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ANDRÉ LAURINDO MAITELLI
Universidade Federal do Rio Grande do Norte

Departamento de Controle e Automação
Av. Senador Salgado Filho s/n, 59072970 Natal

BRASIL
maitelli@dca.ufrn.br

Abstract: This work concerns a refinement of a suboptimal dual controller for discrete time systems with stochastic
parameters. The dual property means that the control signal is chosen so that estimation of the model parameters
and regulation of the output signals are optimally balanced. The control signal is computed in such a way so as to
minimize the variance of output around a reference value one step further, with the addition of the term referring
to a future estimate two steps ahead . An algorithm is used for the adaptive adjustment of the adjustable parameter
lambda, for each step of the way. The actual performance of the proposed controller is evaluated through a Monte
Carlo simulations method.
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1 Introduction
The treatment of control system with unknown pa-
rameters and time-varying is an interesting challenge.
Starting from Feldbaum’s unprecedented work [1],
several surveys were stimulated with the purpose of
investigating and clarifying the dual control prob-
lem [2–4]. The optimal controller for this problem
has two objectives that must balance two conflicting
purposes: control and estimation action.

Due to the computational and numerical in-
tractability of the optimal solution to the dual con-
trol problem, many researchers resorted to subopti-
mal solutions in which the optimization problem is re-
designed, to include cautious and probing features in
simple controllers. Wittenmark [5] proposed an Ac-
tive Suboptimal Dual (ASOD) controller, which uses
the objective function one step ahead, including the
covariance matrix of the estimated parameters. Next,
Witternamrk and Elevitch [6] presented an analytical
solution by making a series expansion of the loss func-
tion, with respect to the control signal. Hughes and
Jacobs [7] proposed, appending an additional excita-
tion to the control signal through a defined minimum
value. The variance of the innovation process, through
unknown but constant coefficients, is used in Milito et
al. [8] to optimize the system performance. Ishihara et
al. [9] extended the innovation process, to suit models
with input delays and stochastic coefficients contain-
ing white noise components.

Maitelli and Yonemama [10] proposed a novel
suboptimal dual controller, using optimal predictions
of the output. This controller minimizes the output
deviations during M steps ahead in time. Lee JM. and
Lee JH. [11] applied an approximate dynamic pro-
gramming (ADP) based strategy to the dual adaptive
control problem. This ADP approach could derive
a superior control policy, which actively reduces the
parameter uncertainty, leading to a significant perfor-
mance improvement. Flidr and Simandl [12] shows a
new implicit dual control method based on Bellman
optimization. The stochastic integration rule is em-
ployed to determine the control. Kral and Simandl
[13] proposed and discussed a predictive dual con-
trol for a non linear system with functional uncertainty
based on the bicriterial approach.

An important modelling technique in stochastic
processes is queueing model. The dual suboptimal
controllers must be studied in queueing network to
optimize the service rates of the servers. Li Xia et al.
[14] derived the performance difference equations and
developed a policy iteration algorithm for customer-
average performance in state-dependent closed Jack-
son networks. They also developed a sample path
based algorithm for estimating the realization factors.
Li Xia et al. [15] extended the MaxMin optimality of
service rate control in closed Jackson networks to a
much more general form of cost functions. This result
is derived based on the difference equation for Markov
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systems. Due to system features the suboptimal dual
controllers may optimize control and estimation data
and improve the system performance.

While several suboptimal dual control solutions
were proposed and simulated in recent decades, the
application in industrial processes is still restricted.
Bar-Shalom and Wall [16] presented a method for the
quantitative assessment of the effects of uncertainty in
macroeconomic policy optimization problems. Ismail
et al. [17] successfully implemented a suboptimal dual
controller in the paper-coating industry. The article
shows the advantages of including probing in the con-
trol signal, and the improvement in the quality of the
process. The dual controller yielded substantial qual-
ity improvement and was able to control the process
throughout the entire blade life.

In this work, a modification in the Active Subop-
timal Dual Controller is presented. Originally, there is
a fixed design parameter λ that is associated with the
function f(P (k + 2)), which is intended to ensure a
good parameter estimation. Therefore, it is proposed
to use an adaptive adjustment of parameter λ at every
step, in order to improve the performance and robust-
ness of the controller.

