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Abstract: Microwave heating, which is a novel and efficient heating method, has been gradually replacing tradi-
tional heating method in industrial application. However, the phenomenon of hotspots or thermal runaway is the
major drawback for further development. Consequently, it is necessary to regulate the spatial temperature distribu-
tion with a reasonable input power. For traditional microwave heating partial differential equation (PDE) model,
the inherent infinite-dimensional feature does not allow readily designing corresponding controller. Motivated by
this obstruction, a finite-dimensional ordinary differential equation (ODE) model is developed to approximately
describe the heating process with the help of spectral Galerkin method. Moreover, an optimal tracking controller
with a constrained input is designed to improve the spatial temperature uniformity. Finally, the results of simula-
tion on one-dimensional microwave cavity heating model are provided to demonstrate the effectiveness of proposed
controller.
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1 Introduction
In modern society, microwave heating has obtained
vast applications in domestic and industrial fields,
such as drying, cooking, thawing, sintering, defrost-
ing, joining and sterilization [1, 2]. Different with the
traditional heating method, microwave heating has in-
comparable advantages which are beneficial to the en-
ergy conservation and emission reduction because of
the characteristics of volumetric heating. However,
the major drawback associated with microwave heat-
ing is the nonhomogeneous temperature distribution
which will lead to the hotspots and thermal runaway.

The process of microwave heating is a kind of
thermal process which is influenced by multi-physical
field, such as, thermodynamics field and electromag-
netic field. Moreover, due to the propagation charac-
teristics of electromagnetic field and inherent proper-
ties of materials, it is usually appeared a great tem-
perature difference inside the heated material. In the-
oretical research, Maxwell’s equation and Lambert’s
law are usually described the distribution of electro-
magnetic energy. Thus, by analyzing the propagation
of microwave in waveguide or resonant cavity, we can
derive an explicit dissipation power, which will con-
tribute to analyzing the characteristics of microwave
heating in numerical simulations.

Mathematically, the process of microwave heat-

ing is usually represented by a nonhomogeneous par-
tial differential equation (PDE) with boundary and ini-
tial conditions. In terms of parabolic PDEs, some con-
trol algorithms have also been proposed, such as, ro-
bust control [3], collocated feedback control [4], back-
stepping control [5], adaptive control [6], sliding mod-
e control [7] and optimal control [8]. Specially, Wei
[9] first derives a necessary condition for optimal con-
trol solution to reach a relatively uniform heat pro-
file in process of microwave heating. However, due to
the infinite-dimensional nature of PDEs, it is difficult
to readily design a controller with a reasonable input
[10]. From the view of microwave heating applica-
tions, a finite number of temperature sensors will re-
strict the design and implementation of the controller
further. Therefore, it is necessary to obtain a finite-
dimensional microwave model to lay a foundation for
controller designing.

To overcome the inherent problems, Christofides
[11] has proposed spectral Galerkin method to par-
tition the eigenspectrum of spatial differential oper-
ator into a finite-dimensional slow complement and
an infinite-dimensional stable fast one in a catalyt-
ic packed-bed reactor. Motivated by this considera-
tion, Zhong [12] proposes a finite-dimensional ordi-
nary differential equation (ODE) model to approxi-
mately describe the temperature distribution in waveg-
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uide. However, waveguide heating is only a particu-
lar case, which cannot be generalized to other proto-
type heating systems. It is necessary to develop anoth-
er finite-dimensional ODE model to describe the spa-
tiotemporal evolution. From the view of cybernetics,
the open-loop microwave heating system is a single
input multiple output (SIMO) system, whose state, in-
put, output, boundary conditions and process parame-
ters may change on spatial domain and time domain.
Moreover, power input is also restricted by the true
physical nature. Therefore, to improve the uniformity
of the temperature profile, one of choices is to select a
suitable input, which can restrain hotspots or thermal
runaway. Then, with the help of thermodynamics, a
relatively uniform temperature distribution can be ob-
tained. Although some traditional control algorithm,
which is based on the input and output, can effectively
reach above control expectation, the problem of input
shock cannot directly be solved in process of heating.
Hence, a global optimal control algorithm needs to
be developed in order to achieve temperature tracking
with a relative smooth input power.

