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Abstract: This paper studies the dynamic portfolios with the Cox-Ingersoll-Ross(CIR) interest rate under a Heston
model, which aims at maximizing the expected utility of the terminal wealth. In the model, the manager can invest
his weatlh to a zero-coupon bond, a riskless asset and a stock. By applying dynamic programming principle,
the explicit solutions of optimal portfolio strategy for constant relative risk aversion(CRRA) utility are achieved
successfully. Finally, a numerical example is presented to characterize the dynamic behavior of optimal portfolio
strategy.
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1 Introduction
In recent years, some people realized that portfolio
can disperse risk and increase revenues and has be-
come a hot topic. Nowadays, there are a lot of liter-
atures in studying the problem and the portfolio se-
lection theory has been applied to the investment and
consumption problems, DC pension fund and insur-
ance fund management problems, and so on. For
example, Markowitz [1] first arouse this problem in
1952 and provided a theoretical foundation for mod-
ern portfolio selection analysis. Li and Ng [2] con-
sidered the mean-variance formulation in multi-period
framework and first presented an embedding tech-
nique to obtain the analytical solution of the efficient
strategy and efficient frontier. Zhou and Li [3] studied
a continuous-time mean-variance portfolio selection
model that is formulated as a bicriteria optimization
problem and the problem was seen as a class of auxil-
iary stochastic linear-quadratic (LQ) problems. Vigna
and Haberman [4] analysed the financial risk in a DC
pension scheme and found an optimal investment s-
trategy. Gao [5] studied the portfolio optimization of
DC pension fund under a CEV model and obtain the
closed-form solution of the optimal investment strate-
gy in power and exponential utility case. Li et al.[6] s-
tudied the optimal investment problem for utility max-
imization with taxes, dividends and transaction costs
under the CEV model and obtained explicit solutions
for the logarithmic, exponential and quadratic utility
functions.

However, two aspects are worthy to be further ex-
plored based on the above-mentioned literatures. On

the one hand, the articles above are all derived in the
case that the interest rate is constant. In fact, the in-
terest rate is always changing with time, which can
reflect the change of interest rates of the market, and
there are some term structure models to describe it
such as the Vasicek model [7] and the CIR model[8].
So some studies about the portfolio selection problem-
s with stochastic interest rate occurred. For instance,
Korn and Kraft [9] used a stochastic control approach
to deal with portfolio selection problems with stochas-
tic interest rate and proved a verification theorem.
Deelstra et al.[10] studied the optimal investmen-
t problems for DC pension fund in a continuous-time
framework and assumed that the interest rates follow
the affine dynamics, including the CIR model and the
Vasicek model. Chang et al.[11] studied an asset and
liability management problem with stochastic interest
rate in which the interest rate was assumed to be an
affine interest rate model. Chang et al. [12] inves-
tigated an investment and consumption problem with
stochastic interest rate, in which interest rate was as-
sumed to follow the Ho-Lee model and be correlat-
ed with stock price and derived optimal strategies for
power and logarithm utility function. Gao [13] inves-
tigated the portfolio problem of a pension fund man-
agement in a complete financial market with stochas-
tic interest rate. Chang and Lu [14] studied an as-
set and liability management problem with CIR inter-
est rate dynamics and obtained the closed form solu-
tions to the optimal investment strategies by applying
dynamic programming principle and variable change
technique. Boulier et al. [15] obtained the optimal

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Wei-Jia Liu, Shun-Hou Fan, Hao Chang

E-ISSN: 2224-2856 421 Volume 10, 2015



strategy for DC pension management with stochastic
interest rate.

On the other hand, these articles above are all as-
sumed that the volatility is constant. In real world,
there exists volatility risk and it is necessarty for us to
investigate contiunous-time dynamic portfolio under
the volatility risk. One can refer to the work of Hes-
ton [16]. Kraft [17] solved the portfolio problem un-
der Heston model and presented a verification result.
Li et.al. [18] considered the optimal time-consistent
investment and reinsurance for an insurer under He-
ston model and presented economic implications and
numerical sensitivity analysis.

