
Distributed coordination strategy for target-enclosing operations

by particle swarms

TAE-HYOUNG KIM

Chung-Ang University

School of Mechanical Engineering

221 Heukseok-dong, Dongjak-gu, Seoul

REPUBLIC OF KOREA

kimth@cau.ac.kr

Abstract: This paper presents a methodology for group coordination and cooperative control of n agents to achieve

a target-enclosing operation in three-dimensional (3D) space. In the developed coordination strategy, multiple

agents are controlled in a distributed manner to converge to an assigned formation while tracking the target object

moving in 3D space. The distinctive features of the proposed method are as follows: First, it is a simple, memory-

less control scheme. Second, no communication mechanism between agents is necessary, and thus it is inherently a

distributed control strategy. From these viewpoints, it seems easy to implement. Further, it appears to be a practical

method for the following reasons: (i) it is robust against any finite number of transient measurement errors and (ii)

it can achieve the control objectives even when constraints on the control input exist. We also present a scheme to

decrease the possibility of a collision between agents. Numerical examples are given to illustrate the efficacy of

the proposed method and the achievement of an assigned formation in 3D space.

Key-Words: Multi-agent systems, distributed coordination, cooperative robot systems, circulant matrices

1 Introduction

Formation control, which coordinates the motions of

relatively simple and inexpensive multiple agents, is

one of the essential technologies that enable agents to

cover a larger operational area and achieve complex

tasks. Recently, several research groups developed

coordination control strategies capable of achieving

an enclosing formation around a specific area (object)

by multiple agents using local information (see e.g.

[1, 2, 3, 4, 5, 6, 7]). This type of coordination of mo-

tion is not only interesting but also significant because

it has many potential applications from an engineering

standpoint, as mentioned in Marshall et al. [2, 3] and

Sepulchre et al. [5]. For instance, it is useful when

hazardous terrestrial/oceanographic exploration, mili-

tary surveillance, and rescue operations are performed

by cooperative multi-agent systems.

In this line of research, Marshall et al. [2, 3] pro-

posed a formation control method under cyclic pur-

suit for multiple agents with motion constraints mov-

ing in a plane. Based on the above methodology,

Kim and Sugie [6, 7] proposed a distributed cooper-

ative control scheme using a cyclic pursuit strategy

for target-capturing tasks in three-dimensional (3D)

space by multi-agent systems. In the above method,

each agent’s behavior is determined by using local

information on the target object andone other agent

in its neighborhood. For target-capturing strategies,

Kobayashi et al. [4] suggested a decentralized control

law based on a gradient descent method for multiple

agents. However, in their method, each agent requires

information on the target object andtwo other agents.

The above methods [2, 3, 4, 6, 7] guarantee that

agents’ coordination finally results in a circular forma-

tion. However, we cannot directly place each agent

at the required location by these methods. Further,

if the control schemes of Marshall et al. [2, 3] and

Kim and Sugie [6, 7] are applied, each agent circu-

lates continuously while maintaining a constant dis-

tance to its pursuing agent. Thus, the applicability of

the given methods may be limited. Therefore, it is re-

quired within the framework of practical applicability

to extend these approaches so that multiple agents are

controlled in a distributed manner such that they con-

verge to an assigned formation while tracking a target

object moving in 3D space.

This paper proposes a distributed coordination

strategy by which multiple agents converge to the for-

mation assigned by the designer while tracking a tar-

get object moving in 3D space. To that purpose, we

first consider a group of n agents randomly dispersed

in 3D space. Then, based on the modification of the

results by Kim and Sugie [6, 7], simple distributed
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Figure 1: Coordinate frames and notations.

control laws are developed. This coordination strat-

egy guarantees the achievement of the desired global

behaviors of the agents by using only locally available

information; each agent individually decides its be-

havior based on local information on only one other

agent and the target object, which is probably mini-

mum. This scheme can thus reduce the information

requirements as compared with conventional meth-

ods. In the numerical examples, we verify that (i) the

proposed method is robust against any finite number

of transient measurement errors and (ii) it can achieve

the control objectives even when constraints on the

control input exist. From the above viewpoint, the

proposed method is practical and easily implemented.

