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Abstract: -Arterial pressure control is an important task, mostly in postsurgical patients. This work proposes 
an adaptive system to patient’s arterial blood pressure control using sodium nitroprusside. The proposed 
system uses Proportional-Integral (PI), Fuzzy-PI, rule-based and predictive controllers. To introduce an 
adaptive characteristic to PI controller, it was used an intelligent fuzzy supervisor with a kind of gain 
scheduling. This idea can be extended to rule-based and fuzzy-PI controllers. A Pseudo Random Binary Signal 
(PRBS), with level in accord of patient’s drug sensitivity, was used in all controllers to avoid greats decreases 
in blood pressure in the beginning of control. Also it was used an algorithm to reject wrong measurements in 
patient’s arterial blood pressure. The results obtained consider an adaptive predictive controller and a PI with 
Fuzzy scheduling considering two simulated patients. In all simulations, the mean arterial pressured 
considered as reference was 100 mmHg. The simulation results showed that the proposed system has good 
performance and stabilize the mean arterial pressure with small settling time and small overshoot. 
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1 Introduction 
Postsurgical complication of hypertension can occur 
or to be aggravated in cardiac patients. To decrease 
the chances of complication it is necessary to reduce 
elevated blood pressures as soon as possible. A way 
to reach this objective is to use continuous infusion 
of vasodilator drugs, such as sodium nitroprusside 
(SNP) or nipride, that can quickly lower the blood 
pressure in most patients. An overdose of nitride 
could, however, cause toxic side effects.  

Usually each patient has a different SNP 
sensibility and it can be time variant. Then, efficient 
control strategies are necessary to determine the 
infusion rate of Nipride carefully to achieve the 
desired blood pressure. Maintaining the desired 
blood pressure requires constant monitoring of 
arterial blood pressure and frequently adjusting the 
drug infusion rate. Manual control of arterial blood 
pressure by clinical personnel is very demanding, 
time consuming and, as a result, sometimes of poor 
quality. 

A simplified model describing the relationship 
between blood pressure decrease and the SNP 
infusion rate was proposed by Slate [1]. The model 
include two time delays initially unknown, includes 

time varying parameters and it can be stochastic and 
deterministic noises. 

Due to the characteristics and simplifications of 
the model, the used controllers must have 
characteristics of robustness and adaptation, 
together with some measure of performance. There 
are many adaptive controllers: (i) the Model 
Reference Adaptive Control used, for example, by 
Payunen et al. [2]; ii) Predictive Adaptive Control, 
Maitelli & Yoneyama [3]; iii) Intelligent Controllers 
- specially based in expert, fuzzy, rule-based and 
neural networks based systems - Polycarpou & 
Conway [4]; Ying, et al., [5]; Shiek et al., [19]; Held 
and Roy, [21]; Chen et al., [23]. Another authors use 
adaptive techniques to mean arterial pressure control 
(Arsparger et al., [6] – Generalized minimum 
variance control; Stern et al., [7] – Self-Tuning 
Regulator). Another controllers that don’t use 
adaptive techniques (Koivo et al., [8]- optimal 
digital controller, Sheppard, [9] – PID controllers) 
have a worse performance in comparison with 
adaptive controllers. In other works the controller is 
used with a supervisor (Martin et al., [10], e Martin 
et al., [11]). In these cases, the supervisor is rule 
based and limits the systems reactions in presence of 
disturbances. These systems have some problems, 
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particularly in transient period and in cases with 
time delays variation or abrupt parameter variations, 
according the simulations examples showed in 
Pajunen et al., [2]; Maitelli & Yoneyama, [3]; 
Maitelli & Silva, [12]; Srinivas et al., [22]; Isaka 
and Sebald, [17]. 

Recent works consider a Multi-input, Multi-
Output approach using multiple interacting drugs 
(SNP and Dopamine) to control both the mean 
arterial pressure (MAP) and cardiac output (CO) of 
patients with different sensitivity to drugs as in 
Enbiya et al., [24]. In this paper, however, only the 
Single-input, Single-output is considered because 
this approach has demonstrated good results 
including in children as showed in Spilberg et al., 
[25].  

In this works is proposed an intelligent adaptive 
controller with supervision applied to the problem. 
The system consists of a set of controllers and a 
supervisor that has as main tasks: to make the 
critical of the measure of patient pressure to limit 
the infusion rate, to change between controllers and 
to change the controller parameters. This supervisor 
is attended by block called Identification, whose 
function is to estimate the patient parameters in real 
time. 
 
