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Abstract: A R&D input game model with spillovers and endogenous demand in a triopoly market is considered in
which all the players are bounded rational. Assume that the two players make up a cooperative team, they share
the technology achievements completely and have same cost. Technology spillover exists between the cooperative
team and the third player. R&D investment helps to expand market demand. On the basis of analyzing the stability
of the only Nash equilibrium point, the local stable regions are obtained. Three-dimensional stable regions are
investigated and the results show that the spillover rate of R&D has an obvious impact on the stable regions.
Impact of technology spillover rate and endogenous demand on the profits is studied, and it is interesting that
profits of different players could not lose stability synchronously. The complex dynamics, such as bifurcation
scenarios, route to chaos and attractors are displayed by 2D bifurcation diagrams, the results show that if the
adjustment speed of R&D input is high, the economic system tends to lose stability. The chaos is eliminated by
using the feedback control method. Basins of attraction are investigated and we find the domain of attraction
become smaller with increase of spillover rate and R&D input modification speed.
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1 Introduction
R&D has been one of the main driving force for
the development of enterprises, which helps to re-
duce production cost, and improve production effi-
ciency. The core competitiveness of enterprise has
been gradually transformed into R&D competition. S-
ince D’Aspremont and Jacqueminde [1] did an initia-
tive research on R&D, numerous researches have been
published. Gersbach and Schmutzler[2] considered a
three-location duopoly game model and studied the
impact of internal and external knowledge spillovers
on the agglomeration of the players. Jiang et al. [3]
and Vandekerckhove et al. [4] studied R&D cooper-
ation model under the condition of innovation abili-
ty asymmetry and technology spillovers asymmetry,
pointed out if there is ability asymmetry between the
enterprises, an income transfer mechanism is needed
to enhance the level of cooperation. Suetens [5] an-
alyzed the relation between R&D and technological
spillovers cooperation in a duopoly experiment and
found that without technological spillovers, binding

R&D contracts are needed for R&D decisions to devi-
ate from the subgame perfect Nash R&D level towards
the cooperative level. Goel and Haruna[6] discussed
cooperative and noncooperative R&D with spillovers
in the case of labor-managed players, and examined
strategic interactions between labor-managed player-
s in a duopoly. Breton [7] constructed a dynam-
ic duopoly game model, by comparing Cournot and
Bertrand equilibrium, he found Bertrand competition
is more efficient if the R&D level is low or differences
between companies are great in R&D. Cellini[8] an-
alyzed dynamic R&D for process innovation in a
Cournot duopoly. By comparing the profit and so-
cial welfare performances in steady state, they showed
that the effect of private and social incentives towards
R&D is consistent for all admissible levels of the tech-
nological spillovers.In the papers above, business de-
cision - making is assumed to be completely rational,
but the research on R&D competition among bound-
ed rational manufacturers is not rich. Whitby et al.[9]
studied the R&D duopoly competition with ”agitation
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type” and ”aggressive strategy type” character class-
es, numerical simulations showed that, chaos will ap-
pear in R&D competition if the two players were in
different personality types. Sheng [10] investigated
the global stability of R&D investment in the dynam-
ic competition system. They found that under certain
conditions, the system may have multiple attractors
including chaotic attractor and periodic attractors. Li
and Ma [11] set up a R&D games model in three oli-
garchs’ market and took competition and cooperation
into account, comparative analysis and complex dy-
namical behavior in the R&D were shown by numeri-
cal simulation.

While these literatures did not show influence of
the R&D investment on market demand, in this paper,
a R&D game model with spillovers and endogenous
demand in a triopoly is set up in which the R&D in-
vestments contribute to the expansion of market de-
mand. Assume all the oligarchs are bounded rational
players and two oligarchs make up a cooperative R&D
team. The main aim of this paper is to investigate the
dynamic behaviors of three players in R&D input de-
cisions. The paper is organized as follows. In Sec-
tion 2, a R&D game model with spillovers, endoge-
nous demand and teamwork is established. In Section
3, equilibrium points and local stability is discussed.
Impact of spillovers and endogenous demand on the
R&D investment and profits is studied in Section 4.
In Section 5, dynamical behaviors of the game are in-
vestigated by 2D bifurcation diagrams[9]. In Section
6, the chaos is controlled by using the feedback con-
trol method. Basins of attraction[10] are investigated
in Section 7. In Section 8, conclusions are drawn from
our analysis.

