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Abstract:- Economic model predictive control (EMPC) is a combined control strategy of real time optimization 
of time-varying process economics and a feedback Model Predictive Controller (MPC) to track the time-
varying set-point. In this work, we focus on the two-layer integrated framework of EMPC for non-linear 
processes. The upper layer consists of an EMPC, carries out economic process optimization to obtain the 
optimal steady states. A Lyapunov based MPC (LMPC) in the lower layer is forced to operate on these steady 
states. The LMPC tracks the time varying set point by maintaining the closed loop system states in a predefined 
stable region. The improved economic performance of the non-processes is demonstrated through some closed-
loop simulation for the optimal operation of a power plant. 
 
 
Keywords:- economic model predictive control, nonlinear systems, process optimization, stability analysis. 
 

1 Introduction 
The fundamental objective for a plant operation is to 
obtain the desired product from the given raw 
materials by optimizing the economic measure 
thereby increasing the net profit. The optimal 
operating performance in chemical process 
industries is traditionally achieved by a two-layer 
hierarchical structure. In the upper layer, real time 
optimization (RTO) is perform to address the time-
varying economic considerations such as inconstant 
energy prices, changing market demand, product 
transitions, and variable feedstock using steady-state 
process models to obtain the optimal steady states 
[1]. The lower layer, generally designed using model 
predictive control (MPC) methods is bound to 
maintain the actual process states on these optimal 
steady states subject to the states and inputs 
constraints [2]. The popularity of MPC in industries 
is because of its ability to handle multivariable 
control problems and allowing the plant operation 
very close to the boundary of the constraints leading 
to increase in profitability. The working policy of a 
MPC is to compute optimal inputs by solving a 
optimization problem subject to the process 
dynamics, which forces the process output to 
operate on the desired set point [3-6] over a finite 
prediction horizon. 

The main drawback of the two-layer paradigm is 
the process dynamics is not taken into account by 
the RTO layer to compute the steady states and thus 

the reachability of the actual process states cannot 
be certain [7]. To address the disabilities of the two 
layer approach, many researchers have derived 
alternatives by replacing the steady state model with 
a dynamic model, called dynamic real time 
optimization (D-RTO) strategy[8-9], introducing an 
intermediate layer to compute steady states 
reachable by the lower layer, called steady-state 
target optimization [10-11], computing optimal 
steady states using nonlinear MPC [12], and also by 
analysing the rate of unfolding the upper layer 
[8][13]. 

In the recent years, another alternative has evolved 
to overcome the drawbacks in traditional RTO/MPC 
control scheme where both the layers are integrated 
to a single layer by substituting the quadratic cost 
function by a dynamic economic cost function [14]. 
The resulting combined control scheme is referred 
as economic model predictive control (EMPC). 
However, the replacement of the quadratic cost 
function has lead to the challenge of developing a 
stable controller which account to the dynamic 
economic variations. Some of the recent works on 
EMPC address the closed loop performance by 
designing the controller with Lyapunov techniques 
[15]. In [16] two EMPCs are implemented on a 
catalytic distillation process to showcase the 
improvement in performance over traditional 
tracking controllers. In the manufacturing of vinyl 
acetate, the effect of a Lyapunov based EMPC is 
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discussed for a huge network process. Many 
adaptive EMPC schemes were also developed and 
demonstrated through simulation results. 
Additionally, the optimization problem of EMPC 
has to be solved faster to control a process in real 
time. Thus, formulating an EMPC that explicitly 
accounts to time-varying process economics with 
provable stability properties is an open topic for 
research. 

The present work focuses on the integrated 
framework of the two-layer approach. The time-
varying economic considerations are optimized by 
the EMPC and the computed optimal states are 
fetched to the lower layer to operate on these states. 
Lyapunov techniques are used to design the lower 
layer MPC controller to guarantee closed-loop 
stability. Secondly, the stability of the process is 
analysed through set theoretic methods. The set 
theoretic approach provides a constructive way to 
find a suitable Lyapunov function. A set is 
constructed which is compatible with the constraints 
and is positively invariant such that the computed 
optimal steady states are bounded and reachable by 
the lower layer process states [17]. A suitable choice 
for candidate invariant sets - ‘ellipsoids’ is 
considered for the construction of the stability 
region. Lastly, this control scheme is demonstrated 
for the optimal operation of a fossil fuel power unit 
(FFPU) through extensive closed-loop simulations. 

 
2 Preliminaries 
2.1  Notation 
The Euclidean norm of a vector is denoted by |∙| and 
the weighted Euclidean norm of a vector is denoted 
by the notation |∙|𝑄𝑄(𝑖𝑖. 𝑒𝑒. |𝑥𝑥|𝑄𝑄  =𝑥𝑥𝑇𝑇𝑄𝑄𝑥𝑥), where 𝑄𝑄 is a 
positive definite matrix.  A continuous function 
𝛼𝛼: [0,𝑎𝑎) → [0,∞) is said to be from class К, if it is 
strictly increasing and 𝛼𝛼(0) = 0. We have used 
diag(𝑣𝑣) to describe a square diagonal matrix whose 
diagonal elements are equal to vector 𝑣𝑣 while the 
rest of the elements are equal to zero. The fixed 
parameter 𝛺𝛺𝜌𝜌(𝑥𝑥𝑠𝑠)  is used to denote the level set of a 
lyapunov function 𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑆𝑆), where 𝑥𝑥𝑆𝑆  ∈ 𝐼𝐼 ⊂
 ℝ𝑛𝑛 (i.e.,  𝛺𝛺𝜌𝜌(𝑥𝑥𝑠𝑠) = {𝑥𝑥 ∈  ℝ𝑛𝑛⃓ 𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑆𝑆) ≤ 𝜌𝜌(𝑥𝑥𝑆𝑆)}).  
 
