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Abstract: - Electronic instrumentation and sensors are extensively adopted on board of vehicles to prevent the 
road accidents and improve the overall driving experience.  On the other hand, the development of fault 
detection strategies are usually carried out in order to limit the direct impact of electronics on the vehicle cost. 
To this aim the employment of the analytical redundancy of measurement information should be preferred. As 
an example of the systematic approach, the software sensor for the rear suspension of the two-wheeled vehicles 
is designed focusing on recurrent Artificial Neural Networks able to predict the dynamic behavior. 
Experimental results concerning with a typically adopted instrumentation set show the rear suspension 
elongation can be correctly estimated. They disclose the possibility of setting-up an effective Instrument Fault 
Detection and Isolation scheme based on the real-time adoption of the proposed software sensor in order to 
improve the system reliability. 
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1 Introduction 

Soft Sensors are generally meant the process of 
estimation of any system or process variable by 
using mathematical models, substituting some 
physical sensors and using data acquired from some 
other available ones [1]. Soft Sensors have been 
proposed to solve problems such as measuring 
system back-up, what-if analysis, real-time 
prediction for process control, sensor validation and 
fault diagnosis strategies. They are currently 
profitably used in closed-loop inferential and/or 
adaptive control schemes [2].  

Since the direct implications on cost-saving and 
safety, the smart sensing has become an interesting 
topic also for the field of two-wheeled vehicles, 
where the spread of electronic control systems is 
still in its infancy (for example, today, only a few 
commercial motorbikes are equipped with ABS 
control systems). As an example, the tilt-angle 
estimation is proposed in [3] via two different 
algorithms and methods based on a set of 
gyroscopes and a longitudinal speed sensor. 
Generally speaking, soft sensors based on analytical 
redundancy have been investigated in order to 
improve control algorithms aiming to both riding 
comfort [4] and road-holding [5]. A typical 
approach is the adoption of Kalman Filters: in [6] 
KF were proposed as real-time acceleration-based 

estimators of the elongation velocity and damping 
force for single semi-active shock-absorber in order 
to improve noise filtering and/or implement virtual 
sensor (typically one accelerometer on the wheel 
side could replace the suspension stroke sensor 
and/or the cell load with acceptable performance). 

Since measurement information about 
suspension dynamics (in terms of elongation and/or 
velocity) is necessary to implement whichever 
strategies for controlling the damper characteristics 
of semi-active and active shock absorbers [7], a 
straightforward extension of the previous 
approaches is the soft sensing of the rear suspension 
behavior (stroke), which the authors aim to, by 
exploiting the analytical redundancy between 
vertical dynamics of the motorcycle suspension 
system as whole. Indeed, according to the half-car 
model (which linearly approximates the in-plane 
dynamics) the rear suspension response to the road 
disturbances is strongly influenced by the heavy and 
pitch movements of the front suspension and the 
motorcycle body respectively as well as by the road 
profile actually experienced by the front wheel.  

The soft sensor for the rear stroke could be 
useful for multipurpose. First of all, the design of an 
inferential model intended to reduce the measuring 
hardware requirements (rear stroke sensor, pair of 
accelerometer and so on) may result into a 
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significant source of budget saving and increasing 
system reliability (about the series system, the fault 
probability is decreasing with the number of the 
devices operating in the harsh environment). 

As second application example, the soft sensor 
may be adopted to the real-time estimation of the 
system variable as opposed to the delayed 
measurement and/or actuation by means of the 
corresponding hardware devices. More in details, 
during riding at low-medium longitudinal speed, the 
prediction of the real suspension dynamics could be 
exploited by the control unit ([8]-[9]) to compensate 
for the time response of the semi-active shock 
absorber (such as the electronically-controlled linear 
valve or Magneto-Rheological damper [10]). 

Finally, the soft sensor of the suspension stroke 
may be adopted for sensor validation (the particular 
kind of fault detection, in which the system to be 
monitored is a sensor or a set of sensor) following 
the (physical/analytical) redundancy-based approach 
typically adopted in the automotive safety (for 
example, the dual pedal sensor exploited for 
monitoring the driver’s torque demand). In such 
framework, the usefulness of the soft sensor is 
twofold. First, it can be paralleled with the actual 
stroke sensor, and faults can be detected by 
comparison between the outputs of actual and soft 
sensors. Second, it can be exploited to provide an 
estimate of the sensor output in the case of sensor 
fault. Therefore, it can be used as a back-up device 
till the actual sensor is not replaced during the 
servicing. 

