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Abstract: - In this paper, an alternative way of a discrete controller synthesis is introduced. The synthesis is 

based on a proposed genetic programming algorithm, which is named Block Diagram Oriented Genetic 

Programming BDOGP. The standard GP structure tree is modified in such a way to obtain a complete block 

diagram of the discrete controller that satisfies a deadbeat response in a closed-loop system. In one framework 

solution, the algorithm gives both the block diagram topology and the values to the parameters within the 

controller structure. A new numeric constant mutation operation is added to the algorithm to strengthen the 

search for optimal parameters of the BDOGP solutions. Two examples are introduced to validate the use of the 

proposed algorithm, and for the sake of completeness, the state-space approach design of a deadbeat response is 

introduced briefly. For a servo system, a comparison between the results of the GP and the conventional state-

space solutions shows the accuracy of the GP approach. The second example considers a temperature control in 

an HVAC system. 
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1 Introduction 
Genetic Programming (GP) is a stochastic search 

method, which is based on natural selection and 

natural genetic. GP can evolve models (structures as 

well as parameters) for different kinds of problems 

in different scientific fields such as data mining, 

financial, electronic circuit design, etc. [1, 2, 3]. 

However, GP in its basic standard form could not be 

directly used for all applications in system control 

and identification. It needs to be revised according 

to the applications and requirements. GP has been 

recently used to synthesize optimal controllers for 

linear and nonlinear plants [4, 5, 6, 7]. Another 

aspect of synthesizing is the use of the block 

diagram representation. For a particular, a block 

diagram oriented simulated tool is used for 

structural system identification [8].  For a two-lag 

plant and a three-lag plant, the block diagram 

oriented genetic programming approach is presented 

in [9]. In [10], an indirect block oriented 

representation for a genetic programming is also 

explored.  

The proposed BDOGP tree structure is modified 

to obtain a certain controller.  In the field of 

automatic control theory, the term block diagram 

stands for the description of controllers as well as 

process models. Most of the computer-aided 

modeling and controlling techniques usually adopt a 

block diagram with a fixed structure as a problem 

solution. Then after the parameters or coefficients 

included in this structure are tuned in order to 

optimize the accuracy of the model or the controller. 

This paper describes how a proposed BDOGP 

can be used as a general automated method for 

synthesizing both the topology and parameter values 

of discrete controllers for linear SISO control 

systems. The proposed algorithm automatically 

makes decisions concerning the total number of 

processing blocks that are employed in the 

controller, the type of each block, the topological 

interconnections between blocks, and the parameter 

values of the blocks. In other words, this approach is 

a direct method to find a discrete controller that 

satisfying deadbeat characteristics. 

The rest of the paper discusses in the section 2 

the concept and details of creating a proposed 

BDOGP to synthesis a discrete controller. In section 

3, a brief of the deadbeat controller is introduced. 

Two numerical examples are given in section 4; the 

first one is used to show the accuracy of the 

proposed algorithm as compared to the theoretical 

approach and the second example is used to control 

the temperature in HVAC system. In section 5, 

conclusions and outlines of future work are 

highlighted. Used references and appendix are then 

followed.  
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2 The Proposed BDOGP Algorithm 
The BDOGP is used here for evolution of block 

diagrams, and is backed up with the use of numeric 

constant mutation operation for parameters tuning. 

The blocks of these block diagrams can represent 

continuous (or discrete) time blocks defined in the s 

(or z) domain, and linear and/or nonlinear algebraic 

signal processing blocks. BDOGP implements an 

iterative search for the optimum structure and 

parameters. In fact, the genetic operations defined 

for evolution effect only the structure of the block 

diagram, while the numeric constant mutation 

operation affects the parameters of the blocks. In the 

following sub sections, the used genetic operations 

are thoroughly handed over.  
 

 

2.1 representations 

There are high similarities between a control 
system block diagram and a GP tree. Each block in 
the block diagram represents an operation or 
function that is done on time domain input signals, 
so it is called a signal-processing block. A function 
node in GP tree also represents a function or 
operation that is done on its inputs represented by its 
arguments. To make the mapping between the tree 
structures and block diagrams possible, a block 
diagram cannot be directly represented by a tree 
without using some structural modifications and 
syntactic rules of construction. To show the 
similarity, Figure 1 gives an example of a signal-
processing block for a lag function and the standard 
function node in GP.  

Considering the simple mapping in Fig. 1, the 

GP function node will represent a lag function with 

a constant value of parameter τ. To increase the 

flexibility of the lag function, it is required that τ 

could be adapted through the process of evolution. 

In this case, the above representation of an 

equivalent GP function node for the signal-

processing block of the lag function asks for some 

modification.  

 

 

Fig. 1 Representation of signal processing block 
and GP function node 

Two methods can be used to modify the structure 
of the tree. The first method is by using an implicit 
numeric constant terminal node in the tree structure 
to hold the value of τ. This type of node is 
embedded (hidden) in each lag function node and 
does not appear explicitly in the tree structure. 
However, the values of this type of numeric 
constant nodes can be fetched and optimized using 
the parameter optimization methods. The second 
method, which is used in this paper, is by 
implementing an explicit numeric constant terminal 
node in the tree structure to hold the value of τ. This 
type of node is visible in the tree structure and 
appears in the second argument of each lag function 
node. The lag function node, in this case, has two 
arguments instead of one, the first argument carries 
a time-domain signal node, and the second carries a 
numeric constant terminal node (which holds τ 
value). The function node that is equivalent to the 
lag function will be represented as shown in Fig. 2. 