2.2  Class of non-linear process models 
The class of continuous non-linear dynamic systems 
of the following state-space form is considered in this 
work: 
�̇�𝑥(𝑡𝑡) =  𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝑤𝑤(𝑡𝑡))                          (1) 

where 𝑥𝑥(𝑡𝑡) ∈  ℝ𝑛𝑛  is the state vector, 𝑢𝑢(𝑡𝑡) ∈
 𝑈𝑈 ⊂ ℝ𝑚𝑚denotes the manipulated input vector, and 
𝑤𝑤(𝑡𝑡) ∈  𝑊𝑊 ⊂ ℝ𝑙𝑙  is the disturbance vector. The 

energy available to the inputs are restricted to a non-
empty convex set 𝑈𝑈 = {𝑢𝑢 ∈  ℝ𝑚𝑚⃓ 𝑢𝑢𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑢𝑢𝑖𝑖 ≤
𝑢𝑢𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥 , 𝑖𝑖 = 1, … .𝑚𝑚}. The vector field 𝑓𝑓:ℝ𝑛𝑛 × ℝ𝑚𝑚 ×
ℝ𝑙𝑙  is locally Lipschitz and the disturbance vector is 
considered to be bounded by some positive constant 
𝑤𝑤𝑝𝑝(i.e., 𝑤𝑤(𝑡𝑡) ≤ 𝑤𝑤𝑝𝑝). 

The integrated control scheme of dynamic process 
economics and feedback MPC drives the system of 
Eq.(1) to operate on the time varying operating 
policies. The explicitly time dependant economic 
cost function is assumed to be in the form: 
𝐿𝐿𝑒𝑒(𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)). 

The optimal steady states obtained from convex 
optimization of the above cost function is denoted as 
𝑥𝑥𝑠𝑠(𝑡𝑡). For the system of Eq.(1), the existence of a 
equilibrium point for each computed optimal steady 
states, 𝑥𝑥𝑠𝑠(𝑡𝑡), denoted by I (i.e., 𝐼𝐼 = {𝑥𝑥𝑠𝑠 ∈  ℝ𝑛𝑛⃓ 𝑢𝑢𝑠𝑠 ∈
𝑈𝑈 subject to 𝑓𝑓(𝑥𝑥𝑠𝑠 ,  𝑢𝑢𝑠𝑠 , 0) = 0} ⊂ ℝ𝑛𝑛) is assumed to 
guarantee the track ability of the time-varying 
reference trajectory. The deviation of the actual state 
trajectory from the time varying optimal trajectory is 
denoted as 

 𝑒𝑒(𝑡𝑡) =  𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝑠𝑠(𝑡𝑡)                    (2) 
 

 2.3 Stability Assumption 
In this approach, the economic MPC optimizes 
directly in real time the economic performance of 
the process thereby increasing the problem of 
reachability and controllability under uncertainties. 
Thus, to specify the system performance set 
theoretic approach is used for stability consideration. 
Firstly, the presence of a Lyapunov controller 
ℎ(𝑥𝑥, 𝑥𝑥𝑠𝑠) for each predicted state 𝑥𝑥𝑠𝑠 ∈ 𝐼𝐼 is assumed 
that provides asymptotically stability to 𝑥𝑥𝑠𝑠 of the 
non-linear system of Eq.1 under consecutive 
operation. Therefore, a Lyapunov function 𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑠𝑠) 
is formulated such that it satisfies the following 
assumptions. 

  𝛼𝛼1 (|𝑒𝑒|) ≤ 𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑠𝑠) ≤ 𝛼𝛼2 (|𝑒𝑒|)                 (3a) 
𝜕𝜕𝑉𝑉
𝜕𝜕𝑥𝑥
𝑓𝑓(𝑥𝑥,ℎ(𝑥𝑥, 𝑥𝑥𝑠𝑠), 0) ≤ −𝛼𝛼3 (|𝑒𝑒|)                 (3b) 

�𝜕𝜕𝑉𝑉
𝜕𝜕𝑥𝑥
� ≤ 𝛼𝛼4 (|𝑒𝑒|)                                            (3c) 

ℎ(𝑥𝑥, 𝑥𝑥𝑠𝑠) ∈ 𝑈𝑈                                                (3d) 

where,  𝛼𝛼𝑖𝑖  (∙), i=1,2,3,4 are continuous functions 
belonging to class К and 𝑒𝑒 ∈ 𝐷𝐷 for each 𝑥𝑥𝑠𝑠 ∈ 𝐼𝐼, 𝐷𝐷 is 
a proximity to the origin. Secondly, for each  𝑥𝑥𝑠𝑠 ∈ 𝐼𝐼, 
the corresponding lyapunov controller forms a 
stability region 𝛺𝛺𝜌𝜌(𝑥𝑥𝑠𝑠). A compact and invariant set 
𝒳𝒳  is constructed by unifying all the stability 
regions, i,e., 𝒳𝒳=⋃ 𝛺𝛺𝜌𝜌(𝑥𝑥𝑠𝑠) 𝑥𝑥𝑠𝑠∈𝐼𝐼 . Lastly, considering 
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the boundedness of the input variables and 
continuous differentiable property of the Lyapunov 
function, the occurrence of certain positive constants 
𝑀𝑀, 𝐿𝐿𝑥𝑥 ,𝐿𝐿𝑤𝑤 ,𝐿𝐿𝑥𝑥′ ,𝐿𝐿𝑤𝑤′  are assumed such that 

𝑓𝑓(𝑥𝑥,𝑢𝑢,𝑤𝑤) ≤ 𝑀𝑀                                             (4a) 

|𝑓𝑓(𝑥𝑥,𝑢𝑢,𝑤𝑤)| − �𝑓𝑓(𝑥𝑥 ′,𝑢𝑢, 0)� ≤ 𝐿𝐿𝑥𝑥�𝑥𝑥 − 𝑥𝑥 ′�+ 𝐿𝐿𝑤𝑤 |𝑤𝑤|                                                           

 (4b) 

�
𝜕𝜕𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑠𝑠)

𝜕𝜕𝑥𝑥
𝑓𝑓(𝑥𝑥,𝑢𝑢,𝑤𝑤) −

𝜕𝜕𝑉𝑉�𝑥𝑥 ′,𝑥𝑥𝑠𝑠�
𝜕𝜕𝑥𝑥

𝑓𝑓�𝑥𝑥 ′,𝑢𝑢, 0�� ≤ 

𝐿𝐿𝑥𝑥′ �𝑥𝑥 − 𝑥𝑥 ′�+ 𝐿𝐿𝑤𝑤′ |𝑤𝑤|  (4c) 

all 𝑢𝑢 ∈ 𝑈𝑈.𝑤𝑤 ∈ 𝑊𝑊, and 𝑥𝑥, 𝑥𝑥 ′ ∈ 𝒳𝒳. 