The rest of this paper is organized as follows. For
the reader’s convenience, a preliminaries microwave
heating model needed in the study is presented in Sec-
tion 2, where the explicit dissipation power is derived
by analyzing the Maxwell’s equation. In Section 3,
a finite-dimensional ODE model is developed via ap-
plying spectral Galerkin’s method. In Section 4, based
on the spatial temperature distribution, a global opti-
mal controller with a constrained input is developed
to tracking the control objectives. In Section 5, nu-
merical simulations on one-dimensional cavity heat-
ing are demonstrated the effectiveness of the proposed
methodology.

2 Preliminaries

2.1 Traditional Microwave Heating Model

During the process of microwave heating, the tran-
sient temperature profiles will significantly change
due to the coupling of electromagnetic field and ther-
modynamics field. Hence, it is necessary to predict
the temperature distribution by combining the energy
equations and the electromagnetic equations. Math-
ematically, the nonhomogeneous parabolic PDE de-
scribing the temperature distribution can be expressed
in the following form [13, 14]:

ρ (T )Cp (T )
∂T

∂t
= ∇ (κ (T )∇T ) +Qabs (1)

where ρ (T ), Cp (T ) and κ (T ) are material densi-
ty, specific heat capacity and thermal conductivity;

∂T/∂t is the time differential operator; ∇ (κ (T )∇T )
is the spatial differential operator; Qabs is a transien-
t dissipation power term, which is depended on the
electromagnetic field spatial distribution and permit-
tivity.

To reduce complexity of the problem, several as-
sumptions are offered into heat transfer analysis:

Assumption 1: The material is homogeneous and
isotropic;

Assumption 2: The mass transfer is negligible;
Assumption 3: One-dimensional electrical field

propagation and heat conduction are only considered;
Assumption 4: No phase and volume changes

during the heating process;
Assumption 5: Convective boundary conditions

are considered;
Assumption 6: Thermal and dielectric properties

are temperature-independent;
By considering all the previous six assumptions,

(1) can be simplified as follow

ρCp
∂T

∂t
= κ

∂2T

∂z2
+Qabs (z, t) , z ∈ [0, l] (2)

According to Newton’s law of cooling, the bound-
ary condition, which is determined by the convective
heat transfer between the materials and surroundings,
can be expressed as [15]

−κ
∂T

∂z
= h (T − T∞) + σhεh

(
T 4 − T 4

∞
)

(3)

where h denotes the effective heat transfer coefficien-
t; T∞ is the ambient temperature; σh is the Stefan
Boltzmann constant (5.67 × 10−8 W/(m2 ·K4)); εh
represents the emissivity of the material; Generally,
σhεh

(
T 4 − T 4

∞
)
→ 0, (3) can be simplified as

κ
∂T

∂z
= h (T − Ta) at z = 0 (4)

−κ
∂T

∂z
= h (T − Tb) at z = l (5)

where Ta and Tb are ambient temperatures in different
positions.

2.2 Dissipation Power

Dissipation power, which is also called the internal
heat source, is used to describe the relationship be-
tween the electromagnetic distribution and dielectric
constant in heated material. For the nonmagnetic
material, the electric field distribution is usually de-
scribed by Lambert’s law and Maxwell’s equations.
Lambert’s law is the easiest way to describe the ex-
ponential decay of microwave absorption within the
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material. Due to the limitation of penetration depth
and temperature-dependent permittivity, the law leads
to a poor prediction temperature [1, 16]. On the other
hand, Maxwell’s equation provides an exact solution
for the propagation of microwave irradiation within
the sample. Thus, it is a common practice to first sup-
pose that the electric and magnetic fields are time har-
monic, with a fixed frequency ω. Based on this as-
sumption, the electric and magnetic fields can then be
written as −→

E (z, t) =
−→
E (z) eiωt (6)