In the present work, the mathematical model 
allowing to infer the rear suspension stroke on the 
basis of its dependence on a set of influential 
variables is developed according to a data-driven 
approach. Thus, the paper is organized as follows: 
motivations and details of each step included in the 
proposed methodology are described in Section II. 
Experimental results concerning with the 
application of the method to the sensor validation of 
the rear stroke for a pilot motorcycle are included in 
Section III, whereas in Section IV the outcomes 
from the post-processing analysis are discussed in 
terms of the main Instrument Fault Detection and 
Isolation (IFDI) issues [11]. 
 
 
2 Methods 

The typical steps that a soft sensor designer is 
faced with include Data Dollection and Filtering, the 
definition of a Model Structure, the Model 
Estimation and Validation.  It should be borne in 
mind that the procedure is a trial and error one, so 
that if a model fails the validation phase, the 

designer should critically reconsider all aspects of 
the adopted design strategy and restart the procedure 
trying different choices. This can require the 
designer going back to any of the steps and using all 
available insight until the success of the validation 
phase indicates that the procedure can stop. 
 
2.1 Data Collection 
The very first step in any model identification is the 
critical analysis of available data from the 
process/system of interest in order to select both 
candidate influential variables and events. 

According to the data driven approach, the model 
designer might select data that represent the whole 
system dynamics by running suitable measurement 
campaign on the process, which give insight into 
relevant variables, system order, delays, sampling 
time, operating range, nonlinearity. 
 
2.2 Data Filtering 
Digital data filtering is typically introduced to 
remove high frequency noise and offsets. In order to 
prevent larger magnitude variables to be dominant 
over smaller ones during the identification process, 
data scaling should be also performed. Finally, since 
the presence of outliers (i.e. data inconsistent with 
the majority of recorded data) can greatly affect the 
performance of data-driven soft sensor design, 
suitable identification strategy is required. 
 
2.3 Model Structure & Regression Selection 
Model structure is a set of candidate oriented 
representations, where a set of dependent variables 
(i.e. the system outputs) are the consequence of a set 
of independent variables (i.e. the system inputs). 

The model structure selection step is strongly 
influenced by the purpose of the soft sensor design. 
In particular, when the variable inferred by the soft 
sensor is the output of a dynamic system, two 
possible choices are common: 

i. to restrict the model structure to linear (MA) 
or nonlinear (NMA) Moving Average models 
that do not require past samples of the output 
variable (this corresponds to focusing on the 
class of Finite Impulse Response (FIR) 
structure);  

ii. to use of Auto-Regressive with eXogenous 
inputs (ARX) or Nonlinear ARX (NARX) 
model structures, which perform finite and 
small step-ahead prediction of the variable (in 
this case, the model has among its inputs past 
samples of its own estimations with 
corresponding feedback of model errors: 
auto-regressive structures are generally more 
efficient than the corresponding MA or NMA 
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structures in the very first predicting steps 
but, generally, their performance quickly 
degrades due to error propagation). 

Closely connected with the problem of model 
structure is the Regression selection, i.e. identify the 
subset of relevant model inputs from the initial set 
of influential variables previously introduced. The 
Correlation Analysis is often a suitable tool: the 
estimated normalized cross-correlation function 
between each candidate independent variable and 
the system output is typically investigated in terms 
of the peak magnitude. 
 
2.4 Model Estimation 
It consists in determining a set of parameters which 
will identify a particular model in the selected class 
of candidates, on the basis of available data and 
suitable criteria. Although, approaches such as Least 
Mean Square (LMS) based methodologies have been 
widely used for linear systems, a corresponding set 
of theoretical results is not available for nonlinear 
systems, whereas Artificial Neural Networks (ANNs) 
and Neuro-Fuzzy systems have become standard 
tools due to the good performance obtained for a 
large number of real-world applications.  

Within the modeling of nonlinear dynamic 
systems, the use of NARX Network revealed very 
effective both as predictor (i.e. to estimate the next 
value of the input signal) and nonlinear filter (when 
the target output is a noise-free version of the input 
signal). 

More in details, the NARX Network is a 
recurrent dynamic network, with feedback 
connections enclosing several layers. The defining 
equation (Eq. (1)) for the NARX model is: 

 
𝑦𝑦(𝑡𝑡) = 𝑓𝑓 �𝑦𝑦(𝑡𝑡 − 1), . , 𝑦𝑦�𝑡𝑡 − 𝑛𝑛𝑦𝑦�,𝑢𝑢(𝑡𝑡 − 1), . ,𝑢𝑢(𝑡𝑡 − 𝑛𝑛𝑢𝑢)� 
     Eq. (1) 

where the next value of the dependent output 
signal y(t) is regressed on previous values of the 
output signal and previous values of an independent 
(exogenous) input signal u(t). You can implement 
the NARX model by using a Feed-Forward NN to 
approximate the function f. 