 

Fig. 2 Representation of the lag function by GP 
node function 

 To ensure a correct tree structure during the 

creation of initial population and genetic operations, 

the BDOGP applies syntactic rules to restrict the 

first argument of the lag function to be of signal 

node type, and the second argument to be of a 

numeric constant terminal node. Many signal-

processing blocks may need one or more numerical 

parameters. These parameters are represented by 

numeric constant terminal nodes NCTNs [4] that are 

presented in some arguments of the corresponding 

function node. These NCTNs are not affected by the 

genetic operation, but their setting values can be 

optimized by numeric constant mutation operation 

used within BDOGP. 

The signal-processing functions that may be used 

in the BDOGP are: 

- Invertor  

It is a one argument function used to negate the 

time-domain signal represented by its argument. 

- Differentiator  

It is a one argument function used to differentiate 

the time-domain signal represented by its argument. 

Output  
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That is, this function applies the transfer function s, 

where s is Laplace transform variable. 

- Integrator   

It is a one argument function used to integrate the 

time-domain signal represented by its argument. 

That is, this function applies the transfer function 

1/s. 

- Lead term  

It is a two-argument function that applies the 

transfer function (1 + τ s), where τ is a real valued 

numerical parameter. The first argument is the time-

domain input signal, while the second argument τ is 

a numerical parameter which represents the time 

constant of the lead.  

- Lag term 

 It is a two-argument function that applies the 

transfer function, (1 + τ s)
-1

. The first argument is 

the time-domain input signal, while the second 

argument τ is the time constant. 

- 2
nd

 order Lag term  

It is a three-argument function that applies the 

standard 2
nd

 order (ζ, wn) transfer function, where, ζ 

is the damping ratio and wn is the natural frequency. 

- Add-Signal, Sub-Signal, Multi-Signal 

Each of these functions has two arguments. These 

functions perform addition, subtraction and 

multiplication respectively on the time-domain 

signals represented by their two arguments. 

- Add 3 Signals  

It is a three-argument function that adds the time-

domain signals represented by its arguments. 

- Abs Signal 

It is a one-argument function that performs the 

absolute value function on the time-domain signal 

represented by its argument. 

- Gain 

It is a two-argument function that multiplies the 

time-domain signal represented by its first argument 

by a constant numerical value represented by its 

second argument. 

The above signal-processing functions are 

suggested by the users of BDOGP; one may suggest 

different functions or special functions in the 

function set or may use other functions in the 

discrete time domain (z-domain). However, in 

general, the function and terminal nodes are divided 

into three categories. These are: the time-domain 

signal processing function nodes (e.g. lead, lag, 

etc.), the time-domain terminal nodes (e.g. input 

reference, output, etc.), and the numerical constant 

terminal nodes, which are carrying the parameters 

required in processing functions. 

Some of these time-domain signal-processing 

functions are kind of dynamic functions. Therefore, 

in computing their outputs, the initial conditions of 

their outputs (or states) are required. Moreover, 

even if the initial conditions are assumed with 

certain values, the numerical methods need to save a 

certain number of previous output values (or 

previous states values) of each function node to 

calculate the subsequence output values through the 

iterations of the numerical calculations. In other 

words, the current and may be some previous values 

of  the output of each dynamic function node are 

required to be saved in some locations of memory in 

order to use them in the next time step of the 

simulation.   

To overcome this problem, Koza and others [11, 

12] employed a block diagram software simulator 

for analysing and computing the fitness value of 

each candidate block diagram in the population. In 

case, when GP software is linked to auxiliary 

software simulators, like MATLAB, Spice, etc., the 

GP sends an individual to the simulator so that the 

fitness value to that individual is computed by the 

simulator, and then this value of fitness is sending 

back to the GP algorithm software. 

This method has some disadvantages. It is 

difficult since it needs an expert in software linking. 

Furthermore, it needs well knowledge about the use 

of auxiliary software simulators, and it requires a 

mapping method to map the tree structure to the 

environment that auxiliary software simulator 

understands. Such auxiliary software simulators 

have a big disadvantage in that they will take a long 

time of calculation, because GP needs to 

communicate with the software simulator each time 

it needs to calculate the fitness function. So, they are 

time-consuming and slow the generations of the GP. 

Moreover, they need a very fast computer. 

Therefore, using these simulators for the design of a 

discrete controller is very unsuitable, especially for 

high-order plants. 

      In this paper, a new method is proposed for 

calculating the fitness value of each individual 

without the need to an auxiliary software simulator. 

In this method, each signal function node owns a 

certain amount of associated memory locations. 

Referring to the example of the lag function, the 

structure of the lag function node is modified as 

shown in Figure 3. The square M represents an 

implicit memory location associated to each 

function node of type lag function. This location 

saves the current output value of lag function. These 

arrangements can be done with high flexibility using 

object oriented languages such as C++ or alike. The 

resultant procedure for calculating the fitness value 
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was found to be a very powerful and fast for small 

as well as large individual structure (block diagram). 