 
2.4 Construction of stable set 
To embellish the idea of stability, a compact invariant 
set  𝒳𝒳 is constructed by integrating all the stability 
regions of individual steady states i.e. 
𝒳𝒳=⋃ 𝛺𝛺𝜌𝜌(𝑥𝑥𝑠𝑠) 𝑥𝑥𝑠𝑠∈𝐼𝐼 as shown in Fig 1. The stability region 
for each  𝑥𝑥𝑠𝑠 ∈ 𝐼𝐼 is computed offline by an algorithm 
given below: 
          

 

Fig.1. Representation of stable regions evolution and 
designing of set 𝒳𝒳. 
 
3   Two Layer Integrated Control 
Strategy 
This section emphasis on the integrated architecture 
of optimizing time-varying process economics and 
Lyapunov based feedback MPC. The use of 
economic objective in the dynamic regulation layer 
directly motivates the system to transient through 
the high profit regions which was not possible in the 
traditional two layer control scheme as shown in 
Fig. 2. 

However, from the operator’s perspective there is 
increase in non-steady operation. To deal with the 

boundedness of the closed loop states, set theoretic 
approach is implemented to ensure stability. 
 
  
 

 

 

 

 

 

 

 

 

Fig. 2. Distinguishing between economic steady 
optimum and economic global optimum [3]. 

 
3.1  Application Scheme  
The combined EMPC framework has two 
hierarchical internal layers. The top layer in the 
hierarchy carries out process economics 
optimization subject to the process dynamics and 
reachability of the states in the lower layer. As 
mentioned earlier, the explicitly time dependant 
economic cost function is represented in the 
form 𝐿𝐿𝑒𝑒�𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)�, the optimization problem 
(Eq.8a) can be constructed as; 
 

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒𝑢𝑢∈𝑆𝑆(∆) ∫  𝐿𝐿𝑒𝑒�𝜏𝜏, 𝑥𝑥�(𝜏𝜏),𝑢𝑢(𝜏𝜏)�𝑡𝑡𝑘𝑘+𝑁𝑁
𝑡𝑡𝑘𝑘

𝑑𝑑𝜏𝜏         
                                                                   (5a) 
subject to, 

𝑥𝑥�(̇𝑡𝑡) = 𝑓𝑓(𝑥𝑥�(𝑡𝑡),𝑢𝑢(𝑡𝑡), 0)                (5b)                    
 𝑥𝑥�(𝑡𝑡𝑘𝑘) = 𝑥𝑥(𝑡𝑡𝑘𝑘)                                (5c)                   
 𝑢𝑢�(𝑡𝑡) ∈  𝑈𝑈 ∀ 𝑡𝑡 ∈ [ 𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+𝑁𝑁)        (5d)                         
 𝑥𝑥�(𝑡𝑡𝑘𝑘) ∈  𝒳𝒳 ∀ 𝑡𝑡 ∈ [ 𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+𝑁𝑁) 𝑖𝑖𝑓𝑓 𝑥𝑥(𝑡𝑡𝑘𝑘)  ∈  𝒳𝒳    
                                                                      (5e)                

where, 𝑆𝑆(∆) is a class of piece-wise functions with 
constant values with ∆ as the sampling period, 𝑁𝑁 is 
the prediction horizon, 𝑥𝑥�(𝜏𝜏) is the reference 
trajectory, 𝑢𝑢(𝜏𝜏) represents the manipulated variable, 
𝑥𝑥(𝑡𝑡𝑘𝑘) is the current state measurement at time (𝑡𝑡𝑘𝑘), 
 𝑥𝑥� (𝑡𝑡𝑘𝑘)  denote steady state computed with the 
manipulated variable 𝑢𝑢�(𝑡𝑡𝑘𝑘) at time 𝑡𝑡𝑘𝑘  and 𝒳𝒳 is the 
formulated stable region. 

The first constraint Eq.(5b) is imposed on the 
process dynamics to evaluate the future states of the 

 

Economic global optimum 
Economic steady 
state/set point 

 

𝛺𝛺𝜌𝜌(𝑥𝑥𝑠𝑠,3) 

 
𝛺𝛺𝜌𝜌(𝑥𝑥𝑠𝑠,4) 

 
𝒳𝒳 

𝛺𝛺𝜌𝜌(𝑥𝑥𝑠𝑠,1) 

 

𝛺𝛺𝜌𝜌(𝑥𝑥𝑠𝑠,2) 

 

𝐼𝐼 
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process. The second constraint Eq.(5c) defines the 
initial condition retrieve from the process. The 
bound to available energy of all the control inputs is 
defined in the third constraints (i.e. Eq.(5d)). The 
forth constraint (Eq.(5e)) is for stability purpose, the 
computed states stays within the stable set 𝒳𝒳. 