 
 
2.5 Model Validation 
It is the phase required to verify whether the model 
is able to adequately represent the underlying 
system. As general rule to be followed, data used for 
model validation (Test Set) should be different from 
those used for model estimation (Training Set). In 
fact, a model could have satisfactory behavior with 
the learning data set and work very poorly when 

processing a new data set. This precaution is useful 
for investigating over-fitting phenomena. In 
particular, graphical approaches can be very 
powerful tools for model validation. The Regression 
Error Characteristics (REC) and Sliding Occurrence 
Error (SOE) curves introduced in [12]-[13] to 
provide both synthetic and detailed indication about 
the ANNs performance have been considered to 
compare the proposed architectures. 

REC curve plots, for each point (x, y), the 
relative occurrences of regression function outputs 
(on the y-axis) that are within a given error range 
(tolerance) (on the x-axis). The resulting curve 
estimates the cumulative distribution function 
(CDF) of the error that may be defined as the 
relative difference between the ANN prediction and 
the actual system output. The area over the curve 
(AOC) is a biased estimate of the expected mean 
error and provides a measure of the mean accuracy; 
the closer the curve to the y-axis the better the 
performance expected for the regression function. 

The REC curve gives only integral information 
disregarding the time distance between regression 
errors. On the other hand, this knowledge that 
provides a kind of “local accuracy” could be 
effectively adopted in the context of the sensor 
validation. Indeed, within this application (where 
focus is on the fault detection performance), once a 
suitable threshold is fixed as the maximum tolerable 
error, it is preferable to use the ANN able to warrant 
a small percentage of errors exceeding the threshold 
in a time interval rather than a ANN that assures the 
lowest mean error even if characterized by some 
time windows in which a higher percentage of 
threshold overcoming occurs. 

This feature may be highlighted by the SOE 
curve: with reference to a moving window 
constituted by L successive samples, it plots the 
error tolerance (defined as the maximum relative 
deviation) on the x-axis and the corresponding 
relative occurrences in L of the regression error on 
the y-axis (in other words, the SOE curve represents 
the survivor function of the error tolerance). 
 
 
3 Experimental results 
The data driven approach previously described was 
applied for the soft sensor design and validation of 
the rear suspension stroke by considering the 
SUZUKI GSX-1000 model as test motorcycle [14] 
suitably equipped (see Fig. 1). Details about the 
measurement campaign and post-processing 
analysis are reported in the following. 
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3.1 Data Collection 
This identification step was performed by taking 
into account the following riding conditions: a 
stretch of cobblestone (which excite the suspension 
response to the pitch); a rough urban road negotiated 
at low-medium speed (accordingly the motorcycle 
receives a mixed pitch-have excitation 

simultaneously, on a broad spectrum), an extra-
urban road negotiated at high-medium speed (which 
mainly introduces pure heavy excitation), a region 
with multiple speed bumps (in order to highlight the 
suspension behavior against concentrated obstacles 
and significant load transfer).  
 

 

Fig. 1. The system under test 

 

Fig. 2. Comparison of the Training schemes of NARX Networks for the prediction the rear stroke: Series-Parallel (open loop)  vs. Parallel (closed loops); 
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About 1 hour of data acquisition (corresponding 
to 12 records of the test lap) was collected for the 
following signals: fork stroke, pitch rate, roll rate, 
longitudinal speed, breaking activation (as 
independent variables) and rear shock stroke (as 
dependent variable). 
 
 
3.2 Data Filtering 
The recorded data came from the sampling process 
of the analog signals at 1 kHz (that is also the 
control loop frequency typically adopted for the 
semi-active suspension control).  

Data resampling at 100 Hz was proposed to 
avoid managing huge data sets and reduce data 
collinearity. The min-max normalization method 
was adopted for data scaling, whereas the detection 
of outliers was performed according to the Hampel 
identifier (i.e. the 3σ edit rule with a robust scaling) 
[15]. Namely, to reduce the influence of multiple 
outliers in estimating the mean and standard 
deviation of each variable, the mean is replaced with 
the median and the standard deviation with the 
median absolute deviation from the median. 

 
 

3.3 Model Structure & Regression Selection 
Since the sensor validation was pursued, the 
approach based on exogenous inputs was preferred. 

By considering observation intervals strictly 
close to the system dynamics, it was prevented the 
model error effects propagate for a large number of 
successive samples.  

Moreover, since the half-car model hypotheses 
that the suspension system works close to a steady 
state condition and does not account for the steering 
and linkage nonlinear effects which mainly results 
in a varying wheel base and transfer load, the NARX 
model appeared as the most straightforward choice.  

Finally, as result of the performed Correlation 
Analysis, the fork stroke, the pitch rate and the 
longitudinal speed emerged as the most relevant 
inputs and further considered in the next design 
steps. 