 

 
Fig. 3 The complete structure of dynamic lag 

function node 

 

This method overcomes all difficulties 

mentioned before, and is so fast compared to the use 

of auxiliary software. In fact, all dynamic signal 

function nodes require some amount of memory 

locations, which depends on the function itself. 

Table 1 illustrates the type of arguments of each 

function node and the memory locations that are 

associated to each signal function node (where the 

symbol x in the table refers to nothing, and Y refers 

to yes). 

 

 

2.2 initial population 
The evolutionary process begins by creation of an 

initial population. There are a lot of methods for the 

creation of a random population [10], whatever 

creation method is used; the creation operation is 

restricted to start by choosing randomly a signal 

function node. The syntactic rules of construction 

are applied to each argument of the rooted signal 

function node. The attributes of the arguments for 

each signal function node are illustrated in Table 1.  

The syntactic rules restrict the choice of 

arguments according to that established in Table 1. 

If the argument is of type numeric constant terminal 

node, then the rules will restrict the choice to be the 

numeric constant terminal node for that argument. 

However, if it is of a signal type, a signal function 

node or a signal, terminal node is chosen randomly 

for this argument. If a signal terminal is chosen, this 

branch will end at this depth, while if a signal 

function node is chosen, the procedure will continue 

in the same manner until the depth of the tree 

reaches the maximum allowable depth for creation. 

When the tree reaches the maximum depth minus 

one, the signal arguments are restricted to carry 

signal terminal nodes. This method of creation 

guarantees a correct structure for all individuals in 

the population.

  

Table 1 Detailed attributes of BDOGP signal 

function nodes 

 

Function 

node 

No. 

of 

arg. 

 

Type of arguments 

Associat

ed 

memory 

Arg. 

No.1 

Arg. 

No.2 

Arg. 

No.3 

1  

M 

2 

M 

Inverter 1 Signal x x x x 

Differentia

tor 
1 Signal x x Y x 

Integrator 1 Signal x x Y x 

Lead 2 Signal Const. x Y x 

Lag 2 Signal Const. x Y x 

Lag 2 3 Signal Const. Const. Y Y 

Add-signal 2 Signal Signal x x x 

Sub-signal 2 Signal Signal x x x 

Multi-

signal 
2 Signal Signal x x x 

Add-3-

signal 
3 Signal Signal Signal x x 

Abs-signal 1 Signal x x x x 

Gain 2 Signal Const. x x x 

 

 

2.3 fitness computation 
The signal function nodes of the BDOGP tree are 

divided into two types. The first type represents 

algebraic operations, where each function of this 

type performs a certain algebraic operation on its 

input signal represented by its arguments (e.g., Add-

signal, Sub-signal, Gain, etc.). Therefore, it does not 

need initial conditions and memory locations to store 

the history of the output of the signal function node. 

The second type represents a transfer function in 

terms of  Laplace's operator s  (or in terms of z 
operator); in this case, the signal function node 

represents a dynamic relationship between its input 

signals and its output signal, so some memory 

locations are needed to save the history of the output 

of the signal function nodes. The number of 

locations depends on the dynamic element; in this 

work, either one or two locations are assigned.   

Input 

signal  
ƒ 

R 

Output 

signal  

M 

τ  value 
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The output of the signal function node that 

represents a continuous or impulse transfer function 

can be computed using one of the available 

numerical methods. The known Runge-Kutta 

method is used to simulate all types of transfer 

function. In each simulation step, each signal 

function node calls its external routine to perform its 

operation. The simulation will be stopped whenever 

an unstable response is detected. In general, the data 

that may be needed by these routines as inputs are: 

a. The current value of the input signal to the signal 

function node. 

b. The NCTN values that represent some arguments 

of this node (the parameters needed in the operation, 

like, time constant, damping ratio, etc.). 

c. The current value and may be some previous 

values of the signal function node output (or states) 

that are stored in the associated memory locations. 

The routine will return the new value of the 

signal function node output and store it in a memory 

location that belongs to the corresponding calling 

function node. Referring to the example of the lag 

function, Fig. 4 illustrates the operation of 

calculating the output of the lag function node in 

each time step of simulation. 

The specific routine for the lag function takes the 

current input signal, the value of the τ parameter that 

is represented by the NCTN value, and the current 

value of the lag function node output that is stored 

in memory location M. The routine calculates the 

new value of the lag function node output at this 

simulation step and feeds it back to replace the old 

value that is stored in the memory location. The new 

output signal of the lag function node will represent 

an input signal to the next signal function node. 

Before starting the fitness computation, the user 

must specify the initial conditions for each dynamic 

signal function node, the observation time Tob 

(eventually, the number N for discrete 

computations) for the simulation, the time duration 

of the simulation step Hs, and the input signal. For 

each individual, the simulation starts by setting the 

initial condition values in the memory locations for 

each dynamic signal function node in the individual 

(normally zero initial conditions are used). 

The computation of the block diagram output, 

for each simulation step, starts from terminal nodes 

and moves upwards to perform the operations on the 

subsequent signal function nodes. This process is 

continuing until the output value, which belongs to 

the root node, is found. This output represents the 

overall output of the individual (block diagram) at 

that time step.  

