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Abstract: In this paper, a new Cournot-Bertrand triopoly game between the upstream firms and the downstream
firm is established, which is closer to the reality of the modern enterprises in the real economy. Using nonlinear
dynamics and bifurcation theory, the local stable region of the Nash equilibrium point is obtained, and its complex
dynamics are described by means of the bifurcation diagrams, the largest Lyapunov exponents and the phase por-
traits. The stability of the Nash equilibrium will change and even the complex dynamics such as doubling period
bifurcation and chaos happen when the adjustment speed parameter exceeds a certain critical value. Furthermore,
by using the straight-line stabilization method, the chaos can be eliminated. This paper has an important theoretical
and practical significance to the enterprises under the background of globalization.
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1 Introduction

The economic system is whether a chaotic system is a
very hot topic in the economic field. In recent years, a
series of dynamic game models on the output decision
(Cournot model) and price decision (Bertrand mod-
el) were studied in related references. Agiza [1] and
Kopel [2] considered bounded rationality and estab-
lished a duopoly Cournot model with linear demand
function and cost functions. From then on, the model
was extended to multi-oligopolistic market. Bischi et
al. [3] studied a duopoly game model, in which the
firms determined their output by the reaction func-
tions, that is, all the two players toke naive expec-
tation. Agiza and Elsadany [4] improved the mod-
el which contains two-typesbof heterogeneous play-
ers: one bounded rational player and one adaptive ex-
pectation player. Zhang et al. [5] further improved
the model with nonlinear cost functions. Matsumo-
to and Nonaka [6] researched the complexity of the
Cournot model with linear cost functions. Ma and Ji
[7] considered a Cournot triopoly game model in elec-
tric power with square inverse demand, and the mod-
el was further studied by Ji [8] with heterogeneous
players. Ma and Feng [9] studied the chaotic behav-
ior in retailer’s demand model. Xin et al. [10] re-
searched the complexity of an adnascent-type game

model. Yassen and Agiza [15] considered a Cournot
duopoly game and the model with delayed rationali-
ty. Chen et al. [11] used Bertrand model with linear
demand functions to study the competition in the Chi-
nese telecommunications market. Sun and Ma [12]
introduced a Bertrand model with nonlinear demand
functions in Chinese cold rolled steel market, and re-
searched the complexity and the control of the model.
Xin and Chen [13] considered a master-slave Bertrand
game model with boundedly rational players. In these
literatures, adjustment speed or other parameters are
taken as bifurcation parameters, and complex results
such as period doubling bifurcation, unstable periodic
orbits and chaos are discovered.

So far as we have known, Naimzada and Tra-
montana [14] are the first researchers who considered
Cournot-Bertrand game model. Based on the master-
slave Bertrand game model [13] and the triopoly
Cournot game model [7], a new nonlinear Cournot-
Bertrand triopoly game between upstream firms and
downstream firm is built up. The Cournot-Bertrand
triopoly model is closer to the real economy under the
background of economic globalization. Suppose the
upstream firms have nonlinear inverse demand func-
tion, and the downstream firm has linear inverse de-
mand function. The cost functions are nonlinear. In
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this model, the bounded rational players regulate the
output (or the price) speed according to marginal prof-
it, and decide the output (or the price). By theoretical
analysis and numerical simulations, the stable region
about the output adjustment speed parameters is de-
rived. The output adjustment speed parameters effects
on the dynamics characteristics of the system are in-
vestigated. A further analysis of the current economic
system has important theoretical and practical signifi-
cance.

The paper is organized as follows. In Section
2, the dynamics of a nonlinear Cournot-Bertrand tri-
opoly game model is presented the equilibrium points
and their stability are analyzed. In Section 3, the
dynamics characteristics of the system are studied,
which is demonstrated by the bifurcation diagrams,
the largest Lyapunov exponents and the sensitive de-
pendence on initial conditions. In Section 4, The im-
pact of price adjustment speed on average profit are
studied.

In Section 5, chaos control of the system is con-
sidered with the straight-line stabilization method. Fi-
nally, some conclusions are made.