 
2 Problem Formulation 
In this section, the patient’s model and the 
controllers considered will be presented. The model 
consists of an uncertain first order model with 
transport delay.  
 
2.1 Patient’s Model 
A model of the mean arterial pressure (MAP) of a 
patient under the influence of sodium nitroprusside 
(SNP) developed by Slate [1] is given by 
 

  

€ 

MAP(k) = P0 − ΔP(k) + Pd (k) + n(k)        (1) 
 
where MAP is the mean arterial pressure, P0  is the 
initial blood pressure, also called a background 
pressure, ΔP is the change in pressure due to 
infusion of Nipride, Pd  is the change in pressure due 
to the renin reflex action (Braunwald, [16]) which is 
the body's reaction to the use of a vasodilator drug, 
and n(k) is a stochastic background noise. In this 
paper it is assumed that Po is constant. 

A linearized continuous-time deterministic 
model describing the relationship between the 
change in the blood pressure and drug infusion rate 

is, where Â(s) is the Laplace transform of A(t) 
function). 

€ 

Δ ˆ P (s) =
Ke−Ti s(1+αe−Tc s)

(1+τs)
ˆ I (s)   (2) 

 
where ΔP  is the change in blood pressure in mmHg,   
is the infusion rate in ml/h, K is drug sensitivity in 
mmHg/ml/h,  α is the recirculation constant, Ti  is 
the initial transport delay,  Tc  is the recirculation 
time delay, and τ is the system time constant, all in 
seconds. 

The discrete-time version of the continuous 
model (2), required to project an automatic infusion 
control system is (Pajunen et al., [2]). 

  

€ 

ΔP(k) =
q−d (b1 + bm+1q

−m )
1+ a1q

−1 I(k)  ;  b1 > 0     (3) 

 
where q-1 denotes a unit delay operator. The 
parameters b1, bm+1 (mmHg/ml/h), a1 
(dimensionless), d and m (multiples of sampling 
period) are obtained from the continuous model (2). 

Typical values of model parameters with 
sampling time of 15s are showed in Table 1.  
 

Table 1: Range of values for parameters of 
the discrete-time deterministic plant model for 

sampling time of 15 s 

Parameter Minimum Maximum Nominal 

 0.053 3.546 0.187 

 0 1.418 0.075 

 -0.779 -0.606 -0.741 

d 2 5 3 

m 2 5 3 
 

We can observe a considerable difference in the 
values of the patient parameters, strengthening the 
idea of that the controller must operate with a wide 
band of parameters of the model. For a given 
patient, the delays are known  (or gotten for a phase 
of previous identification) and constants for a long 
period of time. The parameters, however, are 
considered changeable during the period of control. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Anderson Luiz De Oliveira Cavalcanti, André Laurindo Maitelli

E-ISSN: 2224-2856 705 Volume 10, 2015



Replacing the discrete-time deterministic model 
(3) in (1) and discarding Pd(k), that has a slow 
dynamic behavior, we have 

 

€ 

P0 −MAP(k) =
q−d (b1 + bm+1q

−m )
1+ a1q

−1 I(k) − n(k)  (4) 

 
Adopting the noise model 

     

€ 

n(k) = −
e(k)

1+ a1q
−1    (5) 

 
where e(k) is a white Gaussian noise with zero mean 
and variance  and denoting  

    

€ 

P(k) = P0 −MAP(k)       (6) 
 
so that P(k) is the negative change in the blood 
pressure, (4) becomes 

      

€ 

P(k) + a1P(k −1) = b1I(k − d) +

bm+1I(k − d −m) + e(k)
 (7) 

 
The discrete-time stochastic model for the blood 

pressure control using infusion of SNP, expressed 
by (7), is used hereafter for the design of the 
controllers. The main problem in postsurgical 
patients is decreasing the arterial pressure, usually in 
upper values, to suitable levels, typically around 100 
mmHg.  

The following physical and physiological 
constraints have to be introduced for this problem: 
  
a) On the input: the acceptable range of the Nipride 
infusion rate is 

    
   (8) 

 
b) On the output: the maximum acceptable rate of 
change of the patient's MAP per 15s sampling 
interval is  

      

€ 

ΔMAP(k) =

MAP(k −1) −MAP(k) ≤15 mmHg
  (9) 

 
These maximum values are chosen considered a 

patient with 60 Kg and the SNP concentration 200 
µg/ml, Chen et al [23] 
  
2.2 Used Controllers 
In this section the controllers used to the patient 
arterial pressure control are described. Specifically, 

are presented the adaptive predictive and the Fuzzy-
PI controllers. 
 