2 The Triopoly game model

We consider a R&D game model with spillovers and
endogenous demand in a triopoly. Assume player 1
and player 2 team up to carry out R&D and the re-
search results are fully shared, so they have the same
cost of production ci(t), i = 1, 2. The price and the
demand of player i

′
products is denoted by pi(t) and

qi(t),i = 1, 2, 3 . In the triopoly market, all the play-
ers select independently their output qi(t) and their
own R&D investment level xi(t). The inverse demand
functions are as follows:

p1(t) = p2(t) = a− b(q1(t) + q2(t) + q3(t))

+δ(x1(t) + x2(t) + βx3(t))

p3(t) = a− b(q1(t) + q2(t) + q3(t))

+δ(β(x1(t) + x2(t)) + x3(t))

(1)

where a > 0, b > 0 and endogenous demand pa-
rameter δ > 0 denotes the effect of R&D activities
on the market demand. Just as the arrival of Apple
phones stimulated the enthusiasm of the consumers.
β ∈ [0, 1] measures technology spillover rate between
player 3 and the cooperation team composed of player
1 and player 2. The technology spillover rate within
the team is 1. xi(t) denotes the investment of player i
in R&D. The following ci(t) denotes the unit cost of
production of player i after R&D activities.

c1(t) = c2(t) = A− x1(t)− x2(t)− βx3(t)

c3(t) = A− x3(t)− β(x1(t) + x2(t))
(2)

where A is the unit cost if the players do not invest on
R&D. The profit of player i in period t is

πi(t) = (pi(t)− ci(t))qi(t)−
γx2i (t)

2
, i = 1, 2, 3.

(3)
where γx2

i (t)
2 is the cost function of investment in

R&D in which xi(t) denotes the investment in R&D.
The parameter γ is inversely related to player’s cost
effectiveness in R&D. The cost function of investment
in R&D has the quadratic form because of the follow-
ing reasons: technological innovation is only related
to R&D, and has nothing to do with the economic
scale, so the player may face diminishing returns to
R&D scale and the unit input cost increases with in-
crease of the scale of R&D. If there is no technology
mutation, improvement of technology needs to invest
more resources, which accords with practical. Use(1)-
(2)in (3), and let

∂πi(t)

∂qi(t)
= 0, i = 1, 2, 3.

the players’ output response functions can be obtained
in (4), which show players’ optimal outputs in a peri-
od t. The R&D investment xi(t) is the variable to
functions (4).


q1(t) =

a−A+(1+δ)((2−β)(x1(t)+x2(t))+(2β−1)x3(t))
4b

q2(t) =
a−A+(1+δ)((2−β)(x1(t)+x2(t))+(2β−1)x3(t))

4b

q3(t) =
a−A+(1+δ)((3β−2)(x1(t)+x2(t))+(3−2β)x3(t))

4b
(4)

In order to maximize profits, in period t, all the play-
ers make investment decisions on R&D according to
marginal profits with respect to xi(t), combining(1)-
(4), marginal profits functions on x1(t) are obtained
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as follows:



∂π1(t)
∂x1(t)

= 1
8b((1 + δ)(2− β)(a−A+ (1 + δ)((2− β)

(x1(t) + x2(t)) + (2β − 1)x3(t)))− 8bγx1(t))
∂π2(t)
∂x2(t)

= 1
8b((1 + δ)(2− β)(a−A+ (1 + δ)((2− β)

(x1(t) + x2(t)) + (2β − 1)x3(t)))− 8bγx2(t))
∂π3(t)
∂x3(t)

= 1
8b((1 + δ)(3− 2β)(a−A+ (1 + δ)((3β − 2)

(x1(t) + x2(t)) + (3− 2β)x3))− 8bγx3(t))
(5)