−→
H (z, t) =

−→
H (z) eiωt (7)

where
−→
E and

−→
H denote the electric field and mag-

netic field intensities, respectively; i denotes the unit
complex number. On the assumption that the heating
material is conductive and the region is source-free,
linear, isotropic and homogeneous, the Maxwell’s e-
quation [17, 18] can be reduced to the following form

d2E

dz2
+ k2E = 0 (8)

For nonmagnetic material, we can define that

k2 = ω2µ0ε0
(
ε′ + iε′′

)
(9)

where µ0 and ε0 are the free space permeability and
permittivity; ε′ denotes the relative dielectric constant
which represents the material’s ability to store elec-
trical energy; ε′′ denotes the relative dielectric loss
which accounts for dielectric loss through energy dis-
sipation. For further simplified calculation, the prop-
agation constant k is usually defined as a complex
quantity

k = α+ iβ =
2πf

c

√√√√ε′
(√

1 + tan2δ + 1
)

2ε0

+ i
2πf

c

√√√√ε′
(√

1 + tan2δ − 1
)

2ε0

(10)

where tan δ = ε′′/ε′ is indicated by the ratio of the
dielectric loss to the dielectric constant and c is speed
of light.

By using substitution method, the solution of E
in (8) is obtained as

E = E+e−jkz + E−ejkz (11)

where E+ and E− represent the incident and reflec-
tion electric field intensity. With a knowledge of in-
cident electric field intensity and phase (E+ = |E0| ·

eiφ1 · e−βz), the reflect electric field can be expressed
as

E− = |E0| · e−2βl · eiφ2 · eβz (12)

where |E0| is the initial electrical intensity. The dis-
sipation power is determined from the following rela-
tionship [18]:

Qabs (z, t) =
1

2
ωε0ε

′′E · E∗ (13)

where E∗ is the complex conjugate of E. On as-
sumption that the reflection coefficient is equal with
1, we could substitute (11) and (12) into (13), the one-
dimensional dissipation power in resonant cavity can
be expressed as,

Qabs=
ωε0ε

′′

2

[
|E0|2e−2βz+

∣∣∣E0e
−2βl

∣∣∣2e2βz
+|E0|2e−2βl cos (φA − φB + 2αz)

]
=

ωε0ε
′′

2

[
e−2βz +

∣∣∣e−2βl
∣∣∣2e2βz

+ e−2βl cos (φA − φB + 2αz)
]
|E0|2

(14)

3 Model Reduction

For a typical non-uniform heating model which con-
sists of an nonhomogeneous PDE, boundary condi-
tions and initial condition, it is difficult to design con-
troller based on the aforementioned model to achieve
temperature tracking. Mathematically, the character-
istic spectrum of spatial differential operator in heat
transport equation can be transformed into infinite-
dimensional complements and finite-dimensional one
[19, 20, 21]. Then, the finite-dimensional ODE model
can be developed by applying the Galerkin’s method
in order to readily analyze and design the controller.

3.1 Infinite-dimensional ODE model

To distinctly discuss the spectrum in (2)-(3), we first
introduce the Hilbert space H ([0, l] ;R) with H being
the space of infinite-dimensional vector functions de-
fined on [0, l] that satisfies the boundary conditions,
with inner produce and norm

(g1, g2) =

∫ l

0
(g1 (z) , g2 (z))Rdz (15)

∥g1∥2 = (g1, g1)
1/2 (16)

where g1 and g2 are two elements of H ([0, l] ;R) and
the notation (·, ·)R denotes the standard inner product
R. Defining the state function T on H ([0, l] ;R) as

T (t) = T (z, t) , t > 0, z ∈ [0, l] (17)
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and the operators as

AT = k1 ·
∂2T

∂z2
,

T ∈ D (A) = {z ∈ H ([0, l] ;R) :

κ
∂T (0)

∂z
= h (T (0)− Ta) ,

κ
∂T (l)

∂z
= −h (T (l)− Tb)}

(18)

where k1 = κ/ (ρCp). Based on above analysis, the
eigenvalue problem can be defined as

Aϕi (z) = λiϕi (z) , i = 0, 1, · · ·∞ (19)

where λi denotes an eigenvalue and ϕi (z) denotes the
corresponding eigenfunction. Thus, the solution of
(2), (4) and (5) can be approximately expressed in an
orthogonally decoupled series