In each iteration, each signal function node calls 

its routine to compute its output; therefore, the new 

output for each dynamic signal function is stored in 

the corresponding memory location and replaces the 

old node output. The subsequent iterations are done 

in the same way to the end of the observation time 

Tob (eventually, the number N for discrete 

computations). In fact, in each time step increment 

during the simulation, each signal function node 

calculates itself separately from other nodes in the 

tree. Therefore, the simulation of each individual 

can be considered as a collection of sub-simulations 

of many signal-processing blocks that construct the 

block diagram.  

 

Fig. 4 The operation of calculating the output of 

the dynamic lag function node 

 

2.4 genetic operations 
Like any standard GP, the main genetic operations 

in BDOGP are crossover and mutation operations. 

The adopted and proposed genetic operations for 

BDOGP are described in what follows. 

i) crossover operation: The crossover operation 

starts by selecting two parental individuals using 

any fitness based selection method. Then, using 

uniform probability distribution, one random point 

is selected in each parent to be the crossover point in 

that parent. All NCTNs are excluded from the 

selection as crossover points, using constrained 

syntactic rules; the two crossover fragments are 

exchanged to produce two offsprings. In this case, 

the rules guarantee that the produced offspring has 

the correct structure of a block diagram.  

ii) swap mutation: All mutation operations are 

performed on a single parent. The operation of a 

swap mutation starts by selecting one-parent 

individual from the population based on the fitness. 

Then, using uniform probability distribution and 

avoiding the selection of NCTNs in the tree, a signal 

node is chosen randomly from the parental 

Output signal  

Memory 

location 
  

Current 
Input signal  

ƒ 

M 

R 

τ  value 
Constant terminal node 
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individual. If the chosen signal node is a terminal 

node, another signal terminal node is selected 

randomly from the terminal set to replace signal 

terminal node in the tree. If the chosen signal node 

is a signal function node, the number of signal 

arguments in this signal function node is checked. 

Then, another new signal function node, which has a 

similar number of signal arguments, is selected 

randomly from the signal function set. The signal 

function node in the tree and its only children of 

type numeric constant terminal node is deleted and 

replaced by the new selected signal function node 

from the function set. If the new signal function 

node has numeric constant arguments then, new 

NCTNs are created and inserted in these arguments. 

This operation is performed with the syntactic rules 

being respected in order to produce a correct 

offspring tree structure.  

iii) shrink mutation: The shrink mutation operation 

starts by selecting randomly one signal function 

node from the parental tree. The selected signal 

function node and its arguments that represent 

NCTNs are deleted. Then, the argument that 

represents the input signal takes the place of the 

deleted parental signal function node. If the deleted 

function node has more than one argument, 

representing an input signal, in this case, one 

argument among them is randomly selected to 

replace its parent, and the other arguments of this 

type are deleted. This operation eventually produces 

an offspring with less depth than its parent. 

iv) branch mutation: This operation starts by 

choosing randomly a signal node (function or 

terminal) from the parental tree, where all NCTNs 

are excluded from such selection. This chosen signal 

node and whatever below it are deleted and replaced 

by a new randomly created sub-tree. The creation 

operation of the sub-tree obeys the syntactic rules of 

construction, and it respects the overall allowable 

maximum depth of the offspring.  

v) Inverse Shrink Mutation: The operation of 

inverse shrink mutation begins by excluding the 

NCTNs from being selected, and then a signal node 

(terminal or function) is chosen randomly from the 

parental tree. The sub-tree rooted at this node is 

stored in a certain place and deleted from the tree. A 

new signal function node is selected from the signal 

function set and inserted in the place of that deleted 

function node in the tree. The selection of a new 

function node is done with no regard to the number 

of arguments in the new selected signal function 

node. The stored sub-tree is inserted in the first 

argument that represents the input signal of the new 

selected function node. If the new signal function 

node has more than one argument, representing an 

input signal, the remaining arguments of this type 

are filled by randomly created sub-trees. Similar to 

branch mutation operations, the creation operation 

of those sub-trees obeys the syntactic rules of 

construction and the maximum allowable depth of 

the overall offspring tree. If the new function node 

also has arguments representing NCTNs, new 

NCTNs are created to fill those arguments. This 

operation eventually increases the depth of the 

overall tree.  

 

 

2.4 numeric constant mutation operations 

Generally, GP suffers a weakness in discovering 

useful numeric constants for terminal nodes of its 

program trees. This stems from the representation of 

the numeric constants as tree nodes, where the 

reproduction operations (including crossover and 

mutation) affect only the structure of the tree, and 

not, the composition of the nodes. Therefore, the 

individual numeric constants are not altered by the 

reproduction operations and thus cannot benefit 

from them. There are several techniques to eliminate 

such weakness [13, 14]. Numeric constant mutation 

is a technique for facilitating the creation of useful 

numeric constant node values during a GP run. 

Numeric constant mutation replaces some of the 

numeric constant node values with new ones for the 

individual to which it is applied.  