2.2.1 Adaptive Predictive Controller  
The model presented in equation (7) was used to the 
predictive controller design, which is P(k) is the 
negative change in the blood pressure from initial 
value at instant k (mmHg) and I(k) is the SNP rate at 
instant k (ml/h). From this model we can obtain the 
predicted output P(k) d steps ahead, denoted by: 

 

€ 

ˆ P (k + d) = −a1( )d
P(k) + −a1( )i

b1I(k − i) +
i=1

d −1

∑

−a1( )i
bm +1I(k −m − i) + b1I(k)

i=1

d −1

∑
 (10) 

  
Defining 

     

€ 

K0 = −a1( )d P(k) + −a1( )ib1I(k − i) +
i=1

d −1

∑

−a1( )ibm+1I(k −m − i)
i=1

d −1

∑
   (11) 

  
We can rewrite 

    

€ 

ˆ P (k + d) = K0 + b1I(k)     (12) 
  

Using an objective function that takes in account 
the deviation between the predicted pressure 

€ 

ˆ P (k + d)  and its reference 

€ 

Pref (k + d) and, at same 
time, assure zero steady state error,  

     

€ 

J = ˆ P (k + d) − Pref (k + d)( )
2

+ ρ ΔI(k)( )2
  (13) 

 
where ρ is the weighting factor of control signal.   
Using (12) we obtain the value of I(k) that minimize 
the objective function (13) 

      

€ 

I(k) =
(Pref (k + d) −K0)b1 + ρI(k −1)

b1
2 + ρ

  (14) 

 
How the parameters of each patient are initially 

unknown or/and they can vary during the control 
process, we use an identifier which consists 
basically of least squares parameter estimators with 
forgetting factor, each of one considering a different 
delay (between 2 and 5) and being executed in 
parallel. It is used an appropriate delay choose 
method at each instant. 
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The equation (7) can be rewriter as 
 

€ 

P(k) = −a1P(k −1) + b1I(k − d) +

bm+1I(k − d −m) + e(k)
         (15) 

 
Considering d=m and defining 

 

€ 

θ(k,d) = a1 b1 bm+1[ ]       (16) 
and 
 

€ 

ϕ(k,d) =

−P(k −1) I(k − d) I(k − d −m)[ ]
   (17) 

 
we have 

      
   

€ 

P(k) = θ (k,d)ϕT (k,d) + e(k)           (18) 
 

It is used recursive estimators, considering 
different delays d0 and with forgetting factor λ 

      

€ 

ˆ θ (k,d0) = ˆ θ (k −1,d0) +

KT (k,d0) P(k) − ˆ θ (k −1,d0)ϕT (k,d0)( )
   (19) 

 
     

€ 

K(k,d0) =Q(k,d0)ϕ
T (k,d0).

λ +ϕ(k,d0)Q(k,d0)ϕ
T (k,d0)( )−1

        (20) 

 
       

 

€ 

Q(k +1,d0) = I3x3 −[
K(k,d0)ϕ(k,d0)]Q(k,d0) /λ

            (21) 

 
where 

€ 

ˆ θ (k,d0)  is the estimated parameter vector, 

€ 

Q(k,d0) is the estimated parameter covariance 
matrix with initial conditions 

€ 

ˆ θ (0,d0) and 

€ 

Q(0,d0) , 
respectively,  Astrom & Wittenmark, [15]. For each 
delay 

€ 

d0 , we can define the model adequateness 
index 

€ 

Sd0  that represents the quality of model with 
the delay 

€ 

d0 . This index is given by 
 

         (22) 

 
where 

€ 

µd 0
(k)   is the adequateness measure of the 

model with delay 

€ 

d0 . The chosen delay in each step 

is that one that to present the biggest adequateness 
index. There are many possibilities to the 
calculation of adequateness index and one of most 
used is based in the minimum quadratic error, given 
by 

   

€ 

µd 0
(k) =

1

P(k) − ˆ θ (k −1,d0)ϕT (k,d0( )
2

i=1

k

∑
 (23) 

 
Using this criteria and an adaptive Linear 

Quadratic Gaussian (LQG) technique, Hemerly & 
Davis [20] showed that the delay estimates are 
consistent and the control is asymptotically stable.   
Observe that the denominator of (23) represents the 
accumulated quadratic error of the model with delay 

€ 

d0 . The better model is that presents the biggest 
adequateness index.  