T (z, t) =

∞∑
i=0

T i (t) · ϕi (z) (20)

For precisely expressing the relationship between
the electric field intensity and phase, we formulate in-
put electric power as u = |E0|2 and the coefficient of
dissipation power as Q̃abs (z) = 1/2ωε0ε

′′ [e−2βz +∣∣e−2βl
∣∣2e2βz + e−2βl cos (φA − φB + 2αz)

]
. Then,

the input operator can be defined as:

B · u (t) = k2 ·
2

l
·
∫ l

0
Q̃abs · ϕi (z) dz · u (t) (21)

where k2 = 1/ (ρCp).
The traditional microwave heating model can be

rewritten as the following infinite-dimensional ODE
form: .

T (t) = A · T (t) + B · u (t) (22)

T (z, t) = [C (z1) ,C (z2) , · · · ,C (zm)]′ ·T (t) (23)

where

T (t) =
[
T 0 (t) , T 1 (t) , T 2 (t) , · · · , Tn (t) , · · ·

]′
A = k1 · diag (λ0, λ1, λ2, · · · , λn, · · ·)

B = k2 ·
2

l
·
∫ l

0
Q̃abs ·

[
ϕ0

2
, ϕ1, ϕ2, · · ·ϕn, · · ·

]′
dz

C (z) = [ϕ0 (z) , ϕ1 (z) , ϕ2 (z) , · · ·ϕn (z) , · · ·]
Remark 1 From model (22) and (23), it is easily
to find that the model has only a manipulated input
u (t), which can directly bring the different temper-
ature output in spatial domain. The output matrix
[C (z1) ,C (z2) , · · · ,C (zm)]′ indicates that the virtu-
al temperature sensors can detect m points in differ-
ent positions at the same time. On assumption that
m → ∞, the global temperature distribution in mate-
rial can be approximately obtained.

3.2 Galerkin’s method

Aforementioned analysis mainly focuses on obtain-
ing the spectrum to derive the infinite-dimensional
ODE model. However, the infinite-dimensional mod-
el is not suitable for simulation in computer due to
the overlarge calculated load. In this subsection, we
apply spectrum Galerkin’s method to obtain a finite-
dimensional microwave heating model.

For the eigenspectrum of A, σ (A) =
{λ0, λ1, λ2, · · ·λn, · · ·} considers the following
assumptions [19]:

Assumption 7: Re{λ0} ≥ Re{λ1} ≥
Re{λ2} ≥ · · · ≥ Re{λn} ≥ · · · , where Re{λn}
represents the real part of λn;

Assumption 8: σ (A) can be divided as σ (A) =
σ1 (A)+σ2 (A), where σ1 (A) consists of first n (with
n finite) eigenvalues, i.e. σ1 (A) = {λ0, λ1, · · ·λn},
and |Re {λ1}| / |Re {λn}| = O (l);

Assumption 9: Re {λn+1} < 0 and
|Re {λn}| / |Re {λn+1}| = O (ε), where
ε := |Reλ1| / |Reλn+1| < 1 is a small positive
parameter.

Based on above assumptions, we can first define
the orthogonal projection operators Ps and Pf , such
that T s (t) = PsT (t) and T f (t) = PfT (t), the state
vector T (t) can be decomposed as

T = T s + T f = PsT + PfT (24)

Substituting (24) into (22) and (23), the finite-
dimensional microwave heating model can be ex-
pressed as,

.