In this paper, the proposed GP algorithm makes 

use of two modes of mutating the numeric constant 

values. Before the GP run, and based on the 

problem nature, a range and a resolution of the 

numeric constant node values are specified. In this 

case, the algorithm avoids the use of the default 

precision of the floating constant valid in the 

programming language. This gives the ability to 

ignore the least significant digits in the numeric 

constant values and gives more reliable values. The 

number of numeric constant nodes to be mutated in 

each individual is chosen randomly in the range [1, 

n], where n is some positive integer. For example, if 

n = 3, then this will mean that moving over the cost 

surface of the numeric constant in three dimensions 

will give a good probability to climb out the local 

minimum. After the determination of this number, 

these numeric constant nodes are chosen randomly 

in the tree, and each numeric constant node value 

will be mutated by either of the following two 

methods that are selected randomly with equal 

probability. 

Method 1: The new numeric constant values are 

chosen randomly from a specific uniform 

distribution selecting range. The selecting range for 

each numeric constant is specified as the old value 
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of the numeric constant plus or minus a specified 

percentage of the total allowed range. 

Method 2: This method starts by selecting randomly 

the location of the digit to be mutated. The new 

numeric constant value is equal to the old value plus 

or minus one for selected digit. For instance, if the 

old value is 5.652 and the least significant digit is 

chosen as the digit to be mutated, then the new 

value of the constant will be either 5.653 or 5.651 

with equal probability. 

The first method lets the mutation operation 

explores all the search space and avoids falling in a 

local minimum. The second method is useful for 

fine tuning. These two methods are both used within 

the framework of the standard GP parameters 

optimizer to alter the numeric constant nodes. 

Among several other techniques like the gradient 

descent, the simulated annealing and genetic 

algorithm, the numeric constant mutation operation 

is properly and adequately functioning in changing 

the numeric constant values. 

 

 

3 Deadbeat Controller 
There are many methods to carry out the design of 

digital control for specified plant. However, the 

method of using the state space and state transition 

is preferable [15], because it represents a simple and 

systematic procedure for linear discrete control 

systems. The deadbeat response receives a large 

amount of works for both continuous and discrete 

control systems; the papers [16, 17, 18] are only a 

sample. In fact, this response is the ultimate of any 

design irrespective of the methodology used. 

Irrespective of the system order or type, ideally it is 

to obtain a zero overshoot and zero steady-state 

error for a certain reference input. However, the 

deadbeat response is often referred to a certain 

method of design in sampled-data control systems. 

The state transition approach insures that the 

deadbeat response does not have inter-sampling 

ripples.  

It is known that the design of a controller that 

characterizes a deadbeat response requires a very 

accurate computation. For this reason only, it is 

selected to show how accurate design can be 

obtained by the GP algorithm. Therefore, a 

comparison between the state transition and the 

proposed BDOGP approaches to design a deadbeat 

response controller will be considered. In general, in 

order to design a digital controller, it is necessary to 

construct the sampled-data system for the 

continuous control system. A zero sample and hold 

device is assumed to be sufficient to obtain a sample 

data. Therefore, for the sake of completeness, next, 

the deadbeat response for a sampled-data theory will 

be briefly explained. 

Consider the sampled-data n-order control 

system that is shown in Fig. 5. 

 

 

Fig. 5 A sampled-data control system 

The signal h(t) is the output of the zero-order-

hold (Z.O.H), e(t) is the error signal, and r(t) is a 

reference input. Since the output of the digital 

controller is a train of impulses, its values at the 

sampling instants are equal to the outputs at zero 

order hold. Therefore, the pulse transfer function of 

the discrete controller is 

 

  ( )  
 ( )

 ( )

 
 ( ) +  ( )   +  +  (  )   

 ( ) +  ( )   +  +  (  )   
                   (1) 

     

where, H(z) and E(z) are the z-transform of the 

Z.O.H output and actuating signal respectively. 

The digital controller can be replaced by a 

variable gain K(mT), where T is the sampling time. 

It has different values during different sampling 

periods, thus  

            (  )   (  ) (  )           1     (2) 

Next, for simplicity, K(mT) is written as Km. In 
order to realize a deadbeat response, the system 
error must be zero for t ≥ nT, where n is the smallest 
possible positive integer (order of the plant). This 
condition is realized if the following two conditions 
are satisfied [17] 

                      (  )   (  )                           (3) 

    (  )    (  )         (  )   (   )(  ) (4) 

 

where the variables x1, x2….xn are the state variables 

of the plant; next, the plant state vector is denoted 

by x.  

For step input, these conditions can be stated by 

the output vector, x(nT) = [β 0 …0]
T
. For nonzero-

type linear systems, β is an arbitrary real number.  

e(t) 

Controller 

r(t) 

T 

u(t) y(t) 
    D(z) G(s) 

h(t) 1 − 𝑒 𝑇𝑠

𝑠
 

T Z.O.H Plant 
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The design procedure for deadbeat controller 
using the state transition approach can be 
accomplished as follows: 

1. Use the state equations for the continuous 
portion of the system (A, B, C) to determine the 
discrete state equation as 

          [( + 1) ]    (  ) +   (  )           (5) 

 
                 (  )    (  )                          (6) 

  
       where the discrete system matrices F, G and H 

are given by [19], 

                         (  −  )                   (7) 

                  ∫ [   (  −  )  ]   
 

 
                 (8) 