While in practice, the players can not have complete
information about the market and the other competi-
tors, they may do not know other players investment
decisions in the next-period in advance, so they cannot
figure out the investment on the basis of the marginal
profits functions (5). Suppose all the players are
bounded rational players, that is, if the marginal prof-
its are positive, they increase their investment on R&D
in the next period; otherwise, they decrease the invest-
ment. Then the dynamical system can be described by
the following nonlinear difference equations:

xi(t+ 1) = xi(t) + αixi(t)
∂πi(t)

∂xi(t)
, i = 1, 2, 3 (6)

where αi(0 < αi < 1) denotes the adjustment
speed of R&D inputs of player i . Use (5) in (6), the
following dynamic system can be obtained:



x1(t+ 1) = x1(t) +
α1x1(t)

8b ((1 + δ)(2− β)(a−A
+(1 + δ)((2− β)(x1(t) + x2(t)) + (2β − 1)x3(t)))
−8bγx1(t))

x2(t+ 1) = x2(t) +
α2x2(t)

8b ((1 + δ)(2− β)(a−A
+(1 + δ)((2− β)(x1(t) + x2(t)) + (2β − 1)x3(t)))
−8bγx2(t))

x3(t+ 1) = x3(t) +
α3x3(t)

8b ((1 + δ)(3− 2β)(a−A
+(1 + δ)((3β − 2)(x1(t) + x2(t)) + (3− 2β)x3))
−8bγx3(t))

(7)

3 Equilibrium points and local sta-
bility

3.1 Equilibrium points and local stability of
bounded equilibrium points

According to system (7), let xi(t + 1) = xi(t) , we
can get

x1(t)((1 + δ)(2− β)(a−A+ (1 + δ)((2− β)
(x1(t) + x2(t)) + (2β − 1)x3(t)))− 8bγx1(t)) = 0
x2(t)((1 + δ)(2− β)(a−A+ (1 + δ)((2− β)
(x1(t) + x2(t)) + (2β − 1)x3(t)))− 8bγx2(t)) = 0
x3(t)((1 + δ)(3− 2β)(a−A+ (1 + δ)((3β − 2)
(x1(t) + x2(t)) + (3− 2β)x3(t)))− 8bγx3(t)) = 0

(8)
For convenience, numerical simulations are per-
formed to show the equilibrium points and local sta-
bility of the game. We set the parameters as follows:

a = 20, b = 2, γ = 1.2, A = 2, β = 0.6, δ = 0.6
(9)

According to the parameters above, eight fixed points
of system (7)can be obtained:

E1 = (0, 0, 0)

E2 = (0, 0, 4.75)

E3 = (0, 2.84, 0)

E4 = (2.84, 0, 0)

E5 = (4.40, 4.40, 0)

E6 = (0, 3.07, 4.49)

E7 = (3.07, 0, 4.49)

E8 = (4.71, 4.71, 3.96)

it is clear that E8 is the only Nash equilibrium point
E1 − E7 are boundary equilibria.

In order to analyze the stability of the equilibri-
um points , the Jacobian matrix for discrete dynamic
system (7) is found as follows:

J(E) =

 J11 J12 J13
J21 J22 J23
J31 J32 J33

 (10)

where
J11 = 1+ α1

8b [(1+ δ)(2−β)(a−A+(1+ δ)((2−β)
(2x1(t) + x2(t)) + (2β − 1)x3(t)))− 16bγx1(t)];

J12 =
α1x1(t)

8b (1 + δ)2(2− β)2;

J13 =
α1x1(t)

8b (1 + δ)2(2− β)(2β − 1);
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J21 =
α2x2(t)

8b (1 + δ)2(2− β)2;

J22 = 1+α2
8b [(1+δ)(2−β)(a−A+(1+δ)((2−β)

(2x2(t) + x1(t)) + (2β − 1)x3(t)))− 16bγx2(t)];

J23 =
α2x2(t)

8b (1 + δ)2(2− β)(2β − 1);

J31 =
α3x3(t)

8b (1 + δ)2(3− 2β)(3β − 2);

J32 =
α3x3(t)

8b (1 + δ)2(3− 2β)(3β − 2);

J33 = 1+α3
8b [(1+δ)(3−2β)(a−A+(1+δ)((3β−

2) (x2(t) + x1(t)) + 2(3− 2β)x3(t)))− 16bγx3(t)]

According to Routh-Hurwitz condition, the nec-
essary and sufficient condition of asymptotic stability
at E is that all the eigenvalues are inside the unit circle
in complex plane.