T s (t) = PsAP−
s T s (t) + PsB · u (t)

= AsT s (t) + Bs · u (t)
(25)

T (z, t) = [C (z1) , · · · ,C (zm)]′P−
s T s (t)

= [Cs (z1) , · · · ,Cs (zm)]′T s (t)
(26)

where

T s (t) =
[
T 0 (t) , T 1 (t) , T 2 (t) , · · · , Tn (t)

]′
As = k1 · diag (λ0, λ1, λ2, · · · , λn)

Bs = k2 ·
2

l
·
∫ l

0
Q̃abs ·

[
ϕ0

2
, ϕ1, ϕ2, · · ·ϕn

]′
dz

Cs (z) = [ϕ0 (z) , ϕ1 (z) , ϕ2 (z) , · · ·ϕn (z)]

Remark 2 For finite-dimensional model (25) and
(26), the problem of relationship between the order n
and the model error needs to be focused on. Though
the higher order n will bring more accurate temper-
ature, it is difficult to readily obtain and implement
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an on-line controller with a reasonable input. There-
fore, it is better to choose an order to approximately
describe global temperature profile and lay a founda-
tion to controller design.

4 Optimal Tracking Controller De-
sign

In this section, a global optimal control for tradition-
al microwave heating model (2), (4) and (5), based
on n-dimensional ODE model, is designed to achieve
the global temperature tracking and a relative uniform
temperature distribution.

From the view of cybernetics, the open-loop one-
dimensional microwave heating model is a single in-
put multiple output (SIMO) model, whose input is the
square of incident electric field intensity u and outputs
are temperature T (z, t) in different positions. Differ-
ent from the traditional heating system (i.e. chemical
reaction furnace [22]), we can only regulate the inci-
dent electric field intensity by designing a temporal-
spatial tracking controller. However, the single track-
ing point may bring hotspots and coldspots, which are
the main obstacles for heating to obtain a relative uni-
form temperature distribution. To this end, an optimal
tracking position should be first chosen.

We first assume that m temperature value can be
obtained, the average temperature can be obtained

T̂ (t) =
Cs (z1) + · · ·+ Cs (zm)

m
T s (t) (27)

The optimal tracking position can be obtained
from the following equation

z̃i ∈ min
t

(∣∣∣T̂ (t)− T (z̃i, t)
∣∣∣)

if T (zi, t) < Tmax

(28)

where Tmax is the critical temperature. If tempera-
ture in some hot spots exceed the critical temperature,
thermal runaway will occur.

Remark 3 In the process of microwave heating, the
global temperature should be monitored at real time.
When the temperature in any position exceeds the crit-
ical temperature Tmax, the material will be highly sen-
sitive to the incident power. Then, the power source
should be turn off. It is nessessary for us to apply some
sensors to detect the maximum temperature point. And
corresponding control algorithm can be proposed to
reach uniform temperature distribution and restrain
thermal runaway.

For a typical tracking control system, there are t-
wo main problems needing to consideration, such as,
tracking error and input constraint. To this end, a cost
function, which is based on the optimal tracking posi-
tion in spatial domain, is proposed

J =
1

2

∫ ∞

0

[(
yr (t)− Cs (z̃i)T s (t)

)2
+ ρu2 (t)

]
dz

(29)

where ρ > 0 is the penalty factor and yr is the desired
temperature profile.

Remark 4 For a practical microwave heating system,
the amplitude of input power is always constrained
in a closed interval. In general, we usually regard
the input is limited in [0, umax]. In order to obtain
a reasonable computing power, the penalty factor is
introduced. For the cost function (29), the bigger ρ
will bring smaller u (t).

Hence, we have the following theorem from
above analysis:

Theorem 5 Consider the finite-dimensional model
(25) and (26). For a spatial optimal tracking cost
function (29) with an appropriate penalty factor ρ, if
there exists a global optimal tracking control u∗ sat-
isfying

u∗ (t) = −1

ρ
B′
s

(
PT s (t)

−
(
1

ρ
PBs · B′

s − A′
s

)−1

C′
s (z̃i) yr (t)

) (30)

where P is positive-definite constant matrix, which
satisfies the following Riccati algebraic equations

PAs+A′
sP− 1

ρ
PBs ·B′

sP+C′
s (z̃i)Cs (z̃i) = 0 (31)

then the global optimal closed-loop tracking system

.