In recent years, some scholars are concerned with
the optimal investment problems under stochastic in-
terest rate and stochastic volatility. Liu [19] explic-
itly solved dynamic portfolio choice problem with s-
tochastic interest rate and stochastic volatility and p-
resented three special applications. However, in this
paper, the interest rate, the stock returns and volatility
are all a function of the Markov diffusion factor. Li
and Wu [20] studied an optimal investment problem
where the stochastic interest rate was a CIR model
and the volatility was a Heston model. However, in
this article above, there is no correlation between in-
terest rate dynamic and stock price dynamic. Chang
and Rong [21] studied an investment and consump-
tion problem with stochastic interest rate and stochas-
tic volatility on the basis of the study of Li and Wu
and obtained the optimal investment and consump-
tion strategies. Guan and Liang [22] studied the opti-
mal management of a DC pension plan in a stochastic
interest rate and stochastic volatility framework and
maximized the expectation of the CRRA utility over
a guarantee, then derived the optimal strategies of the
problem.

This paper intends to find the optimal investment
strategy of the optimal portfolio for the financial mar-
ket, in which interest rate is assumed to follow Cox-
Intersoll-Ross(CIR) model while the stock price is
supposed to be the Heston’s stochastic volatility mod-
el. In addition,the financial market consists of three
assets: a riskless asset, a zero-coupon bond and a s-
tock. The objective of the manager is to maximize
the expected utility of the terminal wealth. By using
the principle of stochastic dynamic programming, we
derive a complicated non-linear second-order partial
differential equation. We assume that the risk pref-
erence of the investor satisfy CRRA utility and ob-
tain the explicit solutions for the optimal investment
strategies by using variable change technique. Finally,
we present a numerical example to investigate more
closely the dynamic behavior of the optimal portfolio
strategy.

The rest of the paper is organized as followed. In

section 2, we introduce the financial market and the
wealth process. In section 3, we bring out the op-
timization criterion and derive the HIB equation. In
section 4, we introduce the CRRA utility function and
derive the explicit solution of the optimal portfolio.
In section 5, we present a numerical application to
demonstrate the result and section 6 concludes the pa-
per.

2 The model

In this section, we introduce the financial market.
We consider a complete and frictionless financial

market which is continuously open over the fixed time
interval [0,T ]. The uncertainty involved by the finan-
cial market is described by three standard Brownian
motionsWr(t) ,Wv(t) andWs(t), with t ∈ [0, T ], de-
fined on a complete probability space (Ω, F ,P ), where
P is the real-word probability. The filtration F={Ft}
is a right continuous filtration of σ− algebras on this
space that represents the information structure gener-
ated by the Brownian motions. E[.] stands for the ex-
pected value.

2.1 The financial market

We assume that the market is composed of three finan-
cial assets, which the manager can buy or sell contin-
uously. The first asset is the riskless asset. We denote
the price at time t by S0(t), which evolves the follow-
ing equation:

dS0(t) = r(t)S0(t)dt, (1)

In the one factor CIR model, the interest rate state
variable is the short rate itself, which satisfies

dr(t) = (k1 − k2r(t))dt+ σr
√
r(t)dWr(t), (2)

where k1, k2 and σr are constants.
The second asset is the zero-coupon bond with

maturity T , whose price at time t is denoted by
P (t, T ), which is described by the following stochas-
tic differential equation(referring to Liu [19]):

dP (t, T )

P (t, T )
= (r(t)+bλ1σsr(t))dt+bσr

√
r(t)dWr(t),

(3)
where b, λ1 and σs are constants. This is derived by
Cox, Ingersoll and Ross [8]. The bond return has a
risk premium bλ1r(t) that changes with time t both
implicitly through the dependence on r(t) and explic-
itly through the dependence on b.

