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Abstract: In the paper, a general complex dynamical network with coupling lags is introduced. Then the problem
of synchronization stability analysis for the complex dynamical network is further discussed. By use of linear
matrix inequalities (LMI), a novel Lyapunov functional is constructed. And then we have obtained a new general
stability criterion of synchronization state in the complex dynamical networks. In the end, numerical simulations
are provided to verify the effectiveness and feasibility of the developed theorem.
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1 Introduction

Complex dynamical networks have become a focal re-
search topic in recent years, and have drawn more and
more attention from many fields of science and engi-
neering [1-6]. The main reason is that most practi-
cal systems can be modeled by all kinds of complex
networks, which are usually referred to as structures
that consist of nodes or vertices connected by links or
edges. Examples of such complex networks can be
found everywhere in our daily lives, such as the Inter-
net, the World Wide Web, food webs, electric power
grids, cellular and metabolic networks. These proper-
ties of complex dynamical networks have widely been
studied. The synchronization motion of its dynam-
ical elements is one of the most important dynami-
cal properties of complex networks. Much work has
been researched on synchronization stability analysis
for complex networks in the literature [7-11].

Recently, Wang and Chen [12] introduced a uni-
form dynamical network model and investigated its
synchronization and control. Lu and Chen [13] pro-
vided a systematic review on the framework to an-
alyze synchronization in complex networks of cou-
pled systems with a focus on the situation of direct-
ed graphs. Li and Chen [14] further extended the
uniform dynamical network model to include cou-
pling delays among the network nodes and studied its
synchronization. L̈u and Chen [15] studied the syn-
chronization of time-varying complex dynamical net-
works in which the inner-couplings are time-varying.
Zhou et al. [16] studied the adaptive synchroniza-

tion of uncertain complex dynamical network. Zhang
et al. [17] studied the synchronization of a general
complex dynamical network with delayed nodes with
adaptive feedback control. A robust tracking control
problem of a class of dynamical complex networks
was presented through a distributed adaptive approach
[18]. The dynamics of networks with delayed cou-
pling have been extensively studied in recent years
[19-25]. Tanget al. [26] discussed a general complex
dynamical network with time-varying delays. Based
on the theory of asymptotic stability of linear time-
delay systems, two new general stability criteria were
proposed. It was researched that sampled-data ex-
ponential synchronization of complex dynamical net-
works with time-varying coupling delay and uncertain
sampling[27]. By combining the time-dependent Lya-
punov functional approach and