2 Problem Formulation
The dynamic system to be controlled is assumed
to be a time-varying single-input/single-output ARX
(AutoRegressive with eXogenous input) model with
stochastic parameters described by

y(k) + a1(k)y(k − 1) + · · ·+ am(k)y(k −m) =

b1(k)u(k − 1) + . . .+ bn(k)u(k − n) + e(k) (1)

where y(k) is the output, u(k) is the input, and
e(k) is a sequence of independent, identically dis-
tributed Gaussian variables, with zero mean and vari-
ance σ2. It is also supposed that e(k) is independent
of y(j), u(j), ai(j), bi(j), jk and b1(k) 6= 0 for each
instant k.

The time-varying parameters

x(k) = [a1(k) · · · am(k)|b1(k) · · · bn(k)]T (2)

are modeled by a Gauss-Markov process, which satis-
fies the stochastic difference equation

x(k + 1) = Φx(k) + v(k) (3)

where Φ is a known (m+ n) ∗ (m+ n) stable matrix
and v(k) is a sequence of independent, identically dis-
tributed Gaussian random variables, with zero mean
and variance matrix Rv. Moreover, it is assumed that
e(k) is independent of v(k) and x(0).

Defining the row vector

θ(k) = [−y(k − 1) − y(k − 2) · · · − y(k −m) |
u(k − 1) u(k − 2) · · · u(k − n)] (4)

equation (1) can be written as

y(k) = θ(k)x(k) + e(k) (5)

Thus, the model is defined in the compact form
by (3) and (5).

The purpose of the control action is to keep the
system output as close as possible around a reference
sequence value, yr(k + 1), during H steps of control.
The deviation is measured by the criterion

VH(u) = E{
H∑
i=1

(y(k + i)− yr)2} (6)

where u = (uk+H−1, · · · , uk)T represents the actual
and future control signals and the expected value
refers to all underlying random variables. The con-
troller design problem is formulated by selecting the
input sequence u(i), i = k, · · · , k +H − 1, that min-
imizes the cost function (6), subject to (3),(5) and by
a causality constraint requiring that, at each instant k,
the control signal u(k)can only depend on the initial
information, and on past inputs and outputs; i.e.,

Υk = {y(k), y(k − 1), · · · , y(0), u(k − 1),

u(k − 2), · · · , u(0)} (7)

The parameter estimation x(k) of the system de-
scribed by (1), standard Kalman-filter equations can
be applied to (3) and (5). It can be seen that the condi-
tional distribution of x(k + 1), given Υk, is Gaussian
with mean x̂(k + 1) and covariance P (k + 1), where
x̂ and P satisfy the difference equations

x̂(k + 1) = Φx̂(k) +K(k)[y(k)− θ(k)x̂(k)] (8)

K(k) = ΦP (k)θT (k)[θ(k)P (k)θT (k)

+σ2]−1 (9)

P (k + 1) = [Φ−K(k)θ(k)]P (k)ΦT +Rv (10)

with initial conditions P (0) and x̂(0).

3 ASOD Controller
In order to acquire a good system performance (5),
Wittenmark [5] proposed an Active Suboptimal Dual
Controller (ASOD),adding a term to the loss function
(6), which reflects the quality of the estimates. By
attaching simple terms, this will prevent the cautious
controller from turning off the control. It is important
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to add simple terms to make it easy to numerically be
able to find the resulting controller.

VASOD(uk) = E{(y(k + 1)− yr(k + 1))2

+λf(P (k + 2)|Υk} (11)

The minimization of (11) is done with respect to
u(k). P (k + 2) is the variance of the errors of the
parameter estimates and is the first time at which the
covariance is influenced by u(k). The function f(.) is
assumed to be positive, increasing monotonically, and
twice continuously differentiable. Using (11) the con-
trol signal must guarantee a good trade-off between
control and estimation. The second term in (11) can
be regarded as a constraint which is added to the loss
function.

In general, it is not possible to minimize (11) an-
alytically, since P (k + 2) is a non-linear function of
u(k). The solution must be obtained through an iter-
ative procedure. Alternatively, Witternmark and Ele-
vitch [6] proposed a further approximation by making
a series expansion of (11) around a nominal control,
and keeping first and second-order terms to obtain an
analytical expression for the control signal.

The second term in equation (11) also has a pa-
rameter design λ which needs to be defined in ad-
vance, and remains fixed throughout the steps.

4 ASOD Controller with variable de-
sign parameter

In this section, the change in the Active Suboptimal
Dual Controller proposed by Wittenmark [5] will be
presented. The intended solution is to obtain a weight
variable factor lambda (λ) that minimizes the loss
function (11).