The third asset is a stock, whose price is denoted
by S1(t). Because of its self randomness, the impact
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of the interest rate and the volatility on the price of
the stock, we assume S1(t) follows (referring to Liu
[19]):

dS1(t)

S1(t)
= (r(t) + λsv(t) + λvσsλ1r(t))dt

+
√
v(t)dWs(t) + λvσr

√
r(t)dWr(t),

(4)

where the volatility v(t) satisfies the Heston model:

dv(t) = (kv −Kvv(t))dt+ σv
√
v(t)dWv(t), (5)

with kv,Kv and σv being positive constants.
Here we assume that there is no correlation be-

tween the Brownian motions Ws(t) and Wr(t) and
between Wv(t) and Wr(t). The correlation between
Ws(t) and Wv(t) is ρ.

2.2 Wealth process

Once the assets available to the investor have been de-
scribed, we now model the dynamic investment.

Let X(t) denote the wealth of the investor at time
t ∈ [0,T], πs(t) and πB(t) denote the amount invest-
ed in the stock and the zero-coupon bond, respective-
ly. Thus, π0(t) = X(t) − πs(t) − πB(t) denotes the
amount invested in the riskless asset. The dynamics
of the wealth process is given by:

dX(t) = (X(t)− πs(t)− πB(t))
dS0(t)

S0(t)

+ πs(t)
dS1(t)

S1(t)
+ πB(t)

dP (t, T )

P (t, T )
.

(6)

Taking into account (1)-(5), the evolution of pen-
sion wealth can be rewritten as:

dX(t) =

(
X(t)r(t) + πs(t)λsV (t)

+ πs(t)λvσsλ1r(t) + πB(t)bσsλ1r(t)

)
dt

+ πs(t)
√
V (t)dWs(t)

+

(
πs(t)λv(t)σr

√
r(t)

+ πB(t)bσr
√
r(t)

)
dWr(t).

(7)

3 The optimal control

In this section, we provide the optimal control pro-
gram and derive the Hamilton-Jacobi-Bellman(HJB)
equation.

3.1 The optimization criterion
Definition 1 (Admissible Strategy) An investment s-
trategy π(t) = (πs(t), πB(t)) is said to be admissible
if the following conditions are satisfied.

(i) πs(t) and πB(t) are all Ft- measurable.

(ii) E
(∫ T

0

(
π2s(t)v(t) + (πs(t)λv(t)σr +

πB(t)bσr)
2r(t)

)
dt

)
< +∞

(iii) the SDE(7) has a unique solution according
to ∀π(t) = (πs(t), πB(t)).

Assume that the set of all admissible strategies is
denoted by Π. Under the wealth process denoted by
(7), the investor looks for an optimal strategy π∗s(t)
and π∗B(t) maximizing the expected utility of the ter-
minal wealth, i.e.:

max
π(t)∈Π

E(U(X(T ))), (8)

where u(.) is strictly concave and satisfies the Ina-
da conditions u′(+∞) = 0 and u′(0) = +∞. T is
the horizon for the fund investment. In this paper, we
consider one common utility function, i.e. the CRRA
utility function. It is given by

U(x) =
xp

p
, (p<1, p ̸= 0). (9)

3.2 The optimization program

Based on the classical tools of stochastic optimal con-
trol, we define the value function:

H(t, r, v, x) = max
π(t)∈Π

E[U(X(T ))|X(t) = x,

r(t) = r, v(t) = v]), 0<t<T

(10)

The maximum principle leads to the following
Hamilton-Jacobi-Bellman(HJB) equation:

sup
π(t)∈Π

{Ht +
(
x(t)r(t) + πs(t)λsv(t)

+ πs(t)λvσsλ1r(t) + πB(t)bσsλ1r(t)
)
Hx

+
1

2

(
π2s(t)v(t) + (πs(t)λvσr

√
r(t)

+ πB(t)bσr
√
r(t))2

)
Hxx + (k1 − k2r(t))Hr

+
1

2
σ2rr(t)Hrr + (kv −Kvv(t))Hv

+
(
πs(t)λvσ

2
rr(t) + πB(t)bσ

2
rr(t)

)
Hxr

+
1

2
σ2rv(t)Hvv + ρσvπs(t)v(t)Hxv} = 0,

(11)
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with H(T, r, v, x) = U(x), where Ht, Hv, Hx, Hr,
Hxx, Hrr, Hvv, Hxr, Hxv denote partial derivatives
of first and second orders with t, r, v, x.