The integral in equation 8 can be computed 
(exactly or approximately) as follows                       

      {
   ( −   )                                          ( )   

 (  +
  

  
+

(  ) 

  
+

(  ) 

  
+  )      ( )   

   

                                                                        (9)                        

                   [     ]               (10) 

    Since, 

            (  )   (  )     (  ) 

                          ( (  ) −   (  ))            (11)                                                   

    The discrete state equation becomes 

       (( + 1) )    (  ) +    ( (  ) −
                                                   (  ))                  (12) 

2. Applying the deadbeat conditions to solve for 
the n gains Km. Then using the state equations to 
have the discrete values of x1(mT) and 
corresponding e(mT); m = 0, 1,…n. Clearly, for 
m = 0, and m = n, the error signal is equal to the 
input r(0) and zero respectively. 

3. The discrete values of h(mT), m = 0, 1…n  can 
be computed using expressions 2; eventually, 
h(nT) = 0. 

4. Finally, using equation 1, the discrete deadbeat 
transfer function D(z) is determined. 

 

 

4 Numerical Examples 
In this section, we will introduce first a numerical 

example, which will be solved first by the 

conventional deadbeat procedure given above and 

then after by the proposed BDOGP algorithm. Next, 

a second example of a temperature control in an 

HVAC system is selected. It is a system of a zero-

type one, where the achievement of a unity dc-gain 

represents an additional constraint. 

 

Example 1: 

For a third-order servo system, the open-loop 

transfer function is  

 ( )  
1  

 (     + 1)(      + 1)
 

The task is to have a deadbeat unit-step response 

after 3 sampling periods, where T = 0.15 seconds. 

Since the system is of type one, setting β equal to 1 

is adequate then specifically, to have 

  (      )  1 

  (      )    (      )    

The discrete state equation is 

[

  ( + 1)
  ( + 1)
  ( + 1)

]  [
1   1         
          1 1
 −      −     

] [

  ( )
  ( )
  ( )

]

+ [
     
      
     1 

]  [1 −   ( )] 

The following three nonlinear algebraic 

equations will be obtained if the deadbeat is to occur 

after three sampling periods.  

 

11       +   1 1 1  +         

−            −            

−          +        1      

 1 
 

  1        +           +         

−       1     −  1   11    

− 1     1    +              

   
 

−         − 1       +      1    

+      1      

− 1           −            

+ 1              
 

Clearly, although the above design procedure of 

the deadbeat controller is straightforward, the 

solution of the resultant system of nonlinear 

algebraic equations is the main drawback. For high-

order systems, this could be a crucial problem. 

However, a combination of known numerical 
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methods and evolutionary optimization tools relaxes 

this obstacle. In [20], Newton-Raphson and genetic 

algorithm are used to solve the above nonlinear 

algebraic system. That found solution is used here to 

check the accuracy of the solution proposed by the 

BDOGP algorithm. The results were 

     1         −  1           1   

Consequently, using these gain values and the 

discrete state equation, the discrete error and Z.O.H 

output signals are determined and hence the discrete 

controller.  

 ( )  
  1     −     1     +      1     

1 +          +    1     
 

An alternative evolutionary method is proposed 

here to evolve such controller, where the BDOGP is 

used to evolve the deadbeat controller in form of a 

block diagram. The terminal set is T = {e (k), R}, 

while the signal function set which is described by 

transfer functions form is 

 

       (1 +     ) (1 +     )   ( +     

+     ) ( +     

+     )         
 

The fitness function is 

        ∑[  ( ) +   
 ( ) +   

 ( )]

   

   

 

where, n = 3, and the control system is simulated for 

N = 30 samples. This large number of samples (20 

times the 3T value) is used to ensure a high accuracy 

in computing the fitness function. To avoid 

overflow, which results from some evolved unstable 

controllers, simulation will be stopped whenever 

each state exceeds a maximum bound of ± 10
3
.  The 

numeric constant terminal nodes R’s are set in range 

-5 to 5 with resolution of 10
-5

. 

 Table 2 lists the main control parameters of the 

proposed BDOGP algorithm.  

Fig. 6 shows the obtained block diagram of the 

evolved deadbeat controller in generation 8200, 

which has approximately 10
-9

 fitness. The transfer 

function of the discrete deadbeat controller evolved 

by the BDOGP is 

   ( )  

  1  1  −            

+  1     1      

1 +           +    1        

−1 1     1      

 

Table 2 The main BDOGP control parameters 

Population size 200 

Termination criterion 
Stopping the generation 

manually 

Creation probability 20% 

Creation type Ramped-Half-and-Half 

Crossover probability 48% 

Maximum depth for 

creation 
5 

Maximum depth for 

crossover 
8 

Selection type Tournament selection 

Tournament size 4 

Swap mutation 

probability 
8% 

Shrink mutation 

probability 
8% 

Inverse shrink 

mutation probability 
8% 

Branch mutation 

probability 
8% 

Add best solutions to 

new generation 
yes 

Number of best 

solutions used in 

elitism 

50 

Type of numeric 

constant optimizer 

Numeric constant 

mutation 

Number of iterations 

applying in  numeric 

constant optimizer 

10 iterations for each 

individual in the 

population, and additional 

20 iterations for the 

elected  individuals by 

elitism operation 

 

The transfer function of the BDOGP deadbeat 

controller has two zeros and three poles while the 
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transfer function of state transition deadbeat 

controller has two zeros and two poles. However, 

this difference has an insignificant effect on 

increasing the time of computation required for each 

sample.  