A scheme to decrease the possibility of a collision be-

tween agents is also proposed, and its effectiveness

is verified through a simulation study. Note that the

agent dynamics are not considered and full actuation

is assumed in this paper.

2 Problem Statement

Consider a group of n agents dispersed in 3D space,

as shown in Figure 1. Each agent is modeled as an au-

tonomous point mass and all agents are ordered from

1 to n; i.e., P1, P2, · · · , Pn. The position vectors

of the target object and agent Pi (i = 1, 2, · · · , n)

in the inertial frame are denoted by po(t) ∈ R
3 and

pi(t) ∈ R
3, respectively. Suppose that each agent is

described as

ṗi = ui, (1)

where ui ∈ R
3 is the control input. It is assumed that

agent Pi can measure the following vectors:

ri (:= pi − po), ai (:= pi − pi+1). (2)

The target-fixed frame is defined as {Γobj}, where the

origin is at the center of the target object and the Xobj-

, Yobj- and Zobj axes are parallel to the x-, y- and z-

axes of the inertial frame, respectively. The projected

vector of ri onto the Xobj–Yobj plane in the target-

fixed frame is denoted as di and the scalars are defined

as

θi = ∠(ex,di), αi = ∠(di, ri), ri := |ri|, (3)

where ex denotes the unit vector in the Xobj -direction

of {Γobj}, and ∠(x,y) denotes the counterclockwise

angle from vector x to vector y. Then, ri can be rep-

resented as

ri = [ri cos θi cosαi, ri sin θi cosαi, ri sinαi]
T .

(4)

Note that since ri+1 = ri− ai, θi+1 and ǫi, defined as

ǫi =

{

θi+1 − θi, i = 1, 2, · · · , n− 1,

θ1 − θn + 2π, i = n,
(5)

can be calculated in a similar way based on (2). Let R
denote the required distance between the target object

and the agents.

Now we consider how to form a geometric pattern

for the target-capturing task by the group of n agents.

The detailed control objectives are stated as follows:

(A1) n agents enclose the target object,i.e., they are

spaced out around the target object at intervals of as-

signed angles and maintain those angles.

(A2) Each agent approaches the target object, main-

taining a distance R.

(A3) The angle αi, which corresponds to the altitude

of each agent, converges to the assigned angle Φ.

Note that for the sake of clarity and page limits, this

paper only considers the equal convergence positions

for all agents, i.e., R1 = R2 = · · · = Rn = R and

Φ1 = Φ2 = · · · = Φn = Φ, whereas distinct posi-

tions for each agent can be assigned. In the following

section, we will derive the control law that achieves

objectives (A1)–(A3).
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3 Distributed Coordination Strategy

From the practical viewpoint, it is important to

achieve the desired global behavior through relatively

simple control laws using local information. We

therefore propose a distributed coordination scheme

for target-enclosing tasks, which can realize the re-

quired geometric formation mentioned in Section 2.

In order to develop such a control strategy, we

first denote the assigned angular locations of θi (i =

1, 2, · · · , n) by θ̂i, which satisfies 0 ≤ θ̂1 < θ̂2 <

· · · < θ̂n < 2π. Thus, the control objectives (A1)–

(A3) presented in Section 2 can be formulated explic-

itly as follows:

(A1′) θi(t) → θ̂i[rad] as t → ∞,

(A2′) ri(t) → R as t → ∞,

(A3′) αi(t) → Φ[rad] as t → ∞ for i = 1, 2, · · · , n.