Then put (9) into the parameters in (10), we get
the eigenvalues of E1 − E7 by J(E) respectively.
According to the conditions for the stability of fixed
points, the modulis of all characteristic roots are less
than 1 , so E1 − E7 are unstable equilibrium points.

3.2 Three-dimensional stable regions of
Nash equilibrium point E8

As for E8 = (4.71, 4.71, 3.96), its Jacobian matrix is

J(E8) =

 1.0− 4.17α1 1.48α1 0.21α1

1.48α2 1.0− 4.17α2 0.21α2

−0.29α3 −0.29α3 1.0− 2.70α3


(11)

The characteristic equation of the Jacobian matrix of
E8 is f(λ) = λ3 +A1λ

2 +B1λ+ C1 ,
In which

A1 = (4.17α1 + 4.17α2 + 2.70α3− 3.0);

B1 = (0.048α1α3 − 2.18α1α2 + 0.048α2α3 +
(4.17α1−1.0)(4.17α2−1.0)+(2.7α3−1.0)(4.17α1+
4.17α2 − 2.0));

C1 = 0.23α3(0.31α1α2 − 0.22α1(4.17α1 −
1)) + 0.23α3(0.31α1α2 − 0.21α2(4.17α2 −
1)) − (2.18α1α2 − 1.0(4.17α1 − 1.0)(4.17α2 −
1.0))(2.70α3 − 1) + (0.048α1α3 +
0.048α2α3)(4.17α1 + 4.17α2 − 2.0);

According to the Jury’s stability criterion, the
necessary and sufficient condition of asymptotic sta-

bilization at E8 calls for the following conditions:
A1 +B1 + C1 + 1 > 0
1−A1 +B1 − C1 > 0
1− C2

1 > 0
(1− C2

1 )
2 − (B1 +A1C1)

2 > 0

(12)

0.0

0.5

1.0

Α1

0.0

0.5

1.0

Α2

0.0

0.5

1.0

Α3

Figure 1: The stable region of Nash equilibrium point
E8, β = 0.6

A stable region of Nash equilibrium point E8 can
be determined by the above inequalities (12) in the
space of (α1, α2, α3) which can be shown in Figure
1. In the stable region, ranges of α1 and α2 are almost
the same. The R&D inputs of three players will
keep stable at E8 after a limited number of games
no matter what initial R&D inputs are chosen.The
Nash equilibrium point E8 may be unstable when
α1, α2, α3 increase. If their adjustment speed of
R&D inputs runs out of the stable region, the stable
state of system (7) at point E8 will be broken and
the bifurcations, even chaos phenomena, will appear.
From an economic point of view, the unordered
competitions will happen in the market.

3.3 The Effects of technology spillover rate
on stable region

In this paper, spillover rate is denoted by β, in order
to analyze the effects of parameter β on stable region,
make β = 0.5, 0.7 respectively and keep other param-
eters constant as (9), then the corresponding stable
regions are shown in Figure 2 and 3. When β = 0.5
, Nash equilibrium input E

′
8 is (5.63, 5.63, 3.21)

and when β = 0.7 , Nash equilibrium input E
′′
8 is

(4.04, 4.04, 3.91) . By comparing Figure 1-Figure 3
and the 3 Nash equilibrium inputs, we find that with
increase of technology spillover rate β ,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Lijian Sun, Junhai Ma

E-ISSN: 2224-2856 310 Volume 10, 2015



1) In the stable region, the range of α3 narrows, while
the range of α1 and α2both expand.
2) The gap of the Nash equilibrium inputs among
three players narrows.