 

 

Fig. 6 Evolved discrete controller block diagram 

 

In order to compare the behaviours of both 

BDOGP and state transition deadbeat controllers, 

table 3 illustrates the values of the control action, 

and the system states from m = 1 to m = 5 for both 

controllers. The results show that the response of the 

BDOGP deadbeat controller is very accurate, where 

the output reaches the value of input signal at 3 

samples with zero overshoot and zero steady-state 

error. Moreover, x2(m) and x3(m) reach nearly zero 

values at sample 3, and they settle with accuracy up 

to 10
-5

. The classical deadbeat controller seems a 

little bit less accurate than the BDOGP controller. 

The reasons belong to the rounding error 

accumulated through the computations as well as 

the numerical values of Km’s.  

Fig. 7 shows both discrete and sampled-data 

responses; the responses closeness to each other 

indicates the accuracy of the GP algorithm. 

Furthermore, table 4 gives all margins of both 

sampled-data systems; obviously, both systems are 

stable. 

 

Example 2:  

Temperature control of heating, ventilation, air-

conditioning system is a vital problem in most 

institutional buildings, hospital, warehouse, etc. The 

control system consists of two subsystems, one for 

heating and ventilation and the other for air 

conditioning. Both subsystems control the air 

temperature and the air humidity. However, for 

primarily design, separate design of each subsystem 

is carried out. In this work, only the temperature 

control model will be considered.  

 

Table 3 Conventional controller and BDOGP 

controller 

m Contr. u(m) x1(m) x2(m) x3(m) 

1 D(z) 1.48275 

e-01 

0.407608 5.78984 36.0032 

DGP 1.48127 

e-01 

0.407201 5.78406 35.9673 

2 D(z) -8.1764 

e-02 

0.979212 0.88169 -35.989 

DGP -8.16923 

e-02 

0.978077 0.87857 -35.967 

3 D(z) 4.01007 

e-04 

1.00204 9.61992 

e-03 

0.437914 

e-02 

DGP 1.94625 

e-04 

1 -1.345 

e-05 

-6.01934 

e-07 

4 D(z) -5.4533 

e-04 

1.00182 -1.47695 

e-02 

-1.58313 

e-01 

DGP -4.71856 

e-08 

1 -1.00494 

e-05 

2.12368 

e-05 

5 D(z) 2.15594 

e-4 

1.00022 -2.974 

e-03 

9.73946 

e-02 

DGP 7.04361 

e-08 

1 -3.05402 

e-06 

4.0273 

e-05 

 

Table 4 All margins of transfer function D(z) Gp(z) 

Closed-loop 

Parameters 

 

With 

Theoretical 

Controller 

 

With 

GP Controller 

 

Gain Margin (dB) 2.7917 2.7872 

GM Frequency 

(rad./sec.) 

12.8162 12.8187 

Phase Margin 

(degree) 

63.6774 63.8590 

PM Frequency 

(rad./sec.) 

4.1956 4.1852 

Delay Margin (dB) 1.7660 1.7754 

DM Frequency 

(rad./sec.) 

4.1956 4.1852 

 

The task is to design a discrete controller for the 

temperature control in an HVAC system [21, 22]; in 

the appendix, some detailed information of the 

standard model is given. For a half-range air flow 

rate (fs = 8.33 m
3
/min), the transfer function is 

 

 ( )  
    

1  + 1
         

 

The delay term        is approximated by second-

order lag and thus the overall transfer function 

becomes 

 

 ( )  
    

(1  + 1)(1 +     +    (   )   )
  

 

where u(t) is the control signal, the controller 

output, and the output is the indoor temperature.  

0.99999 3.13392 

0.01267 

G1 (       −
       𝑧  +
   1 38𝑧  ) 

1

1 +      1 𝑧  
 

1

1 −        𝑧  
 1

1 −       1𝑧  
 G2 

𝑒(𝑧  ) 

 (𝑧  ) 

G3 
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Fig. 7 Discrete and continuous sampled-data 
responses (example 1); a zooming figure is also 

depicted  

 

The error signal, the input of the controller, e(t) 

is equal to the difference between the indoor 

temperature y(t) and the set point temperature r(t) (a 

step input). For a sampling time T equal to 5 

minutes, the discrete matrices are 

 

  [
                  
−      −         1   
−      −      −  1   

]    [
      
      
    1 

] 

 

For this zero-type system, in usual state-space 

approach, the normal conditions (equations 3 and 4) 

of the deadbeat step response will be satisfied, but a 

non-zero steady state will be resulted. However, 

only for a certain value of an output magnitude β, it 

is possible to have a deadbeat step response with 

zero steady-state response. This is really because the 

non-unity dc-gain of the closed-loop control system 

is changed for every desired value of the β output, 

i.e. since different deadbeat controllers are obtained 

for different output magnitudes.  