Then we differentiate (11) with respect to πs(t)
and πB(t) and obtain two equations :

λsvHx + λvσsλ1rHx + vHxxπs(t)

+ (πs(t)λvσr
√
r + πB(t)bσr

√
r)λvσr

√
rHxx

+ λvσ
2
rrHxr + ρσvvHxv = 0,

(12)

bλ1σsrHx + (πs(t)λvσr
√
r

+ πB(t)bσr
√
r)bσr

√
rHxx + bσ2rrHxr = 0.

(13)

The first order maximizing conditions for the op-
timal strategy πs(t) and πB(t) can be derived by solv-
ing Eq(12) and (13):

π∗B(t) =
(λsλvσ

2
r − λ1σs)Hx

bσ2rHxx
+
ρσvλvHxv

bHxx
− Hxr

bHxx
,

(14)

π∗s(t) = −λsHx + ρσvHxv

Hxx
. (15)

Putting (14) and (15) in Eq(11), a partial differ-
ential equation (PDE) for the value function can be
simplified as the following equation:

Ht + xrHx −
(
λ2sv

2
+
λ21σ

2
sr

2σ2r

)
H2

x

Hxx

− ρσvλsvHxHxv

Hxx
+

−2λ1σsr + λ1σsσrr

Hxx
HxHxr

− ρ2σ2vvH
2
xv

2Hxx
− σ2rrH

2
xr

2Hxx
+ (k1 − k2r)Hr

+
1

2
σ2rrHrr + (kv −Kv)Hv +

1

2
σ2rvHvv = 0.

(16)

Now the problem turns to solving Eq(16) for the
value function and replace it into the above two equa-
tions (14) and (15) in order to obtain the optimal port-
folios.

4 Solution to the optimization prob-
lem

In this section, we adopt CRRA utility function and
conjecture a solution to the equation (16) with the fol-
lowing form:

H(t, r, v, x) =
xη

η
f(t, r, v), η<1, η ̸= 0 (17)

and its boundary condition is f(T, r, v) = 1.

The following partial derivatives are derived ac-
cording to Eq(17):

Ht =
xη

η
ft, Hx = xη−1f,

Hxx = (η − 1)xη−2f, Hv =
xη

η
fv,

Hxv = xη−1fv, Hxr = xη−1fr,

Hr =
xη

η
fr, Hrr =

xη

η
frr,

Hvv =
xη

η
fvv,

(18)

where fr, fv, ft are the first order derivatives of f
respect to r, v and t respectively and the rest represent
the second order derivatives about them.

Introducing the above derivatives into (16), we
derive:(

ηr − λ2svη

2(η − 1)
− λ21σ

2
srη

2σ2r (η − 1)

)
f + ft

+

(
− 2ηλ1σsr

η − 1
+
ηλ1σsσrr

η − 1
+ k1 − k2r

)
fr

+

(
kv −

(
Kv +

ηρσvλs
η − 1

)
v

)
fv −

ησ2rrf
2
r

(η − 1)f

− ηρ2σ2vvf
2
v

2(η − 1)f
+

1

2
σ2rrfrr +

1

2
σ2rvfvv = 0.

(19)

In order to solve the equation, we conjecture
f(t, r, v) as the following form:

f(t, r, v) = eD1(t)+D2(t)r+D3(t)v, (20)

where D1(T ) = 0, D2(T ) = 0, D3(T ) = 0.
Then,
ft = (D′

1(t) +D′
2(t)r +D′

3(t)v)f ,
fv = D3(t)f , fr = D2(t)f ,
frr = D2

2(t)f , fvv = D2
3(t)f .