2 The model
For the economic globalization, the final product is
not usually produced by a firm. In general, the up-
stream firms produce the primary products, but the
downstream firms process and assemble the primary
products. So, there is a cooperation between the up-
stream firms and the downstream firms. In the mod-
ern industry, the upstream companies may form an
oligopoly market, and the downstream enterprise is a
monopoly market for the intellectual property right-
s. So, suppose that there are two upstream firms X1,
X2 in the oligopoly market, and one downstream firm
Y in the monopoly market. Upstream firms X1, X2

make the optimal output decision, and suppose the t-
output is qxi(t), (i = 1, 2), respectively. However, the
downstream firm Y make the optimal price decision,
and suppose the t-price is py.

There is no difference between the products of the
upstream companies. As the products of the upstream
companies have many alternative uses, their demand
is not affected by the demand of the downstream en-
terprise. At each period t, the price of the upstream
oligopoly market pX is determined by the total output
QX(t) = qx1(t)+qx2(t). Propose the inverse demand
function is in the following nonlinear form as [7]:

pX = pX(QX) = a1 − b1Q
2
X , (1)

and the cost functions of firms X1, X2 are as follows:

CX1 = c1q
2
x1
, CX2 = c2q

2
x2
, (2)

where a1, b1, c1, c2 are positive parameters.
As the products of the upstream companies are

the complementary product for the downstream enter-
prise, the upstream market price px is a factor of the
cost of the downstream firm Y . The downstream firm
Y has the following linear form demand function and
nonlinear cost function:

QY = a2 − b2py, CY = c3Q
2
Y + γpxQY . (3)

where a2, b2, c3, γ are positive parameters.
We can see that the profit of the upstream firms

and the downstream firm are
πX1(t) = qx1(t)[a1 − b1Q

2
X(t)]− c1q

2
x1
(t),

πX2(t) = qx2(t)[a1 − b1Q
2
X(t)]− c2q

2
x2
(t),

πY (t) = py(t)(a2 − b2py)− c3Q
2
Y − γpXQY .

(4)
As the game between the upstream firms and the

downstream firm is a continuous and long-term re-
peated dynamic process, the dynamic adjustment of
this repeated Cournot-Bertrand triopoly game with
bounded rational players are as follows:

qx1(t+ 1) = qx1(t) + α1qx1(t)
∂πX1
∂qx1

, 0 ≤ α1 ≤ 1,

qx2(t+ 1) = qx2(t) + α2qx2(t)
∂πX2
∂qx2

, 0 ≤ α2 ≤ 1,

py(t+ 1) = py(t) + α3py(t)
∂πY
∂py

, 0 ≤ α3 ≤ 1.

(5)
where α1, α2 are output adjustment speed parameters,
and α3 is the price adjustment speed parameter.

Combining Eqs. (4), (5), a dynamic Cournot-
Bertrand triopoly game between the upstream firms
and the downstream firm with bounded rationality has
the following form:

qx1(t+ 1) = qx1(t) +A,
qx2(t+ 1) = qx2(t) +B,
py(t+ 1) = py(t) + C.

(6)

A = α1qx1(t)[a1 − 3b1q
2
x1

− b1q
2
x2

− 4b1qx1qx2 −
2c1qx1 ],
B = α2qx2(t)[a1 − 3b1q

2
x2

− b1q
2
x1

− 4b1qx1qx2 −
2c1qx2 ],
C = α3py(t)[a2 − 2b2(1 + b2c3)py(t)− γb1b2(qx1 +
qx2)

2 + 2a2b2c3 + γa1b2].

2.1 The equilibrium point and stability anal-
ysis

The bifurcation parameter is αi(i = 1, 2, 3), and oth-
er parameters of system (6) are as follows: a1 =
6, b1 = 0.98, c1 = 0.35, c2 = 0.45, a22 = 6.2, b2 =
0.85c3 = 0.22, γ = 2.
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By solving the following equations, the fixed
points of system (6) can be obtained

qx1(t)A = 0,
qx2(t)B = 0,
py(t)C = 0.