Then, the proposed local control law for the ith agent

Pi is described as

θ̇i(t) = k1δθi(t), (6)

ṙi(t) = k2(R− ri(t)), (7)

α̇i(t) = k3(Φ− αi(t)), (8)

where k1, k2, and k3 (> 0) are the controller gains to

be determined by the designer and

{

δθi(t) :=Ψiθi+1(t)− θi(t), i = 1, 2, · · · , n− 1,

δθn(t) :=Ψn(θ1(t) + 2π)− θn(t), i = n,
(9)

with Ψi := θ̂i/θ̂i+1 (i = 1, 2, · · · , n − 1) and Ψn :=

θ̂n/(θ̂1 + 2π). Note that 0 ≤ Ψi < 1 holds for any

i = 1, 2, · · · , n.

In order to analyze the overall multi-agent system,

we rewrite (6) in the following vector form:

θ̇(t) = Aθ(t) +B, (10)

where θ := [θ1, θ2, · · · , θn]
T ∈ R

n and A ∈ R
n×n

and B ∈ R
n are

A :=












−k1 k1Ψ1 0 · · · · · · 0
0 −k1 k1Ψ2 0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 −k1 k1Ψn−2 0
0 · · · · · · 0 −k1 k1Ψn−1

k1Ψn · · · · · · · · · 0 −k1












,

B :=[0, 0, · · · , 0, 2πk1Ψn]
T .

(11)

Next, key result (Geršgorin circle theorem), which is

useful in stability analysis of our multi-agent systems

will be presented [8].

Lemma 1 Let M be a complex n×n with entries aij ,
where i, j = 1, 2, · · · , n. For i, j ∈ {1, 2, · · · , n},

define Ri =
∑n

j=1,i6=j |aij |, where |aij | denotes the

complex norm of aij . Then, each eigenvalue of the

matrix M is in at least one of the disks

Di(M)={z ∈ C : |z − aii| ≤ Ri, i = 1, 2, · · · , n}
(12)

in the complex plane. Equivalently, the n eigenvalues

of M are contained in the region in the complex plane

determined by

D(M) =

n⋃

i=1

Di(M). (13)

Note that aii = −k1 and 0 ≤ Ri(= |k1Ψi|) < k1
of the matrix A in (11), since 0 ≤ Ψi < 1 and k1 >
0 for i = 1, 2, · · · , n. Hence, from Lemma 3.1, it

can be easily verified that the n eigenvalues λi (i =
1, 2, · · · , n) of the matrix A are in the set Λ := {λ ∈
C : Re(λ) < 0}, where Re(λ) denotes the real part of

λ ∈ C. Then, the main result of the paper is stated as

follows:

Theorem 2 Consider the system of n agents. It is

assumed that all agents are initially arranged in 3D

space as shown in Figure 1. Then, control laws (6)–

(8) achieve (A1′)–(A3′) simultaneously.

Proof. Since it is obvious that (7) implies (A2′)
and (8) implies (A3′), we will prove that (A1′)

is achieved. Define ei := θi − θ̂i. Note that

Aθ̂ + B = 0, where θ̂ := [θ̂1, θ̂2, · · · , θ̂n]
T ∈ R

n.

Then, it follows from (10) that ė(t) = Ae(t), where

e := [e1, e2, · · · , en]
T ∈ R

n and A is a stable matrix,

as shown in Lemma 3.1. Therefore, it holds that

e(t) → 0 as t → ∞. �

The above theorem implies that the control laws

given in (6)–(8) guarantee that all agents assemble

into the assigned formation around the freely moving

target object in 3D space. The control scheme has

additional distinctive features, in that each agent in-

dividually obtains the required information using the

sensor systems implemented on its body, which means

that no communication mechanism between agents is

introduced. In addition, it is a memoryless controller

in the sense that agent Pi (i = 1, 2, · · · , n) deter-

mines its next behavior based only on the current in-

formation on agent Pi+1, independently of the past

behavior of Pi+1. Thus, it is an easily implementable

method from the engineering viewpoint. Moreover, it

is a practical method because it is robust against any

finite number of transient measurement errors (e.g.,
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cases in which agent Pi+1 is invisible from agent Pi

for a period of time). These properties will be veri-

fied through simulation studies in the following sec-

tion (see Section 4.2).