In the feedback control level, a Lyapunov based 
proportional controller is designed to track the 
computed steady states. The given model of Eq.(1) 
is solved repeatedly in sample and hold manner to 
maintain the actual states on the steady states 𝑥𝑥𝑠𝑠(𝑡𝑡) 
with the control input 𝑢𝑢(𝑡𝑡) obtained by minimizing 
the following optimization problem: 

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒𝑢𝑢∈𝑆𝑆(∆) � |�̌�𝑒(𝜏𝜏)|𝑄𝑄𝑐𝑐
𝑡𝑡𝑗𝑗+𝑡𝑡 ′

𝑡𝑡𝑗𝑗
+ |𝑢𝑢(𝜏𝜏) − 𝑢𝑢�(𝜏𝜏)|𝑅𝑅𝑐𝑐 𝑑𝑑𝜏𝜏 

                                                                           (6a) 
subject to, 
 𝑥𝑥�(̇ 𝜏𝜏) = 𝑓𝑓(𝑥𝑥�(𝑡𝑡),𝑢𝑢(𝑡𝑡), 0)   (6b) 

𝑢𝑢(𝑡𝑡) ∈  𝑈𝑈   (6c) 
�̌�𝑒�𝑡𝑡𝑗𝑗 � = 𝑥𝑥�𝑡𝑡𝑗𝑗 � − 𝑥𝑥𝑠𝑠(𝑡𝑡)     (6d) 

    𝑥𝑥�𝑡𝑡𝑗𝑗 � ∈  𝒳𝒳 ∀ 𝑡𝑡 ∈ � 𝑡𝑡𝑗𝑗 , 𝑡𝑡𝑗𝑗+𝑡𝑡 ′� 𝑖𝑖𝑓𝑓 𝑥𝑥(𝑡𝑡𝑘𝑘) ∈  𝒳𝒳  
  (6e) 

𝜕𝜕𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑠𝑠)
𝜕𝜕𝑥𝑥

𝑓𝑓�𝑥𝑥�𝑡𝑡𝑗𝑗 �,𝑢𝑢�𝑡𝑡𝑗𝑗 �, 0�

≤
𝜕𝜕𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑠𝑠)

𝜕𝜕𝑥𝑥
𝑓𝑓 �𝑥𝑥�𝑡𝑡𝑗𝑗 �, ℎ �𝑥𝑥�𝑡𝑡𝑗𝑗 �, 𝑥𝑥𝑠𝑠�𝑡𝑡𝑗𝑗 �� , 0� 

  (6f)    
 

where, 𝑆𝑆(∆) is a class of piece-wise functions with 
constant values with ∆ as the sampling period, 𝑡𝑡 ′ is 
the prediction horizon, 𝑥𝑥𝑠𝑠(𝑡𝑡) is the reference 
trajectory,  𝑥𝑥(𝑡𝑡𝑗𝑗 ) is the current state at time 
(𝑡𝑡𝑗𝑗 ) obtained by applying the manipulated 
variable, 𝑢𝑢(𝑡𝑡), 𝒳𝒳 represents the formulated stable 
region, 𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑠𝑠) is the Lyapunov function and 
ℎ(𝑥𝑥�𝑡𝑡𝑗𝑗 �, 𝑥𝑥𝑠𝑠(𝑡𝑡𝑗𝑗 )) is the Lyapunov controller.  

The control objective is to minimise the control 
input 𝑢𝑢(𝑡𝑡) by solving the optimization problem 
represented by Eq. (6a) such that the process states 
reaches the optimal steady states. The system of 
equations (Eq. (1)) is solved continuously to 
optimize the manipulated values constrained by its 
dynamics (Eq. (6b)). The control inputs have 
bounded amount of available is shown in Eq. (6c). 
The third constraint (Eq. (6d)) defines the starting 
conditions of the optimization process. The fourth 
constraint (Eq. (6e)) is to ensure that the derived 
states of the process lies in the reachable set 𝒳𝒳. The 
last constraint signifies the stability of the process, 
as the Lyapunov controller ℎ(𝑥𝑥�𝑡𝑡𝑗𝑗 �, 𝑥𝑥𝑠𝑠(𝑡𝑡𝑗𝑗 )) acts 
upon the process, the Lyapunov function 𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑠𝑠) 

should decrease with time to reach a minimal 
equilibrium point. 

 
3.2  Implementation Procedure 
The combined structure of process economics and 
control, commonly known as EMPC, works in a 
receding horizon fashion unaffected by uncertainties 
and random disturbances. The optimization problem 
is solved for a sampling period of ∆ for both the 
layers as summarised below: 
Step 1: The internal upper layer receives the state 
feedback from the plant and computes the steady 
states. 

Step 2: The computed steady states are projected on 
the stable set 𝒳𝒳, to check the reachability of the 
process states. 

Step 3: The feedback MPC at the lower level tracks 
these steady states while maintaining its operation 
within the stability region  𝒳𝒳 subject to process 
dynamics. 
 
3.3 Stability Analysis 
To ensure stability of the process states, the stable 
set 𝒳𝒳 is designed and constructed using set theoretic 
methods. In this section, the closed-loop process 
states are maintained inside the set 𝒳𝒳 for any initial 
condition which is proved by providing the 
sufficient condition for closed loop stability in the 
following theorem. 
 
Theorem 1: Considering the system of Eq. (1) and 
designing a Lyapunov controller ℎ(𝑥𝑥, 𝑥𝑥𝑠𝑠) satisfying 
the set of equations of Eq. (3). Suppose 𝜖𝜖𝑤𝑤 > 0,∆>
0,𝜌𝜌(𝑥𝑥𝑠𝑠) > 𝜌𝜌𝑒𝑒(𝑥𝑥𝑠𝑠) ≥ 𝜌𝜌𝑒𝑒 ,𝑚𝑚𝑖𝑖𝑛𝑛 > 0 for all 𝑥𝑥𝑠𝑠 ∈ 𝐼𝐼 such 
that                                   
0 < 𝜌𝜌𝑒𝑒 ,𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑚𝑚𝑖𝑖𝑛𝑛𝑥𝑥𝑠𝑠∈𝐼𝐼{max{𝜌𝜌𝑒𝑒(𝑥𝑥𝑠𝑠)⃓𝛺𝛺𝜌𝜌𝑒𝑒(𝑥𝑥𝑠𝑠) ⊆ 𝒳𝒳}}  
  (7)  

and,−𝛼𝛼3(𝛼𝛼2
−1(𝜌𝜌𝑒𝑒 ,𝑚𝑚𝑖𝑖𝑛𝑛 )) + 𝐿𝐿𝑥𝑥′ 𝑀𝑀∆ + 𝐿𝐿𝑤𝑤′ 𝑤𝑤𝑝𝑝 ≤

−𝜖𝜖𝑤𝑤/∆    (8) 

if the initial condition 𝑥𝑥(𝑡𝑡0)  ∈ 𝒳𝒳 and 𝑁𝑁 ≥ 1, then 
the actual states from the process is also bounded 
within 𝒳𝒳. 

