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Abstract: - In order to solve the problem of voltage flicker produced by electric arc furnace (EAF) operation, it 
is a prerequisite to analyze the characteristics of voltage time series acquired from AC EAF power supply grid 
and to conduct voltage prediction based on chaos theory. In this paper, the voltage time series is firstly 
reconstructed in phase space to determine optimal delay time and embedding dimension and the maximum 
Lyapunov exponent (MLE) is computed to testify the chaotic characteristics of voltage fluctuation, which 
indicate the chaotic approach is feasible for voltage prediction. Then, the voltage is respectively predicted by 
MLE method and adding-weight one-rank local method. The comparison of the prediction result shows that the 
two methods both lead to good prediction effect, but the latter one is better in precision. Therefore, the adding-
weight one-rank local method is more suitable to predict the fluctuant voltage of AC EAF power supply grid. 
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1 Introduction 
As a kind of typical impact load in power system, 
electric arc furnaces (EAF) have significant impact 
on power quality of the grid, especially voltage 
fluctuation which is most severe and difficult to 
overcome. A lot of research has been carried out on 
the voltage fluctuation existed in EAF power supply 
grid, including EAF modelling [1-3] and voltage 
fluctuation mitigation [4-6]. The former regards 
EAF as a stochastic load and establishes differential 
equations to simulate voltage fluctuation based on 
actual physical mechanism of EAF. However, due 
to high nonlinear and strong stochastic 
characteristics of the arc, it is very difficult to obtain 
a precise and practical model, which is also 
reflected in the current studies. The latter focuses on 
the installation of reactive power compensation 
devices such as static Var compensators (SVC) in 
the grid-side connected to EAF to decrease the level 
of voltage fluctuation. But the ability of SVC 
depends on their speed, which is limited by delays 
in reactive power measurement and thyristor 
ignition [7]. Therefore, it is difficult to implement 
dynamic and real-time compensation because of the 
time difference between actual compensation and 

pre-compensation, leading to almost impossible 
further improvement of SVC capacity.  

Indeed, the EAF system is an extremely 
complicated system, of which the factors that 
influence voltage fluctuation vary, so it is 
impractical to establish a precise mathematical 
model of EAF. Luckily, chaos theory can analyze 
and simulate those phenomena which are apparently 
stochastic and irregular and has been applied to 
analysis of respective complex objects [8-11]. 
Although randomness is demonstrated in arc 
variation, it not necessarily exists in the grid-side 
because the grid has other loads which also affect 
the voltage. Accordingly, the application of the 
chaos theory in analysis and prediction of EAF grid 
voltage can efficiently improve the effect of voltage 
fluctuation mitigation combining the SVCs. 
Currently, there are few documents that study EAF 
parameters using chaos theory and the existing 
researches are confined to parameters in the 
terminal EAF rather than the grid-side parameters 
which are greatly concerned by electric power 
researchers.  

In this paper, voltage time series is acquired from 
a steel manufacturer. Based on the principles of 
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chaos theory for analysis and prediction, the time 
series is reconstructed in phase space under which 
the maximum Lyapunov exponent (MLE) is 
computed to testify chaotic characteristics of the 
voltage time series. Then, the voltage is predicted in 
ultra-short term respectively by MLE method and 
adding-weight one-rank local method. The 
prediction results show that the chaotic approach 
can predict ultra-short term variation trend of the 
voltage, and the adding-weight one-rank local 
method has wider range of precise prediction 
compared to MLE method. Through chaotic 
prediction, mastering the voltage variation in ultra-
short term ahead of time is significant to ensure 
safety and stability of power system by combining 
SVC for effective voltage fluctuation mitigation.  
 
 
2 The Measurement of EAF Power 
Supply Grid Voltage 
The voltage time series is acquired from an AC EAF 
system which is energized by 110/33kV transformer, 
as is shown in Fig.1. T1 is the distribution 
transformer, T2 is the furnace transformer. The 
voltage is measured at 33kV bus by a voltage sensor 
installed on the secondary side of T1. The time of 
voltage measurement is chosen at melting period of 
EAF, during which the voltage fluctuates the most 
drastically. Because response time of SVC has been 
shorten to milliseconds currently, around 20ms in 
ideal state, the sampling time voltage acquisition is 
set as Δt=0.02s. Fig.2 shows the voltage root mean 
square (RMS) values amounting to 3000 in one 
minute.  