0.0

0.5

1.0

Α1

0.0

0.5

1.0

Α2

0.0

0.5

1.0

Α3

Figure 2: The stable region of Nash equilibrium point E
′

8

,β = 0.5

0.0

0.5

1.0

Α1

0.0

0.5

1.0

Α2

0.0

0.5

1.0

Α3

Figure 3: The stable region of Nash equilibrium point E
′′

8

,β = 0.7

That means if the technology spillover rate is rel-
atively lower(β = 0.5 ), the adjustment speed in
R&D input of player who is outside the cooperation,
i.e. the adjustment speed of player 3, has little effect
on the system, while with increase of the technology
spillover rate, the adjustment speed of player 3 must
be kept in a certain range. If the technology spillover
rate is relatively higher( β = 0.7 ), the adjustment
speed of player who is in the cooperation, i.e. player
1 and player 2, will have greater range of adjustment.
If the spillover rate is relatively higher, the gap of the
inputs among three players narrows.

4 The Effects of parameters β and δ
on profits and investment

In this section, the effects of β on three players’ profits
and investment will be investigated firstly. Numerical
simulations are performed to show the effects of β.
For convenient, we set the parameters
a = 20, b = 2, γ = 1.2, A = 2, δ = 0.6, α1 = α2 =
α3 = 0.3
The investment diagram of (7)with respect to β is
shown by Figure 4.

Figure 4: The investment diagram with respect to β when
δ = 0.6

Substituting (1),(2),(4)into(3), the profit function
of all the players can be obtained as follows,

πi(t) = bq2i (t)−
γxi(t)

2

2
, i = 1, 2, 3

So the profit bifurcation diagram of (7) with respect
to β is shown by Figure 5. The average profit with
respect to β is shown by Figure 6.
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Figure 5: The profit bifurcation diagram with respect to
β when δ = 0.6
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Figure 6: The average profits with respect to β when
δ = 0.6

In Figures 4, red set of points denotes x1(t) and
x2(t), black set of points denotes x3(t). In Figures 5,
blue set of points denotes π1(t) and red set of points
denotes π2(t), black set of points denotes π3(t). Three
features can be found as follows:

1) With increase of spillover rate β, investment of
player 1 and player 2 decreases , while investment of
player 3 increases before β = 0.62, decreases after
β = 0.62. x1(t), x1(t), x3(t) become closer and after
β = 0.7, they are almost the same.

2) When spillover rate β = 1 , all the players have
the same profits, with decrease of spillover rate β , al-
l the players’ profits will lose stability at last. But a
very interesting phenomenon is that when profits of
player 1 and player 2 experience 2-period doubling b-
ifurcation at β = 0.49 , profits of player 3 still remain
stable.

3) With decrease of spillover rate β, average prof-
its of player 1 and player 2 increase before 2-period
doubling bifurcation, then begin to flutter. While prof-
its of player 3 decrease before the bifurcation point,
then increase slightly.
From an economic perspective, in order to ob-
tain more profits stably, players in the cooperative
team(player 1 and player 2) should keep spillover rate
in a certain range, neither too high nor too low to avoid
facing the shock of profits and make as much as pos-
sible .
The effects of δ on investment, profits and average
profits are investigated secondly which is shown in
Figure 7 8 and 9. The parameters are a = 20, b =
2, γ = 1.2, A = 2, β = 0.6, α1 = α2 = α3 = 0.3,
with increase of δ, two features can be seen from Fig-
ure 7 and 8,

1)Investment of all the players increases, but in-
vestment of player 1 and player 2 increases faster than
player 3, when δ > 0.43, investment of player 1 and
player 2 is more than player 3.

2)Profits of player 1 and player 2 increase,
however average profits of player 3 almost do not
change. when β > 0.69, profits of player 1 and player
2 enter into 2 cycles state. When β > 0.75 all the
players’ profits will fall into disorder.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1
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Figure 7: The investment diagram with respect to δ when
β = 0.6
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Figure 8: The profits bifurcation diagram with respect to
δ when β = 0.6
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Figure 9: The average profits with respect to δ when β =
0.6
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From an economic perspective, as we know, in the
industry in which the products update and upgrade m-
more quickly, for instance, consumer electronics, δ is
relatively larger, investment of all the players is higher
and the profits gap between team members and player
3 is wider; while in the industry in which the products
update and upgrade slowly, such as mechanical engi-
neering, δ is relatively smaller, and the profits gap is
narrower.