It may be in order to describe ui explicitly. From

(1), (2), and (4), it is straightforward to obtain

ui = ṙi + ṗo (14)

subject to (6)–(8). Note that it is inevitable to exploit

ṗo in order to achieve target capturing without any er-

rors irrespective of the control strategies. When each

agent knows the target velocity in the steady state,

(A1′)–(A3′) will be satisfied. We will evaluate the

performance in the case where ṗo is not available at

all in Section 4.

On the other hand, the full actuation agent is con-

sidered in this paper, but there are times when full ac-

tuation may be infeasible because of the actuator lim-

itation. As one of the possible methods to overcome

such a problem, we can set constraints on θ̇i, ṙi, and

α̇i (i = 1, 2, · · · , n) in (6)–(8) as

|θ̇i(t)|≤θi,max, |ṙi(t)|≤ri,max, |α̇i(t)|≤αi,max,
(15)

for ∀t ≥ 0, where θi,max, ri,max, and αi,max are given

by the designer. In Sections 4.1 and 4.2, we will

demonstrate that the control objectives (A1′)–(A3′)
can be achieved without problem even when the con-

trol laws (6)–(8) subject to (15) are applied.

Next, we consider the collision avoidance prob-

lem. The proposed distributed coordination control

laws (6)–(8) cannot guarantee that no collision occurs;

e.g., if Ψi(t) ≈ 0, which probably results in θ̇i(t) < 0,

agent Pi may collide with agent Pi−1, which satis-

fies θ̇i−1(t) > 0, ǫi−1(t) > 0, ri−1(t) = ri(t), and

αi−1(t) = αi(t). In order to decrease the possibility

of collisions, we consider the following: Consider that

n agents are dispersed in a counterclockwise star for-

mation ([6, 7, 9]) at the initial time instant (see Figure

1, where di > 0, 0 < ǫi < 2π for i = 1, 2, · · · , n,

and
∑n

i=1
ǫi = 2π). Then, we redefine the assigned

angular locations θ̄i of θi and Ψi in (9) as

θ̄i := θ̂i + 2ℓπ, i = 1, 2, · · · , n,

Ψi := θ̄i/θ̄i+1, i = 1, 2, · · · , n− 1,

Ψn := θ̄n/(θ̄1 + 2π),

(16)

where ℓ denotes the positive integer. Note that 0 <
Ψi < 1 holds for any i = 1, 2, · · · , n, and thus the

convergence property given in Theorem 3.2 is also

preserved. However, for ℓ ≫ 1, one can obtain

Ψi ≈ 1. Therefore, (16) has all agents circulating

in a counterclockwise direction, finally converging to

their assigned locations θ̂i for i = 1, 2, · · · , n. Note
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Figure 2: Simulation result of Case 1: Position trajec-

tories of Pi (i = 1, 2, · · · , 10).

that if Ψi = 1, no collision occurs, as shown in Kim

and Sugie [6, 7]. Thus we can see that the above sim-

ple technique (16) would be useful for collision avoid-

ance. Its effectiveness will be demonstrated through

numerical examples in Section 4.3. Note that a clock-

wise formation can be treated in a similar way.

4 Simulation examples

In this section, the performance of the coordination

strategy proposed in Section 3 is evaluated in the case

where ṗo is not available at all,i.e., ṗo(t) = 0 in (14).