 
Fig. 1 Power supply system of AC EAF 

As can be seen in Fig.2, the voltage RMS values 
fluctuate near the baseline value of 18.95kV, and the 
amplitude variation is within 100V. The voltages 
between each point have no obvious rule. Compared 

to the baseline value, the amplitude is not very great 
because the voltage has been smoothed by SVC in 
steel manufacturer, but this 100V can also harm 
other loads sensitive to voltage fluctuation in the 
same power supply grid. Therefore, it is essential to 
further reduce the level of voltage fluctuation. 

 
Fig. 2 Measured data of voltage effective value 

 
 
3 Analysis of Chaotic Characteristics 
of Voltage Time Series 
 
3.1 Determination of phase space 
reconstruction parameters 
Phase space reconstruction is the basis of chaotic 
time series analysis and prediction. By 
reconstruction, a time series seemingly complex and 
irregular can be extended from one-dimension to 
multi-dimension, restoring a chaotic attractor from 
which underlying rules and rich information can be 
extracted. 

Arrange the voltage RMS values in Fig.2 as a 
time series, named u(ti), i=1,2,…,N (N is length of 
the series), and the series can be embedded in a m-
dimension phase space by defining the delay vectors 

 

where τ=lΔt (l=1, 2, …) is the delay time, m is the 
embedding dimension, and M=N-(m-1)l is the amount 
of delay vectors.  

The key of phase space reconstruction lies in the 
determination of the delay time and the embedding 
dimension, both of which must be chosen within 
appropriate ranges [12]. The delay time can be 
determined by mutual information method, which 
calculates the parameter from probability 
perspective and takes into account the linear and 
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nonlinear relation between points of the series. The 
first local minimum of the mutual information 
function is considered as the optimal delay time [13]. 
In actual calculation, the mutual information is the 
function of l which is defined as delay quantity 
because the delay time τ is relevant to l. In this 
paper, the mutual information method is adopted to 
determine the delay time of the voltage time series. 
Fig.3 shows the relationship between mutual 
information I(l) and delay quantity l based on the 
voltage time series in Fig.2.  
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Fig. 3 The relationship between mutual information and 

delay quantity 

As can be seen from Fig.3, the mutual 
information curve is not smooth. The mutual 
information quantity I(l) reaches the first local 
minimum when l=1, so the optimal delay time τ can 
be determined as 0.02s considering the sampling 
time.  

Cao method is often used to determine the 
embedding dimension m. The Cao method 
overcomes the shortage of false nearest neighbors 
(FNN) method in selecting threshold value, and 
defines two variables, namely E1(m) and E2(m), 
whose detailed implication can be seen from [14]. 
For stochastic time series, of which the data 
variation have no predictability, E2(m) equals to “1” 
all the time. For chaotic time series, E2(m) is related 
to m and not constant, so there must be some m 
making E2(m)≠1. Therefore, E2(m) can be used to 
judge whether a time series is chaotic or not. The 
procedure of calculating the embedding dimension 
is as follows. The delay quantity l is firstly given by 
the mutual information method. When E1(m) 
reaches saturation with the increase of m, the 
minimum embedding dimension is m+1. The curve 
of embedding dimension variation is shown in Fig.4.  

As can be seen in Fig.4, E2(m) demonstrates 
obvious fluctuation around “1”, indicating that the 
voltage time series of EAF power supply grid is 

deterministic to an extent rather than purely 
stochastic, which means that the voltage time series 
is a compound containing both deterministic and 
stochastic mechanism. This kind of mechanism is 
codetermined by the operational characteristics of 
EAF and other loads connected to the same grid. 
When m=6, E1 reaches saturation and slightly 
fluctuates around “1”, so the minimum embedding 
dimension is m=7.  
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Fig. 4 The curve of embedding dimension variation 