The loss function (11) is changed to

V GV
ASOD(uk) = E{(y(k + 1)− yr(k + 1))2

+λ(k)f(P (k + 2)|Υk} (12)

where λ(k) represents how much the estimated pa-
rameter accuracy is important compared to the control
action at each step. An appropriate choice of a fixed
λ value can involve extensive system simulations. A
weight variable factor is necessary,owing to stochastic
variables in the system. Once the parameters and the
noise interferes randomly at each step in the system,
the weight factor λ(k) must also keep up with these
changes, to conduct better control and estimation.

The weight factor λ(k) definition is performed
using an algorithm that takes into account the fol-
lowing information: the estimated vector x̂(k + 1),

the Kalman gain vector K(k + 1), the noise parame-
ters vector v(k), and the certainty equivalence control
uCE(k)

λ(k)⇐⇒


x̂(k + 1)
K(k + 1)
Rv(k)
uCE(k)

where

K(k + 1) = ΦP (k + 1)θT (k + 1)[θ(k + 1)

P (k + 1)θT (k + 1) + σ2]−1 (13)

uCE(k) =
yr(k + 1)− θ̃(k)x̂(k + 1)

b̂1(k + 1)
(14)

and

θ̃(k) = [−y(k − 1) · · · − y(k −m)|
0 u(k − 2) · · · u(k − n)] (15)

b̂1(k) 6= 0

The algorithm 1 presents the sequence of actions
made to set the u(k) value at each step. The most
important points in the algorithm are the ways to find
out which parameter λi(k) provide the best control
signal ui(k) at each step. The control signal selection
is detailed below.

Defining the weight factor vector we have

ϕλ(k) = [λ1(k) λ2(k) · · · λi(k)] (16)

Using (16), an input vector Uλ is calculated. The
calculating procedure is performed as described in
Witternamrk and Elevitch [6].

Uλ = [u1(k) u2(k) · · · ui(k)] (17)

The choice of ui(k) influences directly the ac-
tual loss function (12), as well as the future cost,
since ui(k) influences θ(k+ 1), which also influences
x̂(k+ 2), P (k+ 2) and θ̃(k+ 2) Åström and Witten-
mark [18].

The ui(k) selection starts by examining x̂(k+ 1).
From the stochastic process (5) we know that the con-
ditional distribution of y(k)|Υ(k−1) is normal, with
mean value given by

E[y(k)|Υ(k−1)] = θ(k − 1)x̂(k) (18)

and variance

σ2y(k) = θ(k − 1)P (k)θT (k − 1) + σ2 (19)
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Moreover, we know that the conditional distribu-
tion of x̂(k + 1)|Υ(k−1) is normal, with mean value
given by

E[x̂(k + 1)|Υ(k−1)] = Φx̂(k) (20)

and covariance

cov [x̂(k + 1), x̂(k + 1)|Υ(k−1)] =

K(k)[σ2 + θ(k)P (k)θT (k)]KT (k) (21)

Algorithm 1: λ(k) definition
Data: A weight factor vector

ϕλ = [λ1(k) · · · λi(k)]
Result: The parameter λi(k)

1 repeat
2 forall the elements of ϕλ do
3 calculate ui(k) that minimizes V GV

ASOD ;
/* shown in (12) */

4 end
5 if |x̂(k + 1)| ≤ Rv

2 then
6 foreach ui(k) calculated do
7 evaluate Ki(k + 1);
8 end
9 Function select max element(Ki(k + 1))

: array;
10 begin
11 return ui(k) associated a maximum

Ki;
12 end
13 else
14 Calculate uCE(k);
15 Function select min element(rmin) :

array;
16 begin
17 compute vector Uλ(k)− uCE(k) ;

/* shown in (28) */
18 return ui(k) associated a minimum

value in vector;
19 end
20 end
21 until simulation stops;

Given by Wittenmark [18] that the minimum
value for the quadratic criterion in time-varying sys-
tems with known parameters is

min
H∑
i=1

[y(k + i)− yr]2 = kσ2 (22)

it is predicted that the estimated vector x̂(k+1) cannot
be sensitive to changes in parameters when

−σ
2
v

2
≤ x̂(k + 1) ≤ σ2v

2
(23)

Thus, the selection mode of ui(k) is directly
linked to the condition above. If the x̂(k + 1) value is
between the condition limits (23), the suitable ui(k)
selection is done based on the estimated parameter
gain (8). If the x̂(k + 1) value is not between the
condition limits (23), the appropriate ui(k) selection
is performed, taking into account the certainty equiv-
alence control signal (14).