Thus,we derive:

rf

(
D′

2(t) +
(
η − ηλ21σ

2
s

2(η − 1)σ2r

)
− σ2r

2(η − 1)
D2

2(t)

+
(
− 2

η

η − 1
λ1σs + λ1σsσr

η

η − 1
− k2

)
D2(t)

)
+ vf

(
D′

3(t)−
η

2(η − 1)
λ2s −

( η

η − 1
ρσvλs +Kv

)
D3(t)

+
(1
2
σ2r −

η

2(η − 1)
ρ2σ2v

)
D2

3(t)

)
+ f

(
D′

1(t) + k1D2(t) + kvD3(t)

)
= 0,

(21)
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which can be simplified as:

rfI1(t) + vfI2(t) + fI3(t) = 0, (22)

in which

I1(t) = D′
2(t) +

(
η − ηλ21σ

2
s

2(η − 1)σ2r

)
− σ2r

2(η − 1)
D2

2(t) +

(
− 2

η

η − 1
λ1σs

+ λ1σsσr
η

η − 1
− k2

)
D2(t),

(23)

I2(t) =D
′
3(t)−

η

2(η − 1)
λ2s

−
(

η

η − 1
ρσvλs +Kv

)
D3(t)

+

(
1

2
σ2r −

η

2(η − 1)
ρ2σ2v

)
D2

3(t),

(24)

I3(t) = D′
1(t) + k1D2(t) + kvD3(t). (25)

In order to make the equation (21) established
constantly, the only need is to make the coefficients of
rf ,vf and f to be zero, that is: I1(t) = 0, I2(t) = 0
and I3(t) = 0.

From what we have studied, it is clear that I1(t) =
0 and I2(t) = 0 are the general Riccati equations.
Now we turn to solving the three equations.

As for I1(t) = 0, remember

∆1 = b21 − 4a1c1

= (4λ21σ
2
s + λ21σ

2
sσr)

η2

(η − 1)2

+ (4k2λ1σs − 4λ21σ
2
sσr + 2σ2r )

η

η − 1

+ k22 − 2k2λ1σsσr +
η

(η − 1)2
λ21σ

2
s

(26)

where
a1 =

σ2
r

2(η−1) ,
b1 =

1
η−1 [2ηλ1σs − λ1σsσrη + k2(η − 1)],

c1 =
ηλ2

1σ
2
s

2(η−1)σ2
r
− η.

as the discriminant of the quadratic function
1

2(η−1)σ
2
rD

2
2(t) + 1

η−1

(
2ηλ1σs − λ1σsσrη +

k2(η − 1)

)
D2(t) +

ηλ2
1σ

2
s

2(η−1)σ2
r
− η = 0.

It is obvious that I1(t) has different solutions de-
pending on whether ∆1>0, ∆1 = 0 and ∆1 < 0.

Now we let ∆1 > 0. Then, the quadratic function has
two different roots denoted by m1 and m2 such that:

a1(D2(t)−m1)(D2(t)−m2) = D′
2(t),

in which
m1 =

−b1+
√
∆1

2a1
, m2 =

−b1−
√
∆1

2a1
.

Now the problem turns to solving the differential
equation

1

m1 −m2

(
1

D2(t)−m1
− 1

D2(t)−m2

)
dD2(t) = adt.

(27)
Then, we integral Eq(27) with respect to t from t

to T . With a view of the boundary condition above,
we derive

D2(t) =
m2 −m2e

a1(m1−m2)(T−t)

1− m2
m1
ea1(m1−m2)(T−t)

=
m2m1 −m1m2e

a1(m1−m2)(T−t)

m1 −m2ea1(m1−m2)(T−t)
.