Analytically, for an output of a magnitude β, to 

ensure a unity closed-loop dc-gain and hence a zero 

steady-state error for unit-step input, it must be hold 

 

                   −    
   

 ( )  ( )

1 +  ( )  ( )
                  (1 ) 

 

where Gp(z) is the transfer function of the Z.O.H 

and plant, and D(z), is the  deadbeat controller that 

is designed for unit-step reference input and an 

output of β magnitude.   

This will complicate the state-space approach to 

obtain simultaneously the gains Km and the value of 

β. Instead, some simulation runs are necessary to 

find that a certain value of β. Only after that, the 

closed-loop controlled system is scaled by an outer 

feedforward gain equal to 1 / β to obtain a zero 

steady-state response for all step input magnitudes. 

This is an essential demand because the temperature 

degree has to be changed during the operation 

hours. 

For the proposed GP algorithm, a small 

modification is required in the individual tree to 

include the β parameter that contributes in 

minimizing the fitness function. The same terminal 

node, transfer function set, fitness function with N = 

50, and GP parameters (table 2) are used as in 

example 1.  Initially, a value of 1 is set for β. At the 

end of the computation of the fitness function, all 

solutions that do not satisfy the condition 13 will be 

punished to exclude them. 

To avoid a large number of generations and 

hence a long time of computation, an accuracy of 

10
-6

 is selected, and the GP generation is stopped 

manually. The discrete transfer function of the obtained 

deadbeat controller evolved by the proposed BDOGP is 

 ( )  
     (1 +          +          )

(1 +      1   +      1   )
 

Since the two poles are inside the unit circle, 
then the deadbeat controller is stable. The 
magnitude of the reference step input β is found to 
be 0.6526. Therefore, to obtain zero steady-state 
response, an outer feedforward gain of 1.5323 is 
added.  

Fig. 8 shows the unit-step response for an hour, 

where as it can be seen, after 15 minutes (3T) the 
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response satisfies the deadbeat response condition. 

Due to the numerical accuracy, some small ripples 

(maximum is about 4%) appear for time greater than 

3T. However, the steady-state behaviour is quite 

enough recovered at a time less than half an hour. 

Furthermore, Fig. 9 shows a demand for a 

temperature control profile. It is assumed that the 

system was in operation over the time interval (0-

80) minutes, and the room temperature attains a 

steady value of 28 degrees centigrade. Then it is 

demanded for achieving 24, 20, and 16 degrees 

centigrade after 80, 120 and 200 minutes 

respectively. As shown, for all temperature 

demands, the controlled system is regulated within 

30 minutes to more than 99 % of the demands.  

It is worth mention that one may argue about 

decreasing the settling time by reducing the 

sampling time without affecting the stability. 

However, in this example, the task was only to 

demonstrate the use of the proposed BDOGP to 

synthesis a discrete controller, and hence further 

investigation could give better results. 

   

 

Fig. 8 Unit-step response (example 2) 

 

Fig. 9 Temperature control performance (example 
2) 

5 Conclusion 
A synthesis of a discrete controller that is based on a 

proposed genetic programming algorithm has been 

presented. The results demonstrate that the BDOGP 

algorithm, which is assessed by the numeric 

constant mutation operation, can be used to make 

decisions concerning the total number of signal 

processing blocks to be employed in the deadbeat 

controller, the type of each block, and the values of 

all parameters for all blocks. The effectiveness of 

the proposed BDOGP algorithm is shown through 

simulation of linear SISO plants. The numerical 

results of the first example indicate that the response 

of the GP algorithm is quite similar to the 

theoretical deadbeat technique. The proposed 

BDOGP is easily adapted for the design of a 

discrete controller with zero steady-state error for a 

zero-type temperature control system. The authors 

are working on considering higher-order linear and 

nonlinear industrial SISO systems in the near future, 

and the digital implementation of the algorithm for 

specific system.   Furthermore, a work will be done 

on reducing the long computation time that is the 

big disadvantage of the method. 
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Appendix: 

One degree of freedom controllers are denoted as a 

first-order plus dead time (FOPDT) model. The 

most commonly used approximate model for the 

indoor temperature control in an HVAC system is 

given by the FOPDT model as 

 ( )  
  

   + 1
      

where 

- Kp is the forward gain given in terms of the 

system parameters by 

   
  

  +  
 

  

      +  
 

- Tp  is the system time constant given in terms of 

the system parameters by 

   
 

  +  
 

 

      +  
 

- Lp is the system time delay of the system given 

in terms of the system parameters by 

   
   

  +  
 

   

      +  
 

- θs is the supply air temperature in the cooling 

coil; it is equal 13.1 degree centigrade. 

- C is the overall heat capacity of the air-

conditioned space; it is equal 370.44 KJ/Kelvin.  

- cp is the specific heat of air at the sea level, dry 

and zero 1 degree centigrade; it is equal to 

1.0035 KJ/m
3
 Kelvin. 

-  fs is the supply air flow rate; it is in the range (0 

-16) m
3
/min. 

- ρa is the air density at 15 degree centigrade; it is 

equal to 1.225 Kg/m
2
. 

- α is the overall transmittance-area factor; it is 

equal to 9.69 KJ/min Kelvin. 

- Lp0 is the initial heat capacity of air-conditioned 

space, and it is equal to 49.4 KJ/Kelvin. 
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