Under definitions (8) and (9), it is seen that if the
estimated vector meets the condition (23), then the
chosen control signal ui(k) will be the one to apply
a higher gain in the future estimated vector (step for-
ward); i.e.:

Introducing the gain vector

Kλ(k + 1) = [K1(k + 1) K2(k + 1)

· · · Ki(k + 1)] (24)

where

Ki(k + 1) =
ΦP (k + 1)θT (k + 1)

σ2y(k + 1)
(25)

and

σ2y(k + 1) = θ(k + 1)P (k + 1)θT (k + 1)

+σ2 (26)

It selects the largest absolute value of the gain
vector (24),

Kmax(k + 1) = max|Kλ(k + 1)| (27)

Therefore, the ui(k) ∈ Uλ(k) selected matches
ui(k),associated with the maximum Ki(k + 1) value.

If the requirement (23) is false, the chosen control
signal ui(k) will be that which is, in absolute terms,
the closest to uCE(k);

Considering the values of input vector (17) sub-
tracted from (14) we have

Uλ(k)− uCE(k) = [(u1(k)− uCE(k)), (u2(k)−
uCE(k), · · · , (ui(k)−
uCE(k))] (28)

Consequently, it selects the lowest absolute value
of equation (27).
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5 Simulation Results
The performance of the suboptimal dual controller
with variable parameter λ proposed is illustrated
through three examples. Comparisons will be made
with the innovation dual controller presented in Mil-
ito et al. [8], as well as the ASOD controller presented
in Witternmark and Elevitch [6]. The evaluation of the
controller performance is made from NS simulations,
where each one consists of NP steps. Thus, the aver-
age loss per step, which evaluates the control quality,
is given by

V =
1

NS


NS∑
j=1

1

NP

[
NP∑
i=1

(y(k + i)−

yr(k + 1))2
]}

(29)

and the standard deviation is given by

σV =

√√√√√ 1

NS


NS∑
j=1

(
1

NP

[
NP∑
i=1

a2

]
− V

)2
(30)

where

a = y(k + i)− yr(k + 1) (31)

The estimation quality can be measured by the
mean value of pbb the parameter variance, which is
the main parameter of interest.

P bb =
1

NS


NS∑
j=1

1

NP

[
NP∑
i=1

pbb(i)

] (32)

The changes between different realizations can be
very large, and it can be difficult to know which sub-
optimal solution is best for each example. So, pair-
wise comparisons of the average loss per step for each
simulation were made, and the statistical hypothesis
test was used to decide the controller ranking. The
following three examples were simulated:

Example 1: Consider the first-order system with
the reference signal as yr = 1. This system has often
been used in to evaluate the performance of different
adaptive suboptimal controllers Witternamrk and Ele-
vitch [6].

y(k) + a(k)y(k − 1) = b(k)u(k − 1) + e(k) (33)

where

a(k) = −0.9

b(k + 1) = 0.9b(k) + v(k)

Example 2: Consider the first-order system with
the reference signal as yr = 0

y(k) + a(k)y(k − 1) = b(k)u(k − 1) + e(k) (34)

where

a(k + 1) = −1

b(k + 1) = 0.8b(k) + v(k)

Example 3: Consider an ARX(2, 2) system with
the reference signal as yr = 0.

y(k) + a1(k)y(k − 1) + a2(k)y(k − 2) =

b1(k)u(k − 1) + b2(k)u(k − 2) + e(k) (35)

where

a1(k + 1) = −1.2

a2(k + 1) = 0.7

b1(k + 1) = 0.9b(k) + v(k)

b2(k + 1) = 1

For each system, 200 Monte Carlo simulations
(NS = 200) were done, where each simulation con-
sisted of 400 time steps (NP = 400). In all sim-
ulations, the noise e(k) and v(k) had a mean value
zero and standard deviation of 0.5 and 1.0, respec-
tively. The initial time of the simulation (k < 20)
is disregarded to avoid the influence of initial effects.
The weighting factor λ in the ASOD controller and in
the innovation controller was chosen to be 0.5 in all
examples, since this value has been shown to give a
good exchange between control action and estimation
(see [8] and [6]).

The simulation results are presented in Tables 1,
2, 3, 4, 5 and 6. Figures 1, 4 and 9 summarize the
performance of the parameter λ during the simulation
and Figures 2, 3, 5, 6, 7 and 8 show the performance
of the proposed controller for one realization of each
system.

The ϕλ vector used in simulations is given by

ϕλ(k) = [0.1 0.3 0.5 0.7 0.9] (36)

Table 1: Simulation results - Example 1.
Control law V σV P bb

ASOD λ = 0.5 0,7990 0,1701 2,0296
Innovation 0,8705 0,1992 2,9907
ASOD λ variable 0,7466 0,1683 2,1163

In all examples, the modified ASOD controller
achieved results that indicate a better performance
compared to the fixed λ ASOD controller, as well as
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Figure 1: 3D lambda vector map over 100 simulations in Example 1.
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Figure 2: Simulation of Example 1 with graphics: out-
put y and control signal.
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Figure 3: Simulation of Example 1 with graphics:
noises and ϕλ vector.