4.1 Case 1

To illustrate the dynamic performance of the proposed

distributed coordination scheme, a simulation is car-

ried out in which n = 10 agents are initially ran-

domly dispersed in 3D space before finally achieving

the required formation stated in Sections 2–3. Specif-

ically, the assigned locations θ̂i, R, and Φ for Pi

(i = 1, 2, · · · , 10) are determined as follows: R = 8,

Φ = 0, θ̂1 = 0.3, θ̂2 = 0.75, θ̂3 = 1.35, θ̂4 = 2.1,

θ̂5 = 2.8, θ̂6 = 3.93, θ̂7 = 4.36, θ̂8 = 4.90, θ̂9 = 5.5,

and θ̂10 = 6.1. The initial locations of agents are cho-

sen as shown in Figure 2. The controller gains k1, k2,

and k3 in (6)–(8) are chosen as k1 = k2 = k3 = 5.

The sampling time is ts = 0.01[s] and the simulation

is performed for t = 7[s]. The path of the target object
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Figure 3: Simulation results of Case 1: Time plots of ∆θi(t), ∆ri(t), and ei(t) i = 1, 2, · · · , 10.

is set as follows: po(t) = [5t, 0, 0]T for t ∈ [0, 2.5];
po(t) = [5t,−5(t−2.5), 0]T for t ∈ (2.5, 5]; po(t) =
[25,−12.5, 0]T for t ∈ (5, 7]. Note that each agent

does not know ṗo(t) [i.e., ṗo(t) = 0 in (14)]. It is

supposed that ∆θi(t) := θi(t)− θi(t− ts), ∆ri(t) :=
ri(t) − ri(t − ts), and ∆αi(t) := αi(t) − αi(t − ts)
(i = 1, 2, · · · , 10) for t ∈ (0, 7] are constrained as

∆θi(t) =







0.02, if ∆θi(t) > 0.02

∆θi(t), if |∆θi(t)| ≤ 0.02

−0.02, if ∆θi(t) < −0.02

(17)

∆ri(t) =







0.1, if ∆ri(t) > 0.1

∆ri(t), if |∆ri(t)| ≤ 0.1

−0.1, if ∆ri(t) < −0.1

(18)

∆αi(t) =







0.01, if ∆αi(t) > 0.01

∆αi(t), if |∆αi(t)| ≤ 0.01

−0.01, if ∆αi(t) < −0.01

(19)

The simulation results are shown in Figures 2 and

3. First, Figure 2 illustrates the resulting position tra-

jectories of a group of ten agents during the simula-

tion; the agents assemble into the assigned configura-

tion and track the freely moving target object simul-

taneously. The time plots of ∆θi(t) and ∆ri(t) are

shown in Figures 3(a) and 3(b), which verify that con-

straints (17)–(18) are satisfied. Also, ∆θi(t) satisfies

(19) and its time plot is similar to Figure 3(b). The

changes of ei := θ̂i − θi (i = 1, 2, · · · , 10) with re-

spect to time are plotted in Figure 3(c), where all ei
values finally converge to zero. The results show that

all agents converge to the assigned formation around

the target object and maintain their coordinates. The

above simulation results clearly demonstrate that con-

trol goals (A1′)–(A3′) mentioned in Section 3 are

achieved by the developed simple distributed control

laws, (6), (7), and (8), subject to constraints (17), (18),

and (19).
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Figure 4: Interval of invisibility for Pi (i =
1, 2, · · · , 10).

4.2 Case 2

To consider a more realistic scenario, it is assumed

that agent Pi+1 is invisible from agent Pi for a pe-

riod of time, t ∈ [ti1 , ti2 ], shown in Figure 4. This

means that the ith agent Pi might be unable to take

the measurement of ai, and thus θi+1 is unavailable

in control law (6). In this case, we can set δθi as

δθi(t) = δθi(ti1 − ts), where t ∈ [ti1 , ti2 ]. Simula-

tions are performed in the case of n = 10 agents, with

the same initial parameters given in Section 4.1. Simi-

lar to the Case 1, it is assumed that each agent does not

know ṗo(t) and that ∆θi(t), ∆ri(t), and ∆αi(t) are

constrained as (17)–(19). The assigned final locations

for Pi (i = 1, 2, · · · , 10) are given in Figure 5. The

path for the target object is set as follows: po(t) =
[5t,−5t, 0]T for t ∈ [0, 2.5]; po(t) = [5t,−12.5, 0]T

for t ∈ (2.5, 5]; po(t) = [25,−12.5, 0]T for t ∈ (5, 6].