 
 

3.4 Model Estimation 
The soft sensor for the rear suspension stroke was 
modeled (as function of fork stroke, pitch rate and 
the longitudinal speed) by adopting the Neural 
Network Toolbox included in MathWorks 
MATLAB™.  

More in detail, the Network Training was 
performed by taking into account the Series-Parallel 
scheme, where the true output was used instead of 

feeding back the estimated output (as schemed in 
Fig. 2). This has two advantages. The first is that the 
input to the feedforward network is more accurate. 
The second is that Static Back-Propagation can be 
used for training the resulting network.  

The model identification was carried out with 
reference to the number N of neurons in the hidden 
layer (ranging from 5 to 25), and the tapped delay d 
(range from 10 ms to 100 ms) resulting in a total of 
25 combinations. Moreover, a Training Set 
including more than 25.000 successive samples 
(randomly selected from the re-sampled and filtered 
data) and 100 epochs was considered.  

An example of NARX Network training is 
reported in Fig. 3, where you may note the 
satisfying matching between the true (measured) 
and predicted output (suspension stroke range 
normalized as [0.0 ÷ 1.0]), which has been achieved 
by converting the Series-Parallel configuration 
(open loop) to the Parallel  configuration (close 
loop) through the suitable Toolbox functions. 

 
 

3.5 Model Validation 
The REC curve was adopted to select the NARX 

Network (in terms of neurons and delay) which 
guarantee the best accuracy over the Test Set (about 
330.000 samples from the recorded data). The 
relative regression error Er is defined according to: 

 𝐸𝐸𝑟𝑟 =  �𝑦𝑦𝑝𝑝−𝑦𝑦𝑚𝑚
𝑦𝑦𝑚𝑚

�                     Eq. (2) 

where yp is the normalized rear stroke predicted 
by the NARX model (at each sampling point) and ym 
is the corresponding true output measured by the 
rear sensor. 

As an example, Fig. 4.a reports the REC curves 
corresponding to the proposed architectures: the 
NARX model with N=15 and d=10 is able to keep 
the regression error lower than 10% for over the 
95% of the Test Set (as depicted in the 
magnification of Fig. 4.b).  

Moreover, Fig. 5.a shows the SOE curves for 
different window length L over the Test Set 
corresponding to the most accurate NARX model.  
For each sample of the Test Set, the maximum 
absolute deviation Emax,L is defined according to: 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐿𝐿(𝑖𝑖) =
  𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘 �

𝑦𝑦𝑝𝑝 (𝑖𝑖+𝑘𝑘)−𝑦𝑦𝑚𝑚 (𝑖𝑖+𝑘𝑘)
𝑦𝑦𝑚𝑚 (𝑖𝑖+𝑘𝑘)

�
𝑘𝑘=0,1,..,𝐿𝐿𝑆𝑆−1

Eq. (3) 

where Ls is the number of samples included in 
the window length.  
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Fig. 3. Training of NARX Networks for the prediction the rear stroke: 

 a) comparison of the output for the Training Set;  

b) magnification of a). 

 

 

 
Fig. 4. Graphical tools for Model Validation applied to the rear stroke sensor: 

a) REC curves for comparing NARX Neural Network (N, number of hidden nod, d, time delay); 

b) Magnification of a). 
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As highlighted in Fig. 5.b, about the most 
accurate NARX Network, the maximum 
prediction error exceeds 10% only for a small 
quote (16%) of the Test Set when a 100 ms 
window is considered. 
 
 
4 Conclusion 
A data driven approach has been introduced for the 
soft sensor design and validation of the motorcycle 
vertical dynamics in order to improve road safety in 
terrestrial transportation. The methodology is 
mainly focused on both the training of NARX 
Neural Networks and the graphical tools (namely 
the Regression Error Characteristics and the Sliding 
Occurrence Error curves) for the accuracy 
estimation of the output prediction. 

The measurement campaign and post-processing 
analysis concerning with the suspension stroke 
sensor have highlighted the validity of the proposed 
solution in terms of both static and dynamical 
behavior (represented respectively by the mean error 
and the sliding maximum deviation in the output 
prediction). Experimental results lead the authors to 
adopt the NARX model as a useful benchmark (in 
terms of false alarms and correct faults) in the 
development and implementation of IFDI strategies 
for motorcycle rear stroke sensors. 

Thus, further investigations will be addressed to 
the adoption of SOE results and threshold 
identification (about maximum deviation and sliding 
window length) for introducing suitable detection 
schemes, wherein the residual generation (from 
comparison between the measured and predicted 
sensor output) and correlation analysis may be able 
to on-line detect and isolate small faults (due to 

discalibration/aging), which typically affect the 
sensors for vertical dynamics. 
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