Table 2: Pairwise comparison between controllers -
Example 1.

Control law A Control law B (A < B)of200

ASOD λ variation ASOD λ = 0.5 148(74%)
ASOD λ variation Innovations 163(81, 5%)
ASOD λ = 0.5 Innovations 136(68%)

the innovation controller. The average loss per step
obtained was 20% lower and, moreover, as shown in
Tables 2, 4 and 6, there is also often an average loss
smaller in each simulation.

Figures 1, 4 and 9 show the results associated with
each ϕλ vector during each step, for 100 simulations
of examples 1−3, respectively. Comparing Figures 1,
4 and 9, it is possible to distinguish how the lambda λ
selection algorithm adapts, according to the system,
the estimation and control conditions. In Figure 1,
there is a good balance in choosing lambdas, by equal-
izing the control action and estimate.

Table 3: Simulation results - Example 2.
Control law V σV P bb

ASOD λ = 0.5 1,3599 0,4373 1,6808
Innovation 1,6143 0,6203 2,1256
ASOD λ variable 1,2605 0,4086 1,6159

In Figure 1, there is a greater balance in choos-
ing lambdas, by equalizing the control action and es-
timate. In Figure 4, the lambda selection is more de-
fined at the ends vector emphasizing control or estima-
tion in each step. It is also important to note that, in
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Figure 4: 3D lambda vector map over 100 simulations in Example 2.

Table 4: Pairwise comparison between controllers -
Example 2.

Control law A Control law B (A < B)of200

ASOD λ variable ASOD λ = 0.5 133(66, 5%)
ASOD λ variable Innovations 144(72%)
ASOD λ = 0.5 Innovations 164(82%)

Example 3, the simulations with the innovation con-
troller presented the turn-off phenomenon, while the
other controllers avoided this behaviour of the control
signal. Owing to this phenomenon, the control signal
remained turned off, and the pairwise comparison be-
tween the innovation controller and the others in Table
6 showed unusual results.

The general behaviour of the vector selection
ϕλ(k) will depend on the plant characteristics θ(k)
and x(k), of the associated stochastic variables e(k)
and v(k), of the initial plant parameter P (0) and of
the known matrix Φ.

Table 5: Simulation result - Example 3.
Control law V σV P bb

ASOD λ = 0.5 0,9887 0,1755 1,8295
Innovation 0,9140 0,3062 3,4298
ASOD λ variable 0,9759 0,1966 1,9776
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Figure 5: Simulation of Example 2 with graphics: out-
put y and control signal.

Table 6: Pairwise comparison between controllers -
Example 3.

Control law A Control law B (A < B)of200

ASOD λ variable ASOD λ = 0.5 115(57, 5%)
ASOD λ variable Innovations 55(27, 5%)
ASOD λ = 0.5 Innovations 44(22%)
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Figure 9: 3D lambda vector map over 100 simulations in Example 3.

0 50 100 150 200 250 300 350 400
−5

0

5

Time [Seconds]R
ea

l a
nd

 E
st

im
at

ed
 P

ar
am

et
er

 b

0 0.2 0.4 0.6 0.8 1
0

100

200

300

La
m

bd
a 

A
m

ou
nt

Lambda

Figure 6: Simulation of Example 2 with graphics: pa-
rameter b and ϕλ vector.
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Figure 7: Simulation of Example 3 with graphics: out-
put y and control signal.
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Figure 8: Simulation of Example 3 with graphics:
variance and ϕλ vector.

6 Conclusion
The proposed controller achieved good performance
without requiring great computational effort. The
controller features dual characteristics; i.e. the con-
troller does not perform action controls due only the
immediate control, but also consider the future param-
eters estimation of the system, resulting in a better
control.

The controller avoids the necessity for setting the
lambda design parameter, which constitutes an ad-
vantage since this adjustment can be critical in some
cases. An algorithm for the adaptive adjustment of the
lambda parameter is employed at each step. Thus, the
controller performs a better action control, as well as
a better estimation, according to the plant character-
istics, and the stochastic variables that affect the sys-
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tem. The proposed controller performed satisfactorily
better than the dual innovation controller [8] and the
ASOD controller [5]. Once ratified the proposed tech-
nique in this paper, the focus will be perform practi-
cal tests in stochastic processes such as queueing net-
works.
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