The transient motions of agents for t = 6[s] are

shown in Figure 5. In addition, the time plots of ei(t)
are given in Figure 6, which shows that the proposed
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Figure 7: Simulation result of Case 3: Position trajec-

tories of Pi (i = 1, 2, · · · , 10).

scheme is sufficiently robust against any finite num-

ber of transient measurement errors. The behaviors of

all agents demonstrate the achievement of the conver-

gence scenario outlined in the previous sections and

verify the distinctive feature of the robust memoryless

control scheme.

4.3 Case 3

In Section 3, we proposed a method to lessen the pos-

sibility of a collision between agents. Here we will

demonstrate its effectiveness. The initial locations of

agents are identical to those used in Section 4.2. Their

assigned final positions are given in Figure 7. The

controller gain k1 in (6) is set as k1 = 15. Other

design parameters and the target’s path are set iden-

tically to those of Section 4.2. Constraints such as

(17)–(19) are not considered. Note that ten agents are

initially dispersed in a counterclockwise star forma-

tion ([9, 6, 7]),i.e., θi(0) < θi+1(0) holds. If we per-

form the simulation based on (6)–(8) under the above

setting, a counterclockwise star formation is not pre-

served. This means that a case such as θi(t) > θi+1(t)
happens at some time instant. Note that the above sit-

uation could lead to a collision between agents.

In order to avoid a collision, we introduce the

technique given in (16). The assigned angular loca-

tions are set as θ̄i := θ̂i+2π (i = 1, 2, · · · , 10), where

the values of θ̂i are given in Figure 7. Then, Ψi :=
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Figure 8: Time plots of θi(t)[rad] (i = 1, 2, · · · , 10).

θ̄i/θ̄i+1 (i = 1, 2, · · · , 9) and Ψ10 := θ̄10/(θ̄1 + 2π)
are used in control law (6) with (9). The simulation re-

sults are illustrated in Figures 7 and 8. They show that

all agent circulate in a counterclockwise direction and

then converge to the assigned locations. Further, Fig-

ure 8 demonstrates that a counterclockwise star for-

mation is preserved and no collisions occur between

agents. From the above results, we can see that the

proposed simple collision avoidance technique (16) in

Section 3 is a feasible one in our coordination scheme.

5 Conclusion

In this paper, we have proposed a simple distributed

coordination strategy for a target-enclosing operation

by particle swarms. In this scheme, multiple agents

are controlled in a very simple distributed manner so

as to converge to the formation assigned by the de-

signer while tracking a target object moving in 3D

space. To that purpose, each agent individually de-

cides its behavior using only locally available infor-

mation,i.e., distances and angles with respect to other

agents and to the target objective. Therefore, instead

of the use a global information and/or communica-

tion mechanism, only local sensor systems need to

be adopted to generate the desired global group be-

havior. This means that this scheme can reduce the

information requirements as compared with conven-

tional methods. From these viewpoints, the proposed

method is easily implemented. Furthermore, it ap-

pears to be a practical method for the following rea-

sons: (i) it is robust against any finite number of tran-

sient measurement errors and (ii) it can achieve the

control objectives even when constraints on the con-

trol input exists. One of the schemes to decrease the

possibility of collisions between agents has also been

proposed. Numerical examples have illustrated the ef-

ficacy of the proposed method.

Future research will be devoted to extending the

proposed methodology to handle agents with dynam-

ics and motion constraints. Also, in order to im-

prove the implementability of the proposed scheme,

a method of estimating the velocity of the target ob-

ject should be developed. Further, the scheme should

be tested experimentally to investigate its performance

in a realistic environment.
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