(7)

A = α1qx1(t)[a1 − 3b1q
2
x1

− b1q
2
x2

− 4b1qx1qx2 −
2c1qx1 ],
B = α2qx2(t)[a1 − 3b1q

2
x2

− b1q
2
x1

− 4b1qx1qx2 −
2c1qx2 ],
C = α3py(t)[a2 − 2b2(1 + b2c3)py(t)− γb1b2(qx1 +
qx2)

2 + 2a2b2c3 + γa1b2].
The Eqs.(7) are solved and three

meaningful fixed points p1(0.8459, 0.8050,
7.0263), p2(1.3145, 0, 7.8498), p3(0, 1.2837, 7.9159)
are obtained. The stability of the Nash equilibrium
point p∗(q∗x1

= 0.8459, q∗x2
= 0.8050, p∗y = 7.0263)

is only considered here.
The Jacobian matrix of system (6) at the Nash e-

quilibrium point p∗ is

J =

 1 + j11 j12 0
j21 1 + j22 0
j31 j32 1 + j33

 , (8)

where

j11 = α1q
∗
x1
(−6b1q

∗
x1

− 4b1q
∗
x2

− 2c1),
j12 = α1q

∗
x1
(−2b1q

∗
x2

− 4b1q
∗
x1
),

j21 = α2q
∗
x2
(−2b1q

∗
x1

− 4b1q
∗
x2
),

j22 = α2q
∗
x2
(−6b1q

∗
x2

− 4b1q
∗
x1

− 2c2),
j31 = j32 = −2α3p

∗
yγb1b2(q

∗
x1

+ q∗x2
),

j33 = −2α3b2(1 + b2c3)p
∗
y.

(9)

The characteristic polynomial of system (6) is:

f(λ) = λ3 +A2λ
2 +A1λ+A0, (10)

where

A2 = −(3 + j11 + j22 + j33),
A1 = (1 + j11)(1 + j22)− j21j12
+(2 + j11 + j22)(1 + j33),
A0 = −(1 + j33)[(1 + j11)(1 + j22)− j21j12].

(11)
The necessary and sufficient conditions for the lo-

cal stability of Nash equilibrium can be obtained by
Jury test [16]:

i) f(1) = 1 +A2 +A1 +A0 > 0,
ii) − f(−1) = 1−A2 +A1 −A0 > 0,
iii) 1−A2

0 > 0,
iv) (1−A2

0)
2 − (A1 −A2A0)

2 > 0.

(12)
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Figure 1: The stable region of Nash equilibrium point
about adjustment speed (α1, α2) with α3 = 0.1

By solving the above equations, the local stable
region of Nash equilibrium point can be got. The
phase diagram of the stable region is shown in Fig. 1
with positive (α1, α2) and α3 = 0.1. Similarly, for the
fixed α1 and α2, the other two stable region diagrams
(α1, α3) and (α2, α3) can also be got, respectively, but
they are omitted here. The Nash equilibrium is stable
for the values (α1, α2) inside the stable region. The
meaning of the stable region is that whatever initial
output are chosen by the upstream firms and the down-
stream firm in the local stable region, they will eventu-
ally arrive at the Nash equilibrium output in a finite of
games. It is valuable to analyze the enterprises on ac-
celerating the adjustment speed for the expectation of
getting more profits. However, the adjustment param-
eters have no matter with the Nash equilibrium point.
Once one party is adjusting output speed too fast and
pushing αi, (i = 1, 2, 3) out of the stable region, the
system tends to become unstable and even falls into
chaotic state. Numerical simulation method is used to
analyze the characteristics of the nonlinear dynamical
system with the increasing of αi, (i = 1, 2, 3). Nu-
merical results such as the bifurcation diagrams, the
largest Lyapunov exponents, the strange attractors and
the sensitive dependence on initial conditions will be
discussed in the following section.

3 Complex dynamics features of sys-
tem

The bounded rational players make decision on the ba-
sis of the marginal profit of the last period. The com-
panies decide to increase their output if it has a pos-
itive marginal profit, and decrease their output if the
marginal profit is negative. Thus, adjustment speed
parameter αi, (i = 1, 2, 3) has an important effect on
game results. In the following section, the effect of
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αi, (i = 1, 2, 3) on dynamical behaviors of system (6)
will be investigated.

3.1 The output and price adjustment speed
effect on the system

Once the upstream company X1 accelerates output
adjustment speed and pushes α1 out of the stable
region, the stability of Nash equilibrium point will
change. For α2 = 0.2, Fig.2 illustrates that the output
evolution of the upstream firms and the downstream
firm start with equilibrium state, through period dou-
bling, and end with chaotic state with output adjust-
ment speed α1 increasing. The diagrams of Bifurca-
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Figure 2: Bifurcation diagram and the largest Lya-
punov exponent with α1 ∈ (0, 0.3434], and (α2 =
0.09, α3 = 0.1)

tion and the largest Lyapunov exponent with α1 in-
creasing are shown in Fig.2 when (α2 = 0.09, α3 =
0.1). If the largest Lyapunov exponent λ1 is posi-
tive, system (6) is in a chaotic state. We can see that
system (6) is stable at Nash equilibrium point when
0 < α1 < 0.2362. For 0.2362 < α1 < 0.3046, sys-
tem (6) occurs a 2-cycle. For 0.3046 < α1 < 0.3323,
system (6) has a 4-cycle. For 0.3323 < α1 < 0.3434,
system (6) is in a chaotic state, and the representative
strange chaos attractor as shown in Fig. 3.

