
layers, i.e. in the case of feed-forward networks. The 
total number of layers and neurons in each layer 
define the architecture of the network. The optimal 
architecture of the network is essential to be 

determined as increased number of neurons leads to 
increased computational cost. 

 
Fig.1 Architecture of an MLP network 

 
The predictive ability concerning a specific 

problem is gained by the ANN through the training 
process. The training process consists essentially of 
the adjustment of weight coefficients until training 
error is minimized. Training error can be calculated 
in several ways but often the Mean Squared Error 
(MSE) between actual and predicted output is 
employed. In most cases, the mean square error of 
the network’s response to a vector p is calculated, 
namely: 
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where op,i are the values of the output vector which 
occur for the input vector p and dp,j are the values of 
the desirable response corresponding to p. 

Training is an iterative process during which the 
error is propagated backwards from the output to the 
input layer and weight coefficients are updated at 
each iteration. The goal of the process is to repeat 
the procedure until MSE becomes zero. Each time 
that the program passes through all pairs of training 
vectors an epoch is completed and training usually 
ends after reaching a great number of epochs. 
 
 
2.2 Radial Basis Function Neural Networks 
RBF neural networks are considered as a special 
case of feed-forward neural networks. In this type of 
neural networks a single hidden layer is employed, 
as it can be seen in Fig.2, and so they have a simpler 
architecture and generally lower computational cost. 
Nevertheless, their predictive ability is no inferior to 
that of other neural network types. 

Generally, the basic features of MLP networks 
apply also to RBF networks and the main 
differences are the application of a radial basis 
function to neuron input after summation is 
performed and the use of Gaussian function as 
activation function. Due to the use of a Gaussian 
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function, spread parameter (σ) choice is important 
element for the performance of these networks. 

 
 

Fig.2 RBF neural network model 
 
 
3 Methodology 
MLP and RBF neural network models are created 
for the prediction of surface roughness in surface 
grinding experiments. For all ANN models, three 
inputs, namely workpiece material type, grinding 
wheel type and depth of cut are employed along 
with a single output variable, surface roughness, Ra.  

Surface roughness, is a key factor in machining. 
It is usually employed to evaluate and determine the 
quality of a product. It influences several attributes 
of a part such as fatigue behavior, wear, corrosion, 
lubrication and surface friction. Surface roughness 
refers to deviations from the nominal surface of the 
third up to the sixth order. First and second order 
deviations refer to form and waviness respectively. 
Third and fourth order deviations refer to periodic 
grooves, cracks and dilapidations, which are 
connected to the shape and condition of the cutting 
edges, chip formation and process kinematics. Fifth 
and sixth order deviations refer to workpiece 
material structure, which is connected to physical 
chemical mechanisms acting on a grain and lattice 
scale. Generally surface roughness can be described 
as the inherent irregularities of workpiece left by 
various machining processes. The most common 
way to describe surface roughness is the average 
roughness which is often quoted as Ra.  

Average roughness is defined as the arithmetic 
value of the deviation of profile from centerline 
along a sampling length. It is calculated as: 

( )dxxy
l
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l
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where l is the sampling length and y is the ordinate 
of the profile curve. Surface roughness is influenced 
by controlled machining parameters, such as feed 

rate, grinding wheel speed, depth of cut, as well as 
by non-controlled factors, such as non-homogeneity 
of workpiece and tool, tool wear, machine motion 
errors, formation of chips and unpredictable random 
disturbances.  

Values of surface roughness are obtained for a 
total number of 72 cases from a previous study [16] 
and range of input variables is specified in Table 1.  
 
Table 1. Description of input parameters employed 

in ANN models 

Workpiece material 
100Cr6 

C45 
X210Cr12 

Grinding wheel type 6 types with variable 
bonding material 

Depth of cut 

0.01 mm 
0.02 mm 
0.03 mm 
0.05 mm 

 
Workpiece material type and grinding wheel type 

are coded as 1-3 and 1-6 respectively for reasons of 
simplicity. It is considered that this approach is not 
affecting ANN results [16] as for all input and 
output variables a normalization process is applied 
before their use in the training process of ANN 
models in order for their values to lie in the 0-1 
range.  