Use the obtained delay time and embedding 
dimension above to reconstruct the phase space, as 
is depicted in Fig.5. The two-dimension phase space 
has similar trajectories and demonstrates a double-
scroll structure, which is similar to the Lorenz 
attractor. So it can be concluded qualitatively that 
the voltage time series of EAF has chaotic 
characteristics. The reason why the phase space 
trajectories are not as smooth and clear as the 
Lorenz attractor is that the original voltage time 
series acquired from the spot contains noise which 
has damaged the relativity between vectors in the 
phase space and made the evolution of these vectors 
dislocated.  
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Fig. 5 The two-dimension phase space of voltage 
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3.2 The computing of the maximum 
Lyapunov exponent 
In the phase space, if the initial distance between 
two trajectories is extremely small, but the distance 
increases exponentially over time, leading to a state 
that the voltage prediction is impossible. This is the 
extreme sensitivity of chaotic motion to initial 
conditions. This kind of sensitivity can be 
quantitatively measured by the Lyapunov exponent. 
The exponent denotes the mean divergence rate of 
neighboring trajectories in the chaotic attractor over 
time. Therefore, the exponent can be used to 
identify whether the motion of a system is chaotic or 
not. In actual identification, the maximum 
Lyapunov exponent (MLE) λ is only needed. If λ>0, 
then the time series displays chaotic characteristics, 
otherwise no chaotic characteristics exist in the time 
series. In this paper, the small-amount-data method 
is chosen to compute the MLE, the computing detail 
can be seen in [15]. On the basis of phase space 
reconstruction, the MLE of the voltage time series 
in Fig.2 can be computed, as is shown in Fig.6.  
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Fig. 6 The y(k)-k curve for maximum Lyapunov exponent 

computing 

In Fig.6, the red line stands for the mean line 
obtained by least square method, and its slope is the 
MLE. The slope of the red line is measured as 
0.0221, which is greater than zero, indicating that 
the voltage time series of EAF has chaotic 
characteristics and voltage prediction can be 
implemented by chaotic approach based on the 
MLE.  
 
 
4 Chaotic Prediction of the Voltage 
Time Series  
For simplicity and convenience, the sampling time 
is not considered temporarily and the voltage time 
series is set down as u(1), u(2),…, u(N). Keep the 

reconstruction parameters unchanged, then the 
reconstructed phase space become as follows:  

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

1

2

= 1 , 1 ,..., 1 1

= 2 , 2 ,..., 2 1

= , ,..., 1M

u u l u m l

u u l u m l

u M u M l u M m l

 + + − 
 + + − 

 + + − 



U

U

U

, 

where u(M+(m-1)l) is equivalent to u(N). The 
following is the voltage prediction by two different 
methods.  
 
4.1 Voltage prediction based on MLE 
Suppose λ1 is the MLE and UM is the central 
prediction vector in the reconstructed phase space. 
Search the nearest neighboring vector of UM, named 
as UK, and the distance between UM and UK is set 
down as dM(0) which can be denoted as:  

( )0 minM M j M Kj
d = − = −U U U U .        (1) 

After a sampling time, UM and UK respectively 
evolve into UM+1and UK+1. According to the 
definition of MLE, the following equation of can be 
obtained:  

( ) 1
1 1 0M K Md eλ+ +− = ⋅U U ,                (2) 

where only the last element of UM+1, namely UM+1,m 
which is equivalent to u(N+1), remains unknown. It 
is u(N+1) that we need to predict, which can be 
solved from (2) as:  

( ) 1, 1 21 K mu N P P++ = ± −U ,               (3) 

where ( ) ( )1

12 2
1 2 1, 1,

1

m

M M i K i
i

P d e Pλ
−

+ +
=

= = −∑， U U . 

As to the selection of “ ± ” in (3), we can use the 
intersection angle between two space vectors. The 
smaller the included angle, the closer the two 
vectors in space. The detailed rule is explained 
below:  

Suppose the two vectors are:  
( )1 2= , ,..., mx x xV , ( )1 2= , ,..., my y yW , 

and their intersection angle is:  
( ) ( )

2 2

1 1 1

arccos /

arccos
m m m

i i i i
i i i

x y x y

θ

= = =

= ⋅ ×  
 
 = ⋅
 
 

∑ ∑ ∑

V W V W

.       (4) 

Mark the voltage predicted value as ui
+ and ui

- 
respectively corresponding to “+” and “-” in (3), 
and mark U+=(ui

+,ui-1,…,ui-n), U-=(ui
-,ui-1,…,ui-n),  

U'=(uj,uj-1,…,uj-n), then calculate the intersection 
angle θ+ between U+ and U',and θ- between U- and U'. 
If θ+>θ-, choose “+”, otherwise choose “-”.  
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4.2 Voltage prediction considering the 
influence of neighboring vectors 
In this method, a series of neighboring vectors of 
UM are firstly determined. Then, suppose an 
extremely little positive number ε as the distance in 
phase space. Make the neighboring vectors Uj of UM 
meet  

, 1,2,...,M j j kε− < =U U ,                (5) 
then determine the next vector Uj+1 of Uj according 
to the evolution of phase space trajectories, and 
establish a function relationship by  

( )1j j j+ = Γ = +U U A BU  ,                 (6) 
where A and B are fitting parameters which are 
unknown:  

[ ]1 2, ,..., T
ma a a=A , 

11 12 1

21 22 1

1 2

m

m

m m mm

b b b
b b b

b b b

 
 
 =
 
 
 





   



B . 