T s (t) = AsT s (t) + Bs · −
1

ρ
B′
s

(
PT s (t)

−
(
1

ρ
PBs · B′

s − A′
s

)−1

C′
s (z̃i) yr (t)

)

=

(
As −

1

ρ
BsB′

sP

)
T s (t)

+
1

ρ
BsB′

s

(
1

ρ
PBs · B′

s − A′
s

)−1

C′
s (z̃i) yr (t)

(32)

and the initial condition T s (0) = T 0 can approach
to desire temperature profile yr (t).
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Proof: For above optimal tracking position cost func-
tion (29), Pontryagin maximum principle can be ap-
plied in (25) and (26). First, the Hamiltonian function
can be expressed as

H =
1

2

[
yr (t)− Cs (z̃i)T s (t)

]2
+

1

2
ρu2 (t)

+ T
′
s (t)A′

sλ (t) + u′ (t)B′
sλ (t)

(33)

On assumption that ρ is an appropriate value for
(33), a minimum can exist in a closed interval. Ac-
cording to the extremum condition, we can obtain

∂H

∂u (t)
= ρu (t) + B′

sλ (t) = 0 (34)

Then
u∗ (t) = −1

ρ
B′
sλ (t) (35)

The Hamilton canonical equation is
.

T s (t) =
∂H

∂λ (t)
= AsT s (t)−

1

ρ
Bs · B′

sλ (t) (36)

λ̇ (t) = − ∂H

∂T s (t)

=C′
s (z̃i)

[
yr (t)− Cs (z̃i)T s (t)

]
− A′

sλ (t)

(37)

According to the linear relation in (37), we can
assume that

λ (t) = PT s (t)− g (38)

Substituting (38) into (36), the canonical equation
can be transformed as

.

T s (t) =
∂H

∂λ (t)

=AsT s (t)−
1

ρ
Bs · B′

s

(
PT s (t)− g

)
=

(
As −

1

ρ
Bs · B′

sP

)
T s (t) +

1

ρ
Bs · B′

sg

(39)

Substituting (39) into the differential of (38), we
can obtain that

λ̇ (t) = P
.

T s (t)

=P

(
As −

1

ρ
Bs · B′

sP

)
T s (t) +

1

ρ
PBs · B′

sg
(40)

With (38), adjoint equation (37) is written as

λ̇ (t) = − ∂H

∂T s (t)

= C′
s (z̃i)

[
yr (t)− Cs (z̃i)T s (t)

]
− A′

s

(
PT s (t)− g

)
=

(
−C′

s (z̃i)Cs (z̃i)− A′
sP

)
T s (t)

+ A′
sg + C ′

s (z̃i) yr (t)

(41)

Comparing (40) and (41), the Riccati algebraic e-
quations the adjoint matrix can easily obtain

PAs+A′
sP−1

ρ
PBs·B′

sP+C′
s (z̃i)Cs (z̃i) = 0 (42)

g =

(
1

ρ
PBs · B′

s − A′
s

)−1

C′
s (z̃i) yr (t) (43)

This completes the proof.

5 Simulation and Validation

Consider a long, thin rod in one-dimensional resonant
cavity which is filled with deionized water. And the
uniform microwave energy with zero phase condition
φA = 0 perpendicularly incidents to the left side a-
long the z-axis and and the length of material L is
equivalent to the wavelength of microwave with the
frequency of 2.45GHz. Moreover, on assumption that
the boundary condition is adiabatic, the spatiotempo-
ral evolution for one-dimensional heating model (14)
can be described by the following parabolic PDE:

ρCp
∂T

∂t
= κ

∂2T

∂z2
+

1

2
ωε0ε

′′
[
e−2βz

+
∣∣∣e−2βl

∣∣∣2e2βz + e−2βl cos (2αz)

]
· u

(44)

subject to the boundary conditions:

∂T

∂t

∣∣∣∣
z=0

= 0 and
∂T

∂t

∣∣∣∣
z=l

= 0 (45)

where ρ = 1 g/(cm)3, Cp = 4.2 J/(g ·◦ C), ω =
2πf = 1.54× 1010 rad/s, ε0 = 8.854× 10−12 F/m,
ε′′ = 6.5, β = 0.195, α = 4.39 and l = 1.43 cm. For
these values, the eigenvalue and characteristic func-
tion of the spatial differential operator can be solved
analytically and its solution yields

λi = −
(
i · π
l

)2

, ϕi (z) = cos

(
iπz

l

)
,

i = 0, 1, 2, · · ·
(46)

Moreover, according to the Galerkin’s method,
we choose a 5th-order Galerkin truncation for the
finite-dimensional model, whose corresponding basis
functions are shown in Fig. 1.