All other process parameters were kept fixed in 
the experiments such as workpiece speed vw of 8 
m/min, cutting speed vc of 28 m/s, wet machining 
conditions. All grinding wheels are made of Al2O3 
with the same diameter ds of 250mm and width bs of 
20 mm and various types of bonding. 

As for MLP simulations, cases with 4 different 
training algorithms, namely conjugate gradient (CG) 
with Powell-Beale restarts (CG(B)),  CG with 
Fletcher-Reeves updates (CG (F)), CG with Polak-
Ribiére updates (CG (P)) are employed along with 
the Levenberg-Marquardt (LM) method and various 
networks architectures, i.e. up to two layers and 10 
neurons, are investigated. As for RBF simulations, 
cases with variable number of neurons, ranging 
from 5 to 60 in the hidden layer and spread factor 
values between 0.25 and 2.00 are considered. 

The general approach of the problem of 
determining the optimal neural network is 
conducted in various steps. The stages of this 
approach contain at first the determination of 
optimal training algorithm in MLP networks and the 
determination of optimal network architecture of 
MLP networks. In order to reduce the effect of 
initial weight values to the results, the calculations 
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for each case are repeated five times with different 
initial weights and the results of the best performing 
cases are selected. 
 
 
4 Results and Discussion 
 
 
4.1 Choice of training algorithm for MLP 
models 
The initial stage of the methodology employed in 
this study consists of the determination of optimum 
training algorithm for the given set of input/output 
data. This step is fundamental as it can lead to a 
considerable decrease of computational cost for the 
next set of ANN models development. In order to 
ensure that judgment is based on results produce by 
diverse types of MLP networks, both single and 
two-layer networks are chosen, with 5 different 
cases in total, as presented in Table 2. 
 

Table 2. Characteristics of studied cases 

Case 1st hidden layer 
neurons 

2nd hidden layer 
neurons 

1 4 - 
2 9 - 
3 4 7 
4 6 10 
5 9 5 

 
As it was mentioned before, the various ANN 

models will be assessed in terms of MSE and 
correlation coefficient R mainly during test stage of 
training process. At this step, the cases using 5 
different network architectures, presented in Table 
2, with each one of the four training algorithms are 
considered.  

From the results of Fig.3, it is first observed that 
in many cases the developed models performance is 
relatively low, especially in terms of correlation 
coefficient, as values lie mostly below 0.5; a perfect 
fit is indicated by values close to 1. MSE error in all 
cases is within acceptable range, namely 0.02-0.06 
during test process. However, there are several 
differences concerning the performance of each 
algorithm that can be observed.  

From the results in Fig.3, it is clearly observed 
that MLP networks trained with LM algorithm have 
better performance at almost every case in terms of 
correlation coefficient and also relatively small 
MSE test error values at most cases. So, cases run 
with LM are performing better in terms of predictive 
ability and thus LM is selected as training algorithm 

for the cases that will be used to determine optimal 
network architecture. 

 

 
 

Fig.3 Comparison of MSE test error and correlation 
coefficient values for each algorithm 

 
 
4.2 Choice of training architecture for MLP 
models 
After it was determined that LM algorithm can 
produce more accurate results, a new set of models 
was developed and tested in order to determine 
optimum network architecture. Several 
combinations of number of neurons and number of 
hidden layers are considered.  

At first, it was found that the network with 6 
neurons in a single layer is the best performing 
network with single hidden layer and the network 
with 9 neurons in the first and 7 neurons in the 
second hidden layer, respectively, is the best 
performing network with 2 hidden layers, as 
presented in Table 3. Among these networks, the 
second network is clearly better both in terms of 
MSE error and correlation coefficient, so it is 

0
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determined that this is the optimal architecture. 
Moreover, the difference in training speed between 
the two networks is not largely different, so it is 
considered that it will not be the decisive factor in 
the selection of optimal network architecture. 