Proof: The above theorem is proved in two 
divisions. The 1st part is to prove the reachability of 
the states calculated by optimizing the objective 
function of Eq.5. The 2nd part is to ensure the 
boundedness of the actual states of the process 
within the stable set 𝒳𝒳. 
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Part 1:   Any computed state 𝑥𝑥(𝑡𝑡𝑘𝑘) ∈ 𝒳𝒳 lies in the 
stability region 𝛺𝛺𝑝𝑝(𝑥𝑥𝑠𝑠) of the Lyapunov controller 
ℎ(𝑥𝑥, 𝑥𝑥𝑠𝑠) for some steady state 𝑥𝑥𝑠𝑠 . This signifies that 
the existence of an input trajectory 𝑢𝑢�𝑡𝑡𝐾𝐾+𝑗𝑗 � =
ℎ�𝑥𝑥𝐾𝐾+𝑗𝑗 ,𝑥𝑥𝑠𝑠�, 𝑗𝑗 = 0,1, … … .𝑁𝑁 − 1 which is a feasible 
solution for the system of Eq. (5a) confirms the 
occurrence of an input trajectory in the lower layer 
which is a feasible solution. This ensures the 
stability of the Lyapunov controller ℎ(𝑥𝑥, 𝑥𝑥𝑠𝑠) when 
operated in sample and hold manner. 

Part 2:  As 𝑥𝑥(𝑡𝑡𝑘𝑘) ∈ 𝒳𝒳 , a steady state  𝑥𝑥𝑠𝑠 ∈ 𝐼𝐼 is 
found such that the actual process state 𝑥𝑥(𝑡𝑡𝑘𝑘) ∈
𝛺𝛺𝑝𝑝(𝑥𝑥𝑠𝑠), since the stability region 𝛺𝛺𝑝𝑝(𝑥𝑥𝑠𝑠) is computed 
by the Lyapunov controller for every state 𝑥𝑥𝑠𝑠 . Let us 
consider the Eq.(6f) exist such that for some  𝑥𝑥𝑠𝑠 ∈ 𝐼𝐼 
with optimal control input 𝑢𝑢𝑠𝑠(𝑡𝑡𝑘𝑘) obtain by 
optimising Eq. (5a). The term on the right side of 
Eq. (6f) can be written using Eq. (3b) as follows: 

𝜕𝜕𝑉𝑉(𝑥𝑥 ,𝑥𝑥𝑠𝑠)
𝜕𝜕𝑥𝑥

𝑓𝑓�𝑥𝑥�𝑡𝑡𝑗𝑗 �,𝑢𝑢(𝑡𝑡𝑗𝑗 ),0� ≤ −𝛼𝛼3 (|𝑒𝑒|)          (9) 

The rate of change of Lyapunov function along the 
state trajectory for 𝜏𝜏 ∈ [𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1) is 

�̇�𝑉(𝑥𝑥(𝜏𝜏), 𝑥𝑥𝑠𝑠) = 𝜕𝜕𝑉𝑉(𝑥𝑥(𝜏𝜏),𝑥𝑥𝑠𝑠)
𝜕𝜕𝑥𝑥

𝑓𝑓�𝑥𝑥(𝜏𝜏),𝑢𝑢𝑠𝑠(𝜏𝜏),𝑤𝑤(𝜏𝜏)�    

                                                                    (10)                        

Addressing the bounds on Eq. (9) and Lipschitz 
properties of Eq. (4c), adding and subtracting 
�̇�𝑉(𝑥𝑥(𝜏𝜏), 𝑥𝑥𝑠𝑠) the following bound can be imposed on 
the Lyapunov function to decrease due to control 
action 𝑢𝑢𝑠𝑠(𝜏𝜏) for 𝜏𝜏 ∈ [𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1): 

�̇�𝑉(𝑥𝑥(𝜏𝜏), 𝑥𝑥𝑠𝑠) ≤ −𝛼𝛼3 (|𝑒𝑒|) + 𝐿𝐿𝑥𝑥′ |𝑒𝑒| + 𝐿𝐿𝑤𝑤′ |𝑤𝑤(𝜏𝜏)|    (11) 

The deviation of the actual state from the optimal 
steady state for a single sampling period 𝜏𝜏 ∈
[𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1) can be bounded as; 

|𝑥𝑥(𝜏𝜏) − 𝑥𝑥𝑠𝑠(𝑡𝑡𝑘𝑘)| ≤ 𝑀𝑀∆                                   (12) 

Considering Eq. (11) and Eq. (12), the bound on the 
derivation of the Lyapunov function for 𝜏𝜏 ∈
[𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1) can be given as: 

�̇�𝑉(𝑥𝑥(𝜏𝜏), 𝑥𝑥𝑠𝑠) ≤ 𝛼𝛼3 (|𝑒𝑒|) + 𝐿𝐿𝑥𝑥′ |𝑀𝑀∆| + 𝐿𝐿𝑤𝑤′ |𝑤𝑤(𝜏𝜏)| 
 (13) 

As 𝐼𝐼 ∈  𝒳𝒳, the difference between the actual and 
optimal states is always greater than zero. Now, to 
derive the lower and upper bounds on the Lyapunov 
function we consider the largest level set of 
 𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑠𝑠) i.e. 𝛺𝛺𝜌𝜌𝑒𝑒(𝑥𝑥𝑠𝑠) existing in 𝒳𝒳 for each  𝑥𝑥𝑠𝑠 ∈

𝐼𝐼. The smallest level set among all is 𝜌𝜌𝑒𝑒 ,𝑚𝑚𝑖𝑖𝑛𝑛 . Thus, 
the lower bound on the Lyapunov function can be 
given as: 

𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑠𝑠) ≥ 𝜌𝜌𝑒𝑒 ,𝑚𝑚𝑖𝑖𝑛𝑛                                    (14) 

for all  𝑥𝑥𝑠𝑠 ∈ 𝐼𝐼 and 𝑥𝑥 ∈ 𝒳𝒳. 
Now, using Eq.(3a) and Eq.(14), the difference 
between actual and optimal states can be written as: 
𝛼𝛼2
−1(𝜌𝜌𝑒𝑒,𝑚𝑚𝑖𝑖𝑛𝑛 ) ≤ |𝑥𝑥(𝜏𝜏) − 𝑥𝑥𝑠𝑠(𝑡𝑡𝑘𝑘)|                    (15) 

for all  𝑥𝑥𝑠𝑠 ∈ 𝐼𝐼 and 𝑥𝑥 ∈ 𝒳𝒳. Applying Eq. (14) on 
Eq.(13) we have the following bound: 

�̇�𝑉(𝑥𝑥(𝜏𝜏), 𝑥𝑥𝑠𝑠) ≤ −𝛼𝛼3 �𝛼𝛼2
−1�𝜌𝜌𝑒𝑒 ,𝑚𝑚𝑖𝑖𝑛𝑛 �� + 𝐿𝐿𝑥𝑥′ |𝑀𝑀∆| +

             𝐿𝐿𝑤𝑤′ |𝑤𝑤(𝜏𝜏)|                 (16) 

Using Eq. (8) and Eq. (16) we have: 

�̇�𝑉�𝑥𝑥(𝜏𝜏)� ≤ −𝜖𝜖𝑤𝑤/∆                                         (17)                                              

for all 𝜏𝜏 ∈ [𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1). 

Integrating the bounds on the interval, we have: 

𝑉𝑉(𝑥𝑥(𝑡𝑡𝑘𝑘+1) ≤ 𝑉𝑉�𝑥𝑥(𝑡𝑡𝑘𝑘)� − 𝜖𝜖𝑤𝑤       (18) 

Thus, for all 𝜏𝜏 ∈ [𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1), 

𝑉𝑉(𝑥𝑥(𝜏𝜏)) ≤  𝑉𝑉�𝑥𝑥(𝑡𝑡𝑘𝑘)�∀ 𝑥𝑥𝑠𝑠 ∈ 𝐼𝐼 and 𝑥𝑥 ∈ 𝒳𝒳.          (19) 

Hence, the plant operation is proved to be 
maintained in the constructed stable set  𝒳𝒳 
 
4  Case Study 
The integrated set up of EMPC is implemented and 
demonstrated on optimal operation of a fossil fuel 
power unit (FFPU) [18]. There is no type-cast for 
the continuous economic cost function used in the 
upper layer. 

The pivotal objective of a FFPU is to maintain the 
productivity of electric power with invariable 
voltage and frequency constantly in accordance to 
the variation in load demand at all times. 
Traditionally, the unit load demand provided at the 
top of the hierarchy is converted by a fixed non-
linear mapping to a desired set point for the lower 
level pressure control loop shown in Fig. 3. 
However, there is no process optimization for 
circumstances when the operating conditions differ 
from the original signals. In this approach, much 
emphasis is given on achieving accurate feedback 
control without doubting on the reachability and 
adequacy of the set points. 

The integrated control paradigm i.e. EMPC is 
designed for this FFPU to calculate the reachable set 
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points to meet the variable load demand thereby 
maximizing the net return. The process dynamics of 
a 160 MW oil fired drum-type boiler-turbine-
generator unit is transformed into a state-space 
model of order three as given in Eq. (20). 

 

 

 

                         

 

 

 

 

 

 

 

Fig. 3 Traditional coordinated control of FFPU [18] 
 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 0.9𝑢𝑢1 − 0.0081𝑢𝑢2 𝑑𝑑
9
8 − 0.15𝑢𝑢3       (20a) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡
�(0.73𝑢𝑢2 − 0.16)𝑑𝑑

9
8 − 𝑑𝑑�10                (20b) 

𝑑𝑑𝜌𝜌𝑓𝑓
𝑑𝑑𝑡𝑡

= 141 𝑢𝑢3−(1.1𝑢𝑢2−0.9)𝑑𝑑
85

     (20c) 

The control input signals 𝑢𝑢1,𝑢𝑢2 and 𝑢𝑢3 are given to 
the actuators for manipulating the fuel flow rate (in 
pu), the flow of steam to the turbine (in pu) and 
feedwater flow to the drum (in pu) respectively. The 
process states are 𝑥𝑥 = [𝑑𝑑 𝑑𝑑 𝜌𝜌𝑓𝑓]𝑇𝑇 . 
where, 
𝑑𝑑 is steam presume in the drum (in 𝑘𝑘𝑘𝑘/𝑐𝑐𝑚𝑚2). 
E represents the electric power (in MW). 
𝜌𝜌𝑓𝑓  is the density of the steam-water(𝑘𝑘𝑘𝑘/𝑚𝑚3). 
 

The inputs available to the control actuators are 
constraint in the region [0, 1] and the rate of change 
of control inputs are bounded as follows: 
  −0.007 ≤ 𝑑𝑑𝑢𝑢1

𝑑𝑑𝑡𝑡
≤ 0.007                                    (21a) 

−2.0 ≤ 𝑑𝑑𝑢𝑢2
𝑑𝑑𝑡𝑡

≤ 0.02  (21b) 

−0.05 ≤ 𝑑𝑑𝑢𝑢3
𝑑𝑑𝑡𝑡

≤ 0.05  (21c) 

The equilibrium points of all the computed steady 
states lies within the region defined as  𝐼𝐼. The 
economic objective function for the optimal control 
of the FFPU is formulated to credit optimal load 
tracking and heat rate, minimizes fuel usage and 
penalise the throttling losses in the control values of 
the main stream flow and feedwater flow Eq. (22). 
The time-varying cost function addressing the above 
mentioned process economics is as follow: 
𝐽𝐽𝑒𝑒 =  𝑑𝑑𝑢𝑢𝑙𝑙𝑑𝑑 −  𝑑𝑑𝑠𝑠𝑠𝑠                                           (22) 

The variable load demand is denoted as 𝑑𝑑𝑢𝑢𝑙𝑙𝑑𝑑  (in 
MW) and the corresponding power generated is 𝑑𝑑𝑠𝑠𝑠𝑠  
(in MW) obtained from the steady state model of 
Eq. (20). 
 