5 2D bifurcation diagrams and
interactive relationships among
α1, α2, α3

2D bifurcation diagram is a more powerful tool in the
numerical analysis of nonlinear dynamics than the 1D
bifurcation diagrams. In the 2D bifurcation diagrams,
bifurcation scenarios and route to chaos can be dis-
played clearly. In this section, the 2D bifurcation di-
agrams will be used to analyze the effects of players’
adjustment speed on system stability. We set the same
parameters as (9), then (α1, α2)(α1, α3), (α2, α3) 2D
bifurcation diagrams are shown in Figure 10, 11 and
12. In the 2D bifurcation diagrams, the system ex-
hibits a sequence of flip bifurcations to quasi-periodic
state or chaos, then to divergence(which means one of
the players will be out of the market).
Different colors are assigned to each region to show
its particular behavior. That is, brown, stable states;
yellow, period-2 stable cycles; orange, period-3; blue,
period-4; light green, period-5; dark gray, period-6;
purple, period-8; grass green, period-9; red, period-
10; light gray, quasi-periodic state or chaos; army
green, escape.

Figure 10: (α1, α2)− 2D bifurcation diagram,α3 = 0.3

Figure 11: (α1, α3)− 2D bifurcation diagram,α2 = 0.3

Figure 12: (α2, α3)− 2D bifurcation diagram,α1 = 0.3

Figure 13: bifurcation and maximal Lyapunov exponent
with respect to α1 when α2 = α3 = 0.3
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Figure 15: The quasi-periodic attractor of system
whenα1 = 0.41, α2 = 0.3, α3 = 0.74

Figure 14: bifurcation and maximal Lyapunov exponent
with respect to α1 when α2 = α3 = 0.3

In Figure 10,α1 ∈ [0, 1] , α2 ∈ [0, 1]and
α3 = 0.3, the system exhibits a sequence of flip
bifurcations to chaos with increase of (α1, α2).
An approximate symmetrical structure is shown
because player 1 and player 2 share research results
completely. In addition, in the chaotic region, the
system contains cycle parameters islands which has
the self-similar structure such as the region period-5,
period-10. As seen from Figure 10, if the team
members’ adjustment speed is relatively lower (in
the brown area), the system (7) will be in a steady
state. Along with increase of the adjustment speed ,
the economic system will experience cyclical shocks,
chaos, even disappearance which means one of the
players stop investing. Obviously, relatively larger
adjustment speed is detrimental to the economic
system.
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2.5

3

3.5

4

4.5

5

x1(t) x2(t)

x 3
(t

)

Figure 16: bifurcation and maximal Lyapunov exponent
with respect to α1 when α2 = α3 = 0.3

In Figure 11,α1 ∈ [0, 1] , α3 ∈ [0, 1]and α2 =
0.3, respectively,as can be seen, with increase of the
adjustment speed α1 and α3, the economic system
will experience cyclical shocks, quasi-periodic state
,chaos, even disappearance. When the parameters
(α1, α3) pass through the borders as the black arrows
B and C, system (7) loses its stability through flip
bifurcation as shown in Figures 13(Figures 13 shows
arrow B, C is similar to B). While it is interesting that
when the parameters cross the borders as the arrow A
, the dynamic behavior of systems is more complicat-
ed, the system enters into quasi-periodic state through
Neimark-Sacker bifurcation, then enters period 2, and
then evolves into chaos through flip bifurcation sepa-
rately, as shown in Figure 14,15,16.
In Figure 12, α2 ∈ [0, 1] , α3 ∈ [0, 1]and α1 = 0.3 re-
spectively, the system also exhibits a sequence of flip
bifurcations with adjustment speed α2 and α3 , which
is similar to Figure 11.