Similarly, Fig. 4 shows an one-parameter bifur-
cation diagram and the maximal Lyapunov exponent
with respect to α2 and when α1 = 0.07, α3 = 0.1.
We can see that Nash equilibrium point is stable for
0 < α2 < 0.2497, which implies output of three the
upstream firms and the downstream firm are in an e-
quilibrium state. With α2 increasing, the stability of
equilibrium point changes, output undergo doubling
period bifurcation and system (6) eventually falls into
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Figure 3: Chaos attractor of system (6) for (α1 =
0.339, α2 = 0.09, α3 = 0.1), and initial point (q0x1

=
0.6, q0x2

= 0.5, p0y = 0.2)
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Figure 4: Bifurcation diagram and the largest Lya-
punov exponent with α3 ∈ (0, 0.2107], and (α1 =
0.1, α2 = 0.12)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Hongliang Tu, Junhai Ma, Lijian Sun

E-ISSN: 2224-2856 258 Volume 11, 2016



0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

q
x

1
0

=0.6

q
x

1
0

=0.61

Figure 5: For the respective initial points (0.6, 0.5,
0.2) and (0.61, 0.5, 0.2), sensitive dependence on ini-
tial conditions: a) the two orbits of the output qx1 ; b)
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Figure 6: the difference between the two orbits of the
output qx1

chaos. α2 ∈ (0.2497, 0.3247] is the range of 2-cycle
fluctuation. For α2 > 0.3247, output period doubling
occurs again. α2 ∈ (0.3247, 0.3496] is the domain
of 4-cycle output fluctuation. α2 ∈ (0.3496, 0.3871]
is the domain of the system (6) in chaotic states, and
the representative strange chaos attractor as shown in
Fig. 15. likewise, Fig. 4 shows an one-parameter
bifurcation diagram with respect to α3 when (α1 =
0.1, α2 = 0.12). From Fig. 4, we can see that the up-
stream firms output are all at Nash equilibrium point
for α3 ∈ (0, 0.2107] and (α1 = 0.1, α2 = 0.12), but
the downstream firm output through doubling period
bifurcation to chaos.

The sensitive dependence on initial conditions is
one of the important features of chaos. To verify
whether system (6) depends on initial values sensi-
tively, the relationships between output and time are
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Figure 7: For the respective initial points (0.6, 0.51,
0.2) and (0.6, 0.52, 0.2), sensitive dependence on ini-
tial conditions: a) the two orbits of the output qx2 ; b)
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Figure 8: the difference between the two orbits of the
output qx2
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Figure 9: For the respective initial points (0.6, 0.5,
0.21) and (0.6, 0.5, 0.22), sensitive dependence on ini-
tial conditions: a) the two orbits of the output py; b)
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Figure 10: the difference between the two orbits of the
output py

shown in Figs. 6, 8 and 10 when (α1 = 0.339, α2 =
0.09, α3 = 0.1), (α1 = 0.07, α2 = 0.357, α3 = 0.1)
and (α1 = 0.1, α2 = 0.12, α3 = 0.189), respec-
tively. At first, the difference is indistinguishable,
but with the number of the game increasing, the d-
ifference between them is great. This implies that
only a little difference between initial data will have
a great impact on the results of the game. It fur-
ther proves that system (6) falls into a chaotic state
when when (α1 = 0.339, α2 = 0.09, α3 = 0.1),
(α1 = 0.07, α2 = 0.357, α3 = 0.1) and (α1 =
0.1, α2 = 0.12, α3 = 0.189). The stability of the
market will be destroyed, and it is difficult for the up-
stream firms and the downstream firm to plan long-
term strategy. A slight adjustment of the initial data
can have a great effect on the game results.