In Uj+1, only the last element uj+1+(m-1)l is 
unknown, which is also the quantity needed to 
predict. It can be described as 

( )

( )

1 21 1

1

m m j m j lj m l

mm j m l

u a b u b u

b u
++ + −

+ −

= + + +

+          (7) 
Indeed, different neighboring vectors have 

different influence on the evolution of the central 
prediction vector UM. The closer these neighboring 
vectors approach UM, the greater the influence can 
be. For this reason, a weight is introduced, as is 
described in the following:  

( )( )

( )( )
min

min
1

exp

exp

i
i k

j
j

d d
P

d d
=

− −
=

− −∑
               (8) 

where di is the distance between Ui and the UM, and 
dmin is the minimum. Then (6) can be written as:  

1i i+ = +U A BU                       (9) 
Use the least square method to calculate A and B 

by making ( )21
1

k

i i i
i

P +
=

− −∑ U A BU  minimum:  

( )

( )

1
1

1
1

0

0

k

i i i
i
k

i i i i
i

P

P

+
=

+
=


− − =



 − − =

∑

∑

U A BU

U A BU U
            (10) 

The prediction vector is  

1M M
∧ ∧

+ = +U A BU                     (11) 
Separate the last element of 1M

∧

+U , and the 
prediction value u(N+1) can be obtained. Because 
this method establishes a prediction model between 
the central prediction vector and its neighboring 

vectors, and during the prediction, a series of 
weights are added to the model considering the 
influence of neighboring vectors on the prediction, 
therefore this method is called the adding-weight 
one-rank local method.  
4.3 Prediction results and analysis 
The prediction results by using the two methods 
above are shown in Fig. 7, where 60 points are 
predicted and they are divided into three groups in 
time sequence to make a comparison. The mean 
relative error (MRE) of actual values and predicted 
values are shown in Table 1. For convenience, we 
call MLE method as method A, and the add-weight 
one rank method as method B. As we can see from 
Fig. 7 and Table 1, both methods can reflect the 
trend of voltage variation in short term, and the 
MRE of method B is smaller than method A. The 
MRE gradually increases with the increase of 
prediction length, namely the prediction steps, but 
the MLE increases faster by method A than method 
B, indicating that method A will go beyond the 
approved error range ahead of method B. The 
reason can be set forth as follows. The method A is 
based on the MLE which is a mean value denoting 
the divergence rate of the phase space trajectories, 
so (2) is only an approximation of the actual model, 
leading to a cumulating error during the prediction. 
The method B, however, establishes a close relation 
between neighboring vectors and the central 
prediction vector by taking into account the 
influence of different position of neighboring 
vectors on the prediction, so its prediction error 
increases slower than method A. To sum up, the 
method B is more suitable to predict the fluctuant 
voltage of AC EAF power supply grid. 
 

Table 1 MRE of 60-step prediction by  
two different methods 

Prediction  
methods 1~20 steps 21~40 steps 41~60 steps 

Method A 0.053% 0.062% 0.106% 
Method B 0.033% 0.041% 0.065% 
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Fig. 7 Voltage prediction result of the two methods 

5 Conclusion 
A chaotic approach is proposed in this paper to 
analyze and predict the voltage time series acquired 
from EAF power supply grid. The mutual 
information method and Cao method are 
respectively adopted to determine the delay time 
and the embedding dimension. Through the 
depiction of a two-dimension phase space and the 
computing of the MLE, it is proved that the voltage 
fluctuation in EAF power supply grid has chaotic 
characteristics and the prediction of voltage is 

feasible by chaotic approach. The MLE method and 
adding-weight one-rank local method are used to 
predict the voltage in ultra-short term. Results show 
that chaotic prediction can well reflect the changing 
trend of the voltage time series. Both methods have 
high level in precision but compared to the MLE 
method, the adding-weight one-rank local method 
has higher precision, which is more suitable to 
predict the fluctuant voltage of AC EAF power 
supply grid. 
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