6 Chaos control

According to the numerical simulation in section 5, if
the players’ input adjustment speed is beyond the sta-
ble region, the market will experience cyclical shock-
s, and even fall into chaos. The appearance of chaos
in the economic systems is harmful to all the players.
In order to avert the risk, it is expedient for triopoly
to maintain at Nash equilibrium input. Many meth-
ods for the chaos control have been proposed, such
as OGY method[12], modified straight-line stabiliza-
tion method[13], time-delayed feedback method[14],
pole placement method [15]and so on. In this sec-
tion, we use a feedback control method proposed by
Elabbasy[16] et al. Consider the fluctuation of x1(t)
and π1(t) shown above is higher, the controlling fac-
tor is applied on player 1. So the controlled system is
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given by:



x1(t+ 1) = x1(t) +
α1x1(t)

8b ((1 + δ)(2− β)(a−A
+(1 + δ)((2− β)(x1(t) + x2(t)) + (2β − 1)x3(t)))
−8bγx1(t))− k(x1(t+ 1)− x1(t))

x2(t+ 1) = x2(t) +
α2x2(t)

8b ((1 + δ)(2− β)(a−A
+(1 + δ)((2− β)(x1(t) + x2(t)) + (2β − 1)x3(t)))
−γx2(t))

x3(t+ 1) = x3(t) +
α3x3(t)

8b ((1 + δ)(3− 2β)(a−A
+(1 + δ)((3β − 2)(x1(t) + x2(t)) + (3− 2β)x3(t)))
−γx3(t))

(13)

where k is the controlling factor. The equivalent
system of (13) is



x1(t+ 1) = x1(t) +
α1x1(t)
8b(k+1)((1 + δ)(2− β)(a−A

+(1 + δ)((2− β)(x1(t) + x2(t)) + (2β − 1)x3(t)))
−8bγx1(t))

x2(t+ 1) = x2(t) +
α2x2(t)

8b ((1 + δ)(2− β)(a−A
+(1 + δ)((2− β)(x1(t) + x2(t)) + (2β − 1)x3(t)))
−γx2(t))

x3(t+ 1) = x3(t) +
α3x3(t)

8b ((1 + δ)(3− 2β)(a−A
+(1 + δ)((3β − 2)(x1(t) + x2(t)) + (3− 2β)x3(t)))
−γx3(t))

(14)
In a real market, we can consider k as the adaptability
or learning ability of the firm 1. For example, the firm
1 analyzed the information in the past, and adjusted
the speed of investment.The parameters are chosen as
Figure 13,that is, a = 20, b = 2, γ = 1.2, A = 2, β =
0.6, α1 = α2 = α3 = 0.3. As can be seen from
Figure 17, when control factor k = 0.5, compared
with Figure 13, the appearance of chaos is delayed.
With the increasing of α1 , the system falls into a
chaotic state when α1 = 0.95.

Figure 17: Bifurcation diagram maximal Lyapunov ex-
ponent with α1 when k = 0.5, α2 = α3 = 0.3
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Figure 18: Bifurcation and maximal Lyapunov exponent
with α1 when k = 0.8, α2 = α3 = 0.3
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Figure 19: Bifurcation and maximal Lyapunov exponent
with α1 when k = 1.6, α2 = α3 = 0.3

As can be seen from Figure 18 , when control
factor k = 0.8, chaos is eliminated. In Figure 19,
k = 1.6, system 14 is in a stable state. From an e-
conomic point of view, if the first bounded rational
player adopts this adjustment method, the R&D input
game can be controlled to Nash equilibrium state with
increase of k at last.

7 Basins of attraction of the cooper-
ative team

In order to investigate the impact of technology
spillover rate β and input adjustment speed αi and on
the domain of attraction, we introduce basins of at-
traction. The domain of attraction in the basins of at-
traction is the set of initial R&D input which can con-
verge to the same attractor. If the domain of attraction
in which the points converge to one equilibrium point,
from an economic point of view, it is a safe region.
That means if the initial R&D input of two sides is in
the safe region, the system will remain stable after a
number of games. If the initial input is in the escape
area, the system will fall into divergence at last. We
fix the initial R&D input of player 3 at 0.5 in (7), then
(15) is obtained and the basins of attraction of player
1 and player 2 are investigated.



x1(t+ 1) = x1(t) +
α1x1(t)

8b ((1 + δ)(2− β)[a−A
+(1 + δ)((2− β)(x1(t) + x2(t)) + (2β − 1)x3(t))]
−8bγx1(t))

x2(t+ 1) = x2(t) +
α2x2(t)