3.2 Evolution of attractors the system
Attractors are divided into ordinary attractors(called
attractor for short), quasi periodic attractors, and
chaotic attractors and so on. In this section, we s-
tudy the evolution of attractors with (α1, α2, α3), let
(α2 = 0.09, α3 = 0.1)and let α1changes from 0.2
to 0.25,0.31,0.33,0.34,0.35, and we can get the attrac-
tors in the following figures: in Fig.11, attractor of
system is the Nash equilibrium point of the system,
that means after a series of games,the system will con-
verge to the Nash equilibrium point, and as long as
the system eventually converge to the Nash equilibri-
um point,the Nash equilibrium point of the system is
uniquely identified.

in Fig.12 and 13 , with the increase of α1, at-
tractors of system are period-2 cycle and period-4 cy-
cle , that means after a series of games, the system
will converge to period-2 or period-4 , and as long as
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Figure 11: Attractor of system (6) for (α1 =
0.2, α2 = 0.09, α3 = 0.1), and initial point (q0x1

=
0.6, q0x2

= 0.5, p0y = 0.2)
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Figure 12: Attractor of system (6) for (α1 =
0.25, α2 = 0.09, α3 = 0.1), and initial point (q0x1

=
0.6, q0x2

= 0.5, p0y = 0.2)
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the system eventually converge toperiod-2 or period-4
point, the attractors of the system is uniquely identi-
fied.

in Fig.14,15and 16 , with the increase of α1, at-
tractors of system are all chaos attractor , that means
after a series of games, the system will converge to
chaos, the biggest difference between chaotic region
and periodic oscillation region is that chaos attractor
is changed. For example, in the stable region, the at-
tractor is not changed with the α1, but in the chaos
region, that chaos attractor is changed as can be seen
in in Fig.14,15and 16.
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4 The impact of price adjustment
speed on average profit

As the game between the upstream firms and the
downstream firm is a continuous and long-term re-
peated dynamic process, the dynamic adjustment of
this repeated Cournot-Bertrand triopoly profit game
with bounded rational players are as follows:



qx1(t+ 1) = qx1(t) + α1qx1(t)
∂πX1

(t)

∂qx1 (t)
,

qx2(t+ 1) = qx2(t) + α2qx2(t)
∂πX2

(t)

∂qx2 (t)
,

py(t+ 1) = py(t) + α3py(t)
∂πY (t)
∂py(t)

,

πX1(t+ 1) = qx1(t+ 1)[a1 − b1Q
2
X(t+ 1)]

−c1q
2
x1
(t+ 1),

πX2(t+ 1) = qx2(t+ 1)[a1 − b1Q
2
X(t+ 1)]

−c2q
2
x2
(t+ 1),

πY (t+ 1) = py(t+ 1)(a2 − b2py(t+ 1))
−c3QY (t+ 1)2 − γpX(t+ 1)QY (t+ 1).

(13)
The bifurcation parameter is α1, and other param-

eters of system (13) are as follows: a1 = 6, b1 =
0.98, c1 = 0.35, c2 = 0.45, a22 = 6.2, b2 =
0.85c3 = 0.22, γ = 2, α2 = 0.09, α3 = 0.1.

Fig.17 illustrates that the profits evolution of the
upstream firms and the downstream firm start with
equilibrium state, through period doubling, and end
with chaotic state with output adjustment speed α1

increasing. The diagrams of Bifurcation with α1 in-
creasing are shown in Fig.18 then Fig.18 shows the
evolution of average profits of all the firms through e-
quilibrium state, period doubling, and end with chaot-
ic state with output adjustment speed α1 increasing.

In Fig.17 , blue,red and black region denote prof-
its of firm 1, firm 2 and firm 3 respectively, and in
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Figure 18: Effect of α1 on average profit
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Figure 19: Bifurcation diagram of profit with α2

Fig.18,blue,red and black region denote average prof-
its of firm 1, firm 2 and firm 3 respectively.

As can be seen in Fig.17, The diagrams of Bifur-
cation of profits has the same flip Bifurcation point as
Fig.2. and in Fig.18, As can be seen, if the system
lose stable and donot enter chaos, then with the in-
crease of α1, profit of firm 1 and firm 3 decrease and
profit of firm 2 increase, when the system enter chaos,
then with the increase of α1, profit of firm 3 increase.
As can be seen in Fig.20, if the system lose stable and
donot enter chaos, then with the increase of α2, prof-
it of firm 2 and firm 3 decrease and profit of firm 1
increase, when the system enter chaos, then with the
increase of α2, profit of firm 3 increase.