The denominator of (23) represents the model’s 
accumulated mean squared error. 
 
2.2.2 Fuzzy-PI Controllers 
In general, Fuzzy controllers have an input, a 
processing and an output stages. The input stage 
converts the sensor values in membership values 
(fuzzy values). 

Fuzzy controllers have one input stage, one 
processing stage and one output stage.  The input 
stage makes a measure of sensor signals and other 
kinds of inputs (like switches) and converts the 
information in appropriate form (fuzzyfication 
stage). The processing stage execute each 
appropriate rule and produces an output combining 
the rules results and finally the output stage converts 
the preceding combined result in a control signal. 

In this work the fuzzy-PI controller is used with 
the control signal calculated in function of the error 
and its variation. 

The membership functions used are a trapezoidal 
form showed in Figure 1. 

 

 
Figure 1- General form of membership functions 
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For the error are defined 5 fuzzy sets (NL- 
Negative Large, NS- Negative Small, ZE- Zero, PL- 
Positive Large, PS- Positive Small), whose 
membership functions are showed in Table 2, in 
function of the parameters a, b, c, d of Figure 1. 

 

Table 2: Membership functions for error 

Sets 

e(t) 

a b c d 

NL -60 -40 -30 -10 

NS -12 -6 -6 -2 

ZE -3 0 0 3 

PS 0 6 6 12 

PL 10 30 40 60 
 
For the error variation  are defined the 

same sets using a scale factor of 1/10 for all values. 
For the control signal variation I(t) are used 5 

sets (NL- Negative Large, NS- Negative Small, ZE- 
Zero, PL- Positive Large, PS- Positive Small). In 
this case are used singletons with the values: -90, -
30, 0, 30 e 90, respectively. 

The Table 3 shows the rules sets used for to 
calculate I(t) variable as function of the error and 
its variation. 

 
Table 3: Rules for the control signal variation. 

e(t) 

  NL NS ZE PS PL 

 NL NL NL NL NL ZE 

 NS NL NS NS ZE PL 

Δe(t) ZE NL NS ZE PS PL 

 PS NL ZE PS PS PL 

 PL ZE PL PL PL PL 

 
The table means that if, for example, the error is 

NL and its variation is NL, then the signal control 
variation is NL. For the deffuzification are used the 
mean of maximums method. 
 
2.3 Intelligent Supervisor Proposed 
The proposed system consists of a controller’s set 
and an intelligent supervisor, which uses a rule-
based fuzzy expert system. The controllers set 
includes conventional PI, PI-fuzzy, rule based and 
adaptive predictive controllers, described in 

previous section. The supervisor take cares of fault 
detection, physiologic constraints and alarms, 
and promotes a soft switching between the 
controllers signals. The controllers performance is 
evaluate with the aid of the identifier block. The 
completed block diagram of the proposed system is 
showed in Figure 2. 

The identifier block is composed by least squares 
estimators with forgetting factor (one estimator for 
each delay considered), operating in parallel and a 
chose criteria to decide which is the “better” model 
in each step. 

The following section describes the mean parts 
of the implemented supervisor. The supervisor make 
interesting adaptive characteristics to the controllers 
PI, PI-Fuzzy and rule based, because its parameters 
are modified in real time, depending on the patient 
parameters provided by the identifier block. 
 
2.3.1 Initial Stage of Control 
 
Regardless of the controller used, the first 10 steps 
of control are used for initiating the process of 
estimating the patient parameters, including the 
delay, which is considered constant throughout the 
remainder of the control horizon. We used a signal 
PRBS (Pseudo Random Binary Signal) with varying 
amplitude according to the estimated sensitivity of 
the patient, according to the equation 24: 
 

€ 

uPRBS = 60 − 60
3.8

ˆ b 1(k)   (24) 

 
Then we generate a random number x uniformly 

distributed between 0 and 1. If   then and 
u(k)= uPRBS and u(k)=0, otherwise. The idea is to 
avoid a very large reduction of patient pressure in 
this initial period and, at the same time, excites him 
properly to get their parameters, which are 
important to the rest of the control horizon. The 
maximum amplitude of the PRBS is inversely 
proportional to drug patient's sensitivity, given by 
parameter b1. 