Then, the optimal controller (30) is designed and
implemented into the finite-dimensional model (25)
and (26). Before we proceed with the implementa-
tion and design of the controller, we use penalty fac-
tor ρ = 0.003 to guarantee the input is always re-
stricted in a region, i.e. [0, 700]. However, due to
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Figure 1: The first six spectral basis function for mi-
crowave heating model

the characteristics of time-dependent tracking posi-
tions variation, we could adapt the following proce-
dures to achieve optimal tracking trajectories:

Step 1 Based on the initial condition and expecta-
tion temperature rise curve, the initial power u∗(t) is
first applied in the microwave heating model (25) and
(26);

Step 2 According to (27) and (28), optimal tracking
positions z̃i and output vector Cs (z̃i) could also be
obtained;

Step 3 With global optimal input tracking controller
u∗(t) in (30), global temperature distribution in the
next time could be obtained;

Step 4 Validating the global tracking error: if
yr (t)−Cs (z̃i)T s (t) → 0, u∗ = 0; Otherwise, return
to the Step 2.

Based on aforementioned analysis and parameter-
s, the spatiotemporal profile for the global temperature
distribution is shown in Fig. 2, which indicates that
the closed-loop tracking system can reach expected
temperature profile with a steady increase and small
amplitude of overshoot. As shown in Fig. 3, although
the non-uniform heating is one of the main character-
istics for microwave heating, proposed tracking con-
troller can also regulate the input power to reach a rel-
atively uniform temperature profile. Moreover, ther-
mal away or hotspot is successfully restrained by con-
sidering the interaction of microwave heating and heat
conduction.

In order to further validate the effective of pro-
posed control algorithm, the temperature rise curve in
dynamic optimal tracking positions is shown in Fig. 4

Figure 2: Temperature distribution of one-
dimensional heating model with global optimal
tracking controller

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

Time (s)

T
em

pe
ra

tu
re

 (°
C

)

 

 

Located in 0.29 cm
Located in 0.57 cm
Located in 0.86 cm
Located in 1.15 cm

100 150 200 250
55

60

65

70

75

80

85

Figure 3: Temperature rise curves in different posi-
tions with global optimal tracking controller
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Figure 4: Expected, average temperature rise curve
and temperature rise in optimal tracking positions
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Figure 5: Closed-loop input for global optimal tem-
perature tracking

to compare the expected and average temperature rise
curve at the same time. It is seen that the tempera-
ture in optimal tracking positions coincides with the
average temperature. However, the constrained input,
which is shown in Fig. 5, can also affect the track-
ing performance. We observe that the deviation be-
tween the expected and tracking curve is always ex-
isted in the stage of temperature rise. Due to the sus-
tained input power, the tracking temperature profile
can also reach expected temperature with a relative
longer time. It is clearly demonstrated that the syn-
thesized optimal controller could regulate microwave
input power with a relative stable change to reach a
relatively uniform temperature distribution and guar-
antee the stability of closed-loop system.

6 Conclusion

In this paper, based on the spectral Galerkin method,
an optimal tracking control problem for the mi-
crowave heating process has been studied. Initially,
a traditional PDE model with an explicit dissipation
power is presented by analyzing the thermodynam-
ics equation and Maxwell’s equation. Subsequently,
the spectral Galerkin method is employed to derive a
finite-dimensional ODE model for approximately de-
scribing the spatial temperature distribution. Then,
based on the proposed model, a global optimal track-
ing controller is developed in order to reach a relative-
ly uniform heat profile. Finally, the simulation results
on one-dimensional cavity heating model indicate that
the proposed design methodology is effective. More-
over, this work lay a foundation for solving the prob-
lem of hotspots and thermal runaway in microwave
heating process.
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