𝑑𝑑𝑠𝑠𝑠𝑠 =  0.73𝑢𝑢2−0.16

0.0018𝑢𝑢2
(0.9𝑢𝑢1 − 0.15𝑢𝑢3)                    (23) 

 
The sampling time for optimizing the process 
economics in the upper layer EMPC is fixed as 0.01 
h and prediction horizon is taken as 60 steps. The 
actual process states from the lower layer is updated 
every 0.5 h. Hence, the initial condition to the 
optimization problem in the upper layer changes for 
two times in every 1 h resulting to compute a new 
optimal trajectory after every 50 steps. The updated 
lower layer states are first projected on the set 𝐼𝐼 to 
ensure the process operation within the bounds. For 
e.g. if the actual states of the process is [270 
𝑘𝑘𝑘𝑘/𝑐𝑐𝑚𝑚2, 160𝑀𝑀𝑊𝑊] which is exterior to set 𝐼𝐼 then the 
constrained optimization problem forces it to 
[𝑘𝑘𝑘𝑘/𝑐𝑐𝑚𝑚2, 160𝑀𝑀𝑊𝑊]. 

In the feedback control level, two Lyapunov based 
proportional controllers ℎ(𝑥𝑥, 𝑥𝑥𝑠𝑠) are designed to track 
the dynamic computed steady states for a stabilizing 
control law Eq. (24). 

 

ℎ(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧−𝐾𝐾1 �𝑥𝑥1(𝑡𝑡) − 𝑥𝑥𝑠𝑠,1(𝑡𝑡)� + 𝑢𝑢𝑠𝑠,1(𝑡𝑡)

−𝐾𝐾2 �𝑥𝑥2(𝑡𝑡) − 𝑥𝑥𝑠𝑠,2(𝑡𝑡)� + 𝑢𝑢𝑠𝑠,2(𝑡𝑡)

−𝐾𝐾3 �𝑥𝑥3(𝑡𝑡) − 𝑥𝑥𝑠𝑠,3(𝑡𝑡)� + 𝑢𝑢𝑠𝑠,3(𝑡𝑡)⎭
⎪
⎬

⎪
⎫

 (24) 

where, the gains of the controller are 𝐾𝐾1= 100 , 
𝐾𝐾2=10, 𝐾𝐾3=100  and 𝑢𝑢𝑠𝑠,1, 𝑢𝑢𝑠𝑠,2, 𝑢𝑢𝑠𝑠,3 are the 
manipulated inputs that drives the process states 
(𝑥𝑥1(𝑡𝑡) and 𝑥𝑥2(𝑡𝑡)) to follow the optimal steady states 
𝑥𝑥𝑠𝑠,1(𝑡𝑡) and 𝑥𝑥𝑠𝑠,2(𝑡𝑡). In this application, we consider a 
Lyapunov function 𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑠𝑠) in quadratic form to 
determine the stability of the process during its 
operation. The Lyapunov function is in the 
form 𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑠𝑠) = 𝑒𝑒𝑇𝑇𝑑𝑑𝑒𝑒, where 𝑑𝑑 is the Lyapunov 
matrix, Eq. (25), and 𝑒𝑒 is the deviation of the actual 
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process states to the steady states (i.e. 𝑒𝑒 = 𝑥𝑥(𝑡𝑡) −
𝑥𝑥𝑠𝑠(𝑡𝑡)). 

            𝑑𝑑 = �10 1
1 100�     (25) 

The lower level Lyapunov controller is also 
designed with sampling time 0.01h, prediction 
horizon of 5 steps and weighing matrices QC = P 
and RC = diag[5 × 103 5 × 104 5 × 102].To ease our 
task of not re-computing the optimal trajectory we 
choose the same time partition (i.e. 0.01 h).  
 
4.1  Preliminary Results 
To understand the dynamics of the process, we used 
the MATLAB function ode45. This routine applies 
the variable step Runge-kutta method for 
numerically solving the differential equations. The 
process is simulated for time duration of 4 h and 
sampling time of 0.01 h. The state variables for the 
FFPU 𝑥𝑥 = [𝑑𝑑 𝑑𝑑 𝜌𝜌𝑓𝑓]𝑇𝑇 ,𝑑𝑑 is steam presume in the 
drum (in 𝑘𝑘𝑘𝑘/𝑐𝑐𝑚𝑚2),E represents the electric power 
(in MW) and  𝜌𝜌𝑓𝑓  denotes the density of the steam-
water(𝑘𝑘𝑘𝑘/𝑚𝑚3). The initial conditions for the states 
are considered as [30𝑘𝑘𝑘𝑘/𝑐𝑐𝑚𝑚2 , 10MW, 1000𝑘𝑘𝑘𝑘/
𝑚𝑚3]. The manipulating inputs 𝑢𝑢1,𝑢𝑢2 and 𝑢𝑢3 are 
given to the ontrol actuators to manipulating the fuel 
flow rate (in pu), the flow of steam to the turbine (in 
pu) and feedwater flow to the drum (in pu) 
respectively. From the output of the power plant 
shown in Fig.4, we can infer that it is a double 
integrating system. 

 

Fig.4. Open loop process output of power plant by 
solving with ode45. 
 
4.2  Closed loop simulation of economic MPC 
The optimization problems in the upper layer and 
lower layer of EMPC are solved by a optimization 
toolbox present in MATLAB, fmincon and the 
algorithm used for solving the objective function is 
interior point algorithm. To demonstrate the closed 

loop performance of the integrated system of time-
varying process economics and regulatory feedback 
control, simulations are performed on the FFPU. 

Firstly, an offline construction of the reachable 
stable set is done and posed as a constraint for 
computing the optimal states as well as maintaining 
the process actual states within its bound as shown 
in Figure 6.6. Secondly, the computed optimal 
steady states are displayed. Thirdly, the trackability 
of the lower layer states maintained within the 
bounds to the steady states is demonstrated. Lastly, 
minimisation of the deviation of the actual states 
from the steady states is shown. 