 
Table 3. Results of best cases conducted with one 

and two hidden layers 
No of 1st-2nd 
hidden layer 

neurons 
6 9-7 

MSE train 1.43x10-2 6.25 x10-3 
MSE test 5.71 x10-2 2.44 x10-2 
R train 8.12 x10-1 7.54 x10-1 
R test 5.46 x10-2 7.64 x10-1 

 
Nevertheless, from the above mentioned results, 

it becomes obvious that MLP models do not provide 
highly reliable results as correlation coefficient 
values, maximum being 0.76 at test process, indicate 
a medium fit between actual and predicted outputs. 
Thus, the next step originally proposed, namely 
testing of RBF networks, is considered essential. 
 
 
4.3 RBF neural networks models 
As MLP models proved not adequate enough, 
several RBFNN models are developed to determine 
whether this type of ANN can simulate the 
experimental data more accurately. The parameters 
that were varied among the cases were the 
maximum number of neurons and spread parameter 
value. From the results obtained, in total 45 cases, 
some indicative results are presented in Table 4. 
  

Table 4. Results of cases conducted with RBF 
models 

Neurons/
spread 

MSE 
train 
error 

MSE 
test 

error 
R train R test 

50/0.250 0.0033 0.0131 0.9602 0.8802 
50/0.500 0.0036 0.0142 0.9588 0.8768 
60/0.250 0.0021 0.0084 0.9747 0.8942 
60/0.500 0.0033 0.0068 0.9735 0.8932 
60/1.00 0.0020 0.0081 0.9767 0.8960 
60/2.00 0.0047 0.0187 0.9426 0.8648 

 
From Table 4, the optimal RBF model is 

determined to be a network with 60 neurons in the 
hidden layer and spread parameter equal to 1.00. 
Generally, in cases with over 40 neurons it was 
shown that networks with spread parameter values 
lower or equal 1.00 were producing better results.  

 

4.4 RBF neural networks models 
The final step is the comparison of best performing 
MLP and RBF models, in order to determine the 
overall best performing network. The characteristics 
and results of two models are presented in Table 5. 
 
Table 5. Comparison of best performing MLP and 

RBF models 
 Optimum MLP Optimum RBF 

MSE train error 0.00623 0.002 
MSE test error 0.0244 0.0081 

R train 0.754 0.977 
R test 0.764 0.896 

 
The best performing case of RBF model 

produces significantly better results both in terms of 
MSE error and correlation coefficient values, so it is 
considered as optimal network. As the cases were 
on the same PC, a comparison in terms of 
computational time can also be conducted. More 
specifically, RBF network was trained in 2.44 s 
whereas MLP network in 1.73 s. However, given 
that RBF network is shown to produce results close 
enough to experimental ones, this difference in 
speed is not considered large enough to justify the 
selection of MLP networks as more preferable 
model type.  
 
 
5 Conclusions 
In this study, ANN and RBFNN soft computing 
models were employed for the case of surface 
roughness prediction during grinding. A comparison 
of the results between the two methods was also 
conducted and useful conclusions were drawn: 
• The optimum parameters for the ANN models 

were determined by testing 4 different training 
algorithms and various network architectures 
with one and two hidden layers. The 
Levenberg-Marquardt algorithm was found to 
be the best performing training algorithm and 
3-9-7-1 was found to be the optimum network 
architecture. 

• ANN models exhibit rather moderate levels of 
accuracy, with R values not exceeding 76% and 
MSE test error of 2.44x10-2 for the model with 
the optimum parameters. 

• Compared to ANN model results, RBFNN are 
considered superior, as the best RBFNN model 
exhibited high levels of accuracy. More 
specifically, R value of 90% and low MSE test 
error values of the order of 0.0081. 
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The aforementioned results indicated that 
RBFNN are a promising soft computing method for 
machining processes simulation and further testing 
of this method in future works is considered to 
provide more reliable and accurate models. 
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