 
2.3.2 PI Controllers with Fuzzy Scheduling 
Initially, the PI controller was tuned empirically 
considering different values for the parameters b1 e 
bm+1 related to the sensitivity of each patient, as the 
range of values shown in Table 1. The Table 4 
shows the parameters of the PI controller, tuned 
empirically on the basis of the aforementioned 
parameters of the patient. For other values of 
sensitivity, which implies a variation in the same 
proportion of b1 and bm+1, the value of the parameter 
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Kp should vary in this same proportion, leaving 
unchanged the value of Ti, due to the linear 
characteristic of the closed loop system, if the 
saturation region is not attained. 

Table 4: Parameters of PI controller for nominal 
values of the patient parameters with different 

delays. 

b1 bm+1 a1 d=m Kp Tr 

0.187 0.075 -0.741 2 0.064 8.0 

3 0.077 11.0 

4 0.090 15.0 

 

5 0.109 22.5 
 

The idea used to give an adaptive feature for the 
PI controller is utilize a fuzzy system to adjust its 
parameters. The fuzzy system takes as input the 
value of b1 and the delay d provided by the 
identifier block and returns as output the value of 
the parameters Kp and Ti, the latter being dependent 
only of the delay. 

We define 6 fuzzy sets for the b1 parameter (VS- 
Very Small, NM- Nominal, SM- Small, ME- 
Medium, LA- Large, VL- Very Large) and the 
parameters of memberships functions (a, b, c, d, e) 
are showed in Table 5. 

Table 5: Membership functions parameters for 
parameter b1 

Sets 

b1 

a b c d 

VS 0.000 0.050 0.050 0.150 

NM 0.075 0.300 0.300 0.500 

SM 0.400 0.600 0.600 0.800 

ME 0.700 0.900 0.900 1.100 

AL 1.000 1.200 1.200 1.400 

VL 1.300 1.500 5.000  
 
We define 6 fuzzy sets for the controller gain Kp 

(VS- Very Small, NM- Nominal, SM- Small, ME- 
Medium, LA- Large, VL- Very Large) and the 
parameters of memberships functions (a, b, c, d, e) 
are showed in Table 6. 

 
 

Table 6: Membership functions parameters for Kp 

Sets 

Kp 

a b c d 

VS 0.0000 0.0100 0.0100 0.0115 

NM 0.0105 0.0120 0.0120 0.01425 

SM 0.01275 0.0150 0.0150 0.01750 

ME 0.01750 0.0250 0.0250 0.04375 

AL 0.03125 0.0500 0.0500 0.12500 

VL 0.07500 0.1500 0.5000  
 
The rules for the Kp adjustment as a function of 

the parameter b1 are showed in Table 7. 
 

Table 7: Rules for the Kp adjustment 

Parameter 
Kp 

VS NM SM ME LA VL 

 VL LA ME SM NM VS 
 

The mean of maximum defuzzification method 
(MoM) was used in this case. 

The of reset time parameter Tr setting is made 
according to the estimated delay, as shown in Table 
4. 
 
2.3.3 Critical of Read Pressure Value 
Another function of the supervisor is to make a 
critical analysis of the measure patient pressure, 
avoiding that wrong measures cause a bad 
controllers reaction inadequate, with drastic 
consequences for the patient. In case of very rapid 
change in pressure, caused for example by sampling 
the pressure, leaks or manipulation in the arterial 
line, we have no reliable measures of pressure in a 
few moments, and the supervisor uses the identifier 
to calculate the predicted value of the pressure that 
is used to obtain the infusion rate by the controllers 
until the end of the disturbance is detected, 
discarding erroneous readings. If the disturbances 
last a long time the supervisor will notify the 
operator and stops the infusion (Martin et al, 1992). 
In this case we are adopting as acceptable at most 
three consecutive erroneous readings. 

In the case of drastic physiological changes in 
pressure, the supervisor should be able to take 
action quick and secure. If, for example, the patient 
has a sudden hemorrhage, his pressure will drop 
drastically. Still being injected SNP, this can result 
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in hypotension or even death of the patient. Thus, 
the supervisor detects fast decreases, but still 
physiological, in blood pressure and very low values 
too and immediately stop the infusion of SNP. 

In these cases, the infusion of SNP was 
adjourned until the pressure exceeds a threshold, as 
(Martin et al, 1992a; Martin et al, 1992b). If the 
system detects a sudden change in blood pressure, 
the supervisor rejects it and send to the controller 
the pressure predicted, until the suppression of the 
wrong measures or issues are identified with the 
patient and the infusion is zeroed and the medical 
staff informed. 
 
3 Results 
This section presents the results of applying the 
developed controllers in the simulation of blood 
pressure control of a patient. Simulations were made 
with separate controllers, showing its limitations. 
The following simulations show the system 
operating with the Supervisor, considering different 
operating conditions. 
 
3.1 Adaptive Predictive Controller 
Consider a patient with the following nominal 
parameters: 

b1= 0.187; bm+1= 0.075; a1= -0.741; m=3 

P0= 150 mmHg; Pref=50 mmHg  

(MAPref= 100 mmHg) and                   (25) 

The Figures 3 and 4 show the system simulation 
result of the pressure control with the adaptive 
predictive controller. 

 

Figure 3: Patient pressure, infusion rate and delay 
(real and estimated) for the system (25) and adaptive 

predictive control application 
 
 
 
 

 
Figure 4: Patient pressure, infusion rate and 

delay for the system (25) and adaptive predictive 
control application, with wrong measure pressure 

 

With rejection failure, we have the results given 
by Figure 5. 

 
Figure 5: Patient pressure, infusion rate and delay 

for the system (25) and adaptive predictive control 
application, with wrong measure pressure and 

rejection failure 

 

In this case, the supervisor recognizes the failure 
in the measure blood pressure and during this failure 
uses its predicted value to replace it. 

 

3.2 PI Controllers with Fuzzy Parameters 
Scheduling 
Consider a patient with the following nominal 
parameters: 

b1= 0.900; bm+1= 0.360; a1= -0.741; m=3 

P0= 150 mmHg; Pref=50 mmHg  

(MAPref= 100 mmHg) and             (26) 

In step 50, was introduced a variation in 
parameters b1 and bm+1 for 1.200 and 0.480, 
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respectively. The performance of arterial pressure 
controlled by a PI controller with fuzzy parameters 
scheduling is showed in Figure 6. 

 
Figure 6: Patient pressure, infusion rate and delay 

for the system (26) controlled by PI Controller with 
fuzzy scheduling 

 

 
Figure 7- Time evolution of the controller gain Kp 

 
4 Conclusion 
In this work we have done the implementation of an 
intelligent adaptive control scheme to control the 
blood pressure of a patient. We start from the 
patient’s model and implement various types of 
controllers: PI, PI-Fuzzy rule-based and predictive 
controller with adaptive weighting of the control 
signal, which in this case is the infusion rate. The 
latter controller requires the use of an identification 
method in order to estimate the parameters and 
delays associated to each patient. We used a fuzzy 
intelligent supervisor to provide an adaptive 
behavior to the PI controller, making a kind of gain 
scheduling. This idea can be extended to rule-based 
controllers and fuzzy-PI, for example.  

Another idea is the use, in all the controllers, an 
initial period of application of a PRBS signal, to 
estimate the order and the parameters of the patient. 
The amplitude of this signal is a function of the 
patient’s sensitivity, which may vary to much (from 

0.2 to 3.5) and may also vary for the same patient 
during the control period.  

The adaptive predictive controller behaves quite 
satisfactory for various plant parameters (patient), 
particularly when large variations occur in the 
parameters of the patient during the horizon control. 
An advantage of this type of controller is that it 
requires practically no tuning parameters set by the 
user, unlike other controllers. However, its 
implementation is more difficult and the 
computational effort is higher in comparison with 
other controllers evaluated.  

An additional aspect addressed was the issue 
related to the rejection of erroneous measures of the 
patient's blood pressure. At each step, the pressure 
value read is compared with the predicted value. If 
the difference is greater than a predetermined limit, 
the value read is rejected, and used the predicted 
value for the duration of the disorder. Meanwhile, 
the wrong measurements are being considered as 
non-physiological, in other words, due to errors in 
the measurement (leaks or manipulation in arterial 
line, for example). The results show that the 
proposed scheme is efficient, requiring further 
improvements to implementations in patients. 

The proposed scheme can deal well with patients 
of different characteristics and slowly time-varying 
characteristics, rejecting erroneous measures and 
adapting the parameters of controllers in real time.  
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