We have considered a 160 MW oil fired drum-type 
boiler-turbine-generator unit and the bounds on the 
states (i.e. 𝑥𝑥1 = pressure in 𝑘𝑘𝑘𝑘

𝑐𝑐𝑚𝑚 2 and 𝑥𝑥2 = power in 
MW) are given as 

𝐼𝐼 ∶=  �𝑥𝑥 ∈ 𝑅𝑅
2⃓10 ≤ 𝑥𝑥1 ≤ 250 𝑘𝑘𝑘𝑘

𝑐𝑐𝑚𝑚 2  ,
0 ≤ 𝑥𝑥2 ≤ 160MW

�        (26) 

The limitations posed by Eq. (26) is used for 
constructing the reachable set 𝒳𝒳 as shown in Fig.5.  
The cost function of the upper layer of EMPC 
designed for FFPU is the direct conversion of 
variable load demand to time varying economic 
objective. The plant is started at an initial steam 
pressure of 40 𝑘𝑘𝑘𝑘

𝑐𝑐𝑚𝑚 2 and power generation of 10 MW. 
The obtained optimal trajectory is shown in Fig.6. 

 

Fig.5. Constructing the reachable set for FFPU. 

𝑥𝑥𝑠𝑠(𝑡𝑡)

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧

[71.2914𝐾𝐾𝑘𝑘/𝑐𝑐𝑚𝑚2, 68𝑀𝑀𝑊𝑊]𝑇𝑇 , 𝑡𝑡 < 1.0ℎ

�89.9715
𝐾𝐾𝑘𝑘
𝑐𝑐𝑚𝑚2 , 90𝑀𝑀𝑊𝑊�

𝑇𝑇
, 1.0ℎ < 𝑡𝑡 < 2.0ℎ

�33.2507
𝐾𝐾𝑘𝑘
𝑐𝑐𝑚𝑚2 , 140𝑀𝑀𝑊𝑊�

𝑇𝑇
, 2.0ℎ < 𝑡𝑡 < 3.0ℎ

[141.6783
𝐾𝐾𝑘𝑘
𝑐𝑐𝑚𝑚2 , 150𝑀𝑀𝑊𝑊]𝑇𝑇 , 3.0ℎ < 𝑡𝑡 < 4.0ℎ⎭

⎪
⎪
⎬

⎪
⎪
⎫
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These output trajectories shown in Fig. 6 are 
obtained from the inputs derived by optimising the 
objective function of Eq. (22) with a prediction 
horizon of 60 steps. The corresponding optimal 
input trajectories shown in Fig.7 (in pu ) are: 

𝑢𝑢𝑠𝑠(𝑡𝑡)

=

⎩
⎪
⎨

⎪
⎧ [0.3149    0.9857    0.4521]𝑇𝑇 , 𝑡𝑡 < 1.0ℎ

[0.4126    1.0000    0.5807]𝑇𝑇 , 1.0ℎ < 𝑡𝑡 < 2.0ℎ
[0.6346    1.0000    0.8600]𝑇𝑇 , 2.0ℎ < 𝑡𝑡 < 3.0ℎ
[0.6787    1.0000    0.9144]𝑇𝑇 , 3.0ℎ < 𝑡𝑡 < 4.0ℎ⎭

⎪
⎬

⎪
⎫

 

                 

Fig.6. EMPC trajectories for FFPU. 

Fig.7. Optimal input trajectories of FFPU. 

The lower feedback controller tracks the optimal 
state trajectory by solving the control objective with 
the help of a Lyapunov controller. 
 The Lyapunov controller minimises the error 
between the actual trajectory and the steady states. 
The controlled state trajectory is shown in Fig. 8. 
The controlled inputs obtained by minimizing the 
control objective are given to the actual process. The 
input trajectories are shown in Fig. 9.  

The rate of change of the Lyapunov function 
𝑉𝑉(𝑥𝑥, 𝑥𝑥𝑠𝑠) minimizes along the state trajectory is 
shown in Fig. 10. The final value of the error 

reaches approximately equal to zero which implies 
that the process have attain stability. 

Fig.8. Controlled state trajectory from the feedback 
MPC controller. 

  
Fig.9. Controlled input trajectories of FFPU. 

Fig.10. Lyapunov controller minimizing error along 
with state trajectory. 

5  Conclusion 
In this work we have implemented the combined 
two layer control scheme. This control framework is 
a recent development that addresses the dynamic 
process economics along with a better control 
performance. The integrated framework of 
Economic MPC can handle the real-time 

0 0.5 1 1.5 2 2.5 3 3.5 4
60

80

100

120

140

160

Time[h]

pr
es

su
re

(k
g/

cm
2 )

0 0.5 1 1.5 2 2.5 3 3.5 4
60

80

100

120

140

160

Time[h]

po
w

er
(M

W
)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

Time[h]

u1

0 0.5 1 1.5 2 2.5 3 3.5 4
0.98

1

1.02

Time[h]

u2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

Time[h]

u3

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

Time[h]

pr
es

su
re

(k
g/

cm
2 )

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

Time[h]

po
w

er
(M

W
)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

Time[h]

u1

0 0.5 1 1.5 2 2.5 3 3.5 4
0.98

1

1.02

Time[h]

u2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

Time[h]

u3

-40 -30 -20 -10 0 10 20 30 40
-80

-60

-40

-20

0

20

40

e1=x(1)-xs(1)

e2
=x

(2
)-

xs
(2

)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Aadaleesan Pakkiriswamy, Mayuri Sarma

E-ISSN: 2224-2856 135 Volume 11, 2016



uncertainties and randomness in energy cost, market 
demands, and various other economic 
considerations. The upper layer was used to 
optimize the real time process economics while the 
obtained state trajectory was constrained inside a 
stable set designed using set theoretic method. The 
lower layer was allowed to track the reference 
trajectory subject to the process dynamics. However, 
the limitations on achieving the global economic 
optimum are overcome in this work. The major 
concern in this control scheme is to ensure the 
stability of the process. The simulation results of the 
case study proved that the process was stable and 
operating at a bounded region.  
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