8b ((1 + δ)(2− β)[a−A
+(1 + δ)((2− β)(x1(t) + x2(t)) + (2β − 1)x3(t))]
−8bγx2(t))
x3(t) = 0.5

(15)

7.1 Impact of technology spillover rate on
Basins of attraction of the cooperative
team

Let a = 20, b = 2, γ = 1.2, A = 2, δ = 0.6, α1 =
0.5, α2 = 0.4, and make β = 0.55, 0.7, 0.8, respec-
tively, three basins of attraction about (x1(t), x2(t)) of
the system are shown in Figure 20,21 and 22 in which
the green set of points denotes domain of attraction,
the red set of points denotes attractor, and the blue set
of points denotes escape area.

Figure 20: Basin of attraction with β = 0.55
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Figure 21: Basin of attraction with β = 0.7

Figure 22: Basin of attraction with β = 0.8

In Figure 20, β = 0.55 , the system(15) is in
chaotic state,The input will converge to a chaotic at-
tractor if the initial input is in the domain of attraction
in Figure 20.

In Figure 21, β = 0.7 , the system(15) is in stable
state. We can see domain of attraction is an quadrilat-
eral and it is a safe region. The attractor is the Nash
equilibrium input that means if the initial R&D input
of player 1 and player 2 is in this domain of attraction,
the input will remain stable after iteration.

In Figure 22, β = 0.8 , the system(15) is also in
stable state. The domain of attraction also is a quadri-
lateral ,but it is smaller than the domain of attraction
in Figure 21 ,it is a safe region,too

From the comparison of Figure 20,21 and 22, we
find that the domain of attraction reduces with in-
crease of technology spillover rate β under the con-
ditions that the initial input of the third player is fixed.
but if β is too low , the system (15) will be easy to fall
into chaos.

From an economic perspective,the two players
initial R&D input should be in the stable region in or-
der to maintain the market stable after iteration, tech-
nology spillover rate should be kept within reasonable
limits.

7.2 Impact of input adjustment speed on
Basins of attraction of the cooperative
team

Let a = 20, b = 2, γ = 1.2, A = 2, β = 0.6, δ =
0.6, α2 = 0.4, and make α1 = 0.5, 0.55, 0.64, respec-
tively, three basins of attraction about (x1(t), x2(t))
of the system are shown in Figure 23, 24, 25 .

Figure 23: Basin of attraction with α1 = 0.5
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Figure 24: Basin of attraction with α2 = 0.55

Figure 25: Basin of attraction with α3 = 0.64

In Figure 23,α1 = 0.5 , the system(15) is in
period-2 state.The attractor is a two period cycle that
means if the initial R&D input of player 1 and player 2
is in this domain of attraction, the input will oscillate
between the two points at last.

In Figure 24, α1 = 0.55 , the system(15) is in
period-6 state. The domain of attraction narrows and
the attractor is a six period cycle.

In Figure 25, α1 = 0.64 , the system(15) is in
chaotic state. The input will converge to a chaotic at-
tractor if the initial input is in the domain of attraction
in Figure 25.

From the comparison of Figure 23, 24, 25, we find
that the domain of attraction reduces with increase of
R&D input modification speed under the conditions
that the initial input of the third player is fixed. From
an economic perspective, with increase of R&D input
modification speed of player 1 and 2, the two players
initial input should be lower in order to maintain the
market stable.

8 Conclusion

In this paper, we consider a R&D input game model
with spillover and endogenous demand in a triopoly
market. Suppose two players in the triopoly make up
a cooperative team to compete with the third one. The
Nash equilibrium R&D input is unstable if the adjust-
ment speed in R&D input is too high. 2D bifurcation
diagram is introduced and we find that with increase
of input modification speed, the system will lose sta-
bility via period-doubling bifurcations or Neimark-
Sacker bifurcations. Effects of β and δ on profits are
studied and we can see that that players’ profits may
not lose stability synchronously. A feedback control
method is used to control the system to equilibrium
state. Basins of attraction are investigated and show
that, the domain of attraction becomes smaller with in-
crease of spillover rate and input modification speed,
and in order to maintain market stable, two team play-
ers’ initial input must be kept within a certain range.
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