As can be seen in Fig.22, if the system lose stable
and donot enter chaos, then with the increase of α3,
profit of firm 1 and firm 3 donot change and profit of
firm 3 decrease, when the system enter chaos, then
with the increase of α3, profit of firm 3 increase.
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Figure 20: Effect of α2 on average profit
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Figure 21: Bifurcation diagram of profit with α3
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Figure 22: Effect of α3 on average profit

5 Chaos control

Through the above analysis, we can find that system
(6) will become unstable and even fall into chaos if the
adjustment speed parameters out of the stable region.
It will harm all the upstream firms and the downstream
firm and make the markets irregular when the system
in a chaotic state. Therefore, nobody is able to make
good strategies and decide reasonable output. To avert
the risk, it is a good ideal for the triopoly to maintain
at Nash equilibrium output.

Perturbation feedback and non-feedback are two
methods for the chaos control. Recently, Yang and Xu
et al. [17, 18] proposed a new control method which
is called as the straight-line stabilization method. This
method is adopted to control the chaos in this paper.
Denote

δ =

 δ1
δ2
δ3


 A −j12 0

−j21 B 0
−j31 −j32 C


 D

E
F


=

 [µ− (1 + j11)]D − j12E
−j21D + [µ− (1 + j22)]E

−j31D − j32E + [µ− (1 + j33)]F.

 .

(14)
A = µ− (1 + j11),
B = µ− (1 + j22),
C = µ− (1 + j33,
D = qx1(t− 1)− q∗x1

,
E = qx2(t− 1)− q∗x2

,
F = py(t)− p∗y.
Where |µ| < 1 is the feedback control parameter and
other parameters are the same as above.

Adding the external control signal (14) to system
(6), the controlled system is as follows


qx1(t+ 1) = qx1(t) +A,
qx2(t+ 1) = qx2(t) +B,
py(t+ 1) = py(t) + C.

(15)

A = α1qx1(t)[a1 − 3b1q
2
x1

− b1q
2
x2

− 4b1qx1qx2 −
2c1qx1 ] + δ1,
B = α2qx2(t)[a1 − 3b1q

2
x2

− b1q
2
x1

− 4b1qx1qx2 −
2c1qx2 ] + δ2,
C = α3py(t)[a2 − 2b2(1 + b2c3)py(t)− γb1b2(qx1 +
qx2)

2 + 2a2b2c3 + γa1b2] + δ3.

It can be seen from Fig. 23, at (α1 = 0.339, α2 =
0.09, α3 = 0.1), controlled system (15) stabilized at
Nash equilibrium point when −1 < µ < −0.2903 in
Fig. 23 (a) and −1 < µ < −0.5968 in Fig. 23 (b).
It demonstrates that the chaos control can be realized
even if the perturbation is very small.
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Figure 23: Bifurcation diagram with α1 =
0.339, α2 = 0.09, α3 = 0.1, and : (a) k ∈
[−1,−0.2903], (b) k ∈ [−1,−0.5968]

6 Conclusions
A new dynamic nonlinear Cournot-Bertrand triopoly
game between between the upstream firms and the
downstream firm is established in this paper.

The adjustment speed parameter αi, (i = 1, 2, 3)
has an important effect on game results, if (α1, α2) is
in the stable region, the system will eventually arrive
at the Nash equilibrium output in a finite of games.It is
shown that bifurcation, chaos and other complex phe-
nomena occur when the speed adjustment parameters
change. It is well-known that the occurrence of chaos
depends on the values of bifurcation parameters.

The impact of price adjustment speed on average
profit is discussed we can see that chaos is harmful
to all the players. Perturbation feedback and non-
feedback are two methods for the chaos control. The
straight-line stabilization method is adopted to control
the chaos in this paper. The straight-line stabilization
method is used to control the period-doubling bifur-
cation, unstable periodic orbits and chaos. The sys-
tem quickly comes back to the Nash equilibrium point
when a small perturbation is added to the system.

This paper shows a guide for the upstream firms
and the downstream firm to formulate strategies of
output and price, respectively. The research results
also have an important theoretical and practical
significance to the enterprises under the background
of globalization.
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