(28)

For equation I2(t) = 0, we have the discriminant
∆2 = K2

v + 2 η
η−1ρσvλsKv +

η
η−1λ

2
sσ

2
r

Under the condition ∆2 > 0, we assume the roots
as m3 and m4. As we all know, Eq(24) is a equation
similar to Eq(23). Thus, we use the same technique as
Eq(23) and obtain the explicit solution as follows:

D3(t) =
m4 −m4e

a2(m3−m4)(T−t)

1− m4
m3
ea2(m3−m4)(T−t)

=
m3m4 −m3m4e

a2(m3−m4)(T−t)

m3 −m4ea2(m3−m4)(T−t)
,

(29)

with a2 = η
2(η−1)ρ

2σ2v − 1
2σ

2
r ,

b2 =
η

η−1ρσvλs +Kv,

c2 =
ηλ2

s
2(η−1) , m3 =

−b2+
√
∆2

2a2
,

m4 =
−b2−

√
∆2

2a2
.

As for I3(t) = 0, there is D′
1(t) = −k1D2(t) −

kvD3(t), we integral both the sides with respect to t
from t to T and obtain

D1(t) = k1

∫ T

t
D2(t)dt+ kv

∫ T

t
D3(t)dt. (30)

From the equations above, we can derive that

Hx

Hxx
=

x

η − 1
,

Hxv

Hxx
=
xD2(t)

η − 1
,

Hxr

Hxx
=
xD3(t)

η − 1
.

(31)
From what has been discussed above, substituting

them into Eq(14) and (15), we are ready to state the
following theorem.
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Theorem 2 The optimal portfolio strategy under the
stochastic interest rate and the stochastic volatility
framework with the CRRA utility function is given by:

π∗B(t) =
(λsλvσ

2
r − λ1σs)

bσ2r

1

η − 1
X(t)

+
ρσvλv
b

D2(t)

η − 1
X(t)− 1

b

D3(t)

η − 1
X(t),

(32)

π∗s(t) = −λs + ρσvD3(t)

η − 1
X(t) (33)

Remark 3 From the equation(23), we note that
D2(t) depends on η, λ1, σs, σr, k2. From equation
(24), we can find that D3(t) is related to η, λs, σv, σr,
ρ, Kv. Besides, D1(t) is relevant to k1, kv, D2(t) and
D3(t), that is to say that D1(t) depends on η, λ1, σs,
σr, k2, λs, σv, ρ, Kv, k1, kv.

Remark 4 According to Theorem 2, we find that the
optimal amount invested in the zero-coupon bond de-
pends on λs, ρ, σv, λv, σr, λ1, σs, b, η, k2 andKv, but
it doesn’t depend on k1 and kv. However, the fact is
that the value of k1 has effect on the dynamic of inter-
est rate, which greatly affect the price of zero-coupon
bond. It is surprised us.

Remark 5 The optimal amount invested in the stock
relies on λs, ρ, σv, η, σr and Kv, but it isn’t related to
the parameters λv, b, λ1, σs, k2, k1, kv.

5 Numerical analysis

In this section, we provide a numerical example to il-
lustrate the properties of the optimal strategy derived
in the previous section. Here we take most of the pa-
rameters in Deelstra et al.(2003). Throughout this sec-
tion, unless otherwise stated, we assume that the basic
parameters are given by k1 = 0.018712, k2 = 0.2339,
ρ = 0.5, b = 0.7, λ1 = 1, λs = 1.5, λv = 0.018712,
σ1 = 0.18, σs = 0.15, σr = 0.95, σv = 0.36,
kv = 1.2, Kv = 0.4, η = −2, t = 0. Consider
that the initial investment amount with x0 = 100 and
the maturity time with T = 1. With the data provid-
ed above, we can test and verify that ∆>0, then the
analysis would be instructive and valuable.

Now the figures below give some analysis on the
optimal portfolios.

First, Fig.1 gives us the trends how the wealth in-
vested in the three assets change with time t on the
condition that the other coefficients are decided in ad-
vance. As we can see from the picture, there is a
positive relationship between the optimal investment
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Figure 1: The effect of t on the optimal investment
strategy
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Figure 2: The effect of η on the optimal investment
strategy
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Figure 3: The effect of b on the optimal investment
strategy
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Figure 4: The effect of σr on the optimal investment
strategy

portfolio in bond and t. That is, as t runs, so does
the optimal amount invested in bond. However, the
optimal amount invested in stock almost remains un-
changed, and the optimal strategy in cash decreases as
time goes by. This indicates that as time t goes on, the
investor are told to more position in bond and shorter
position in cash.

In addition, Figure 1 tells us that the amount in-
vested in bond is negative at the beginning, which in-
dicates that bond is short-selling, and as time increas-
es, the investor invests some of its wealth into bond.

Figure 2 illustrates that how the parameter η of
CRRA utility function affects the optimal investment
strategy π∗B(t), π

∗
s(t) and π∗0(t). Figure 2 shows that

π∗B(t) decreases with respect to the parameter η. In
other words, for a larger η, the amount invested in s-
tock is larger. As we know, the degree of risk aversion
for investors is 1− η, that is to say that as η increases,
the amount invested in stock will increase. Besides,
the part of π∗B(t) will become less and that part of the
cash almost stay invariant.

Figure 3 shows the relationship between the pa-
rameter b and the optimal investment strategy. From
Figure 3, the amount that the investor invest in the s-
tock remains to be 5, which indicates that the parame-
ter b has no effect on the amount invested in the stock.
However, as b increases, the optimal amount invested
in the cash decreases severely at first and towards s-
mooth to a constant around 130. As we can see from
Figure 3, the amount invested in bond is less than ze-
ro, which inflects that the investor needs short-selling
the bond.

Figure 4 shows us the relationship of σr and the
optimal investment strategy. From the figure, we find
that the amount invested in stock remains to a constant
around 65 and the amount of bond decreases as σr
increases. That is, the interest rate has little influence
on the optimal investment for stock.

From Figure 5, we can know that the relationship
between λ1 and the optimal investment value πB(t)
and πs(t). That is, the investor invests all his mon-
ey to cash to avoid risk at first, however, the amount
invested in cash decreases as λ1 increases. In addi-
tion, there is a fixed amount to invest to stock and the
amount of bond is less than 0, which indicates that the
investor chooses the way of short-selling for bond to
reach the optimal portfolios.

Figure 6 illustrates the influence of λs on the op-
timal investment strategy. As we can see from the fig-
ure, the amount invested in cash decreases as λs in-
creases, at the same time, the investment strategy for
stock increases. However, πB(t) is less than 0 and
almost stays unchanged.
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Figure 5: The effect of λ1 on the optimal investment
strategy
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Figure 6: The effect of λs on the optimal investment
strategy

6 Conclusions

In this paper, we consider the dynamic portfolios with
the CIR interest rate under a Heston model. Our ob-
jective aims at maximizing the expected utility of the
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terminal wealth. The investor has to deal with the risk
of both interest rate and volatility. The interest rate
obeys the CIR model and the volatility of the stock is
stochastic and follows the Heston’s SV model. Here
the market consists of three assets, i.e. a riskless asset,
a bond and a stock. Under the CRRA utility function,
we derive the optimal investment strategies. From the
numerical analysis, we can conclude that the optimal
strategy of stock is only related to λs, ρ, η, λs, σv, σr,
Kv. Besides, the optimal amount invested in bond is
irrelevant to k1 and kv.

As far as we know, there are some limits in our
study: (i) in order to obtain the explicit solutions, we
only consider the special utility function; (ii) we only
quote the CIR interest rate model and do not study
the optimal portfolios with affine interest rate; (iii)
we only consider the simplest but important stochastic
volatility model i.e. Heston model; (iv) we only con-
sider the dynamics asset allocations but not consider
the pension fund investment problems and investmen-
t and reinsurance problems. In our future works, we
will relax these limits and extend them in the more
general market environments.

However, in the context of these limitations, our
paper also has its value: (i) we obtain the explicit so-
lutions for the optimal asset allocation problem with
CIR interest rate under a Heston model; (ii) we ana-
lyze the optimal portfolios via some numerical exam-
ples, and at the same time we interpret its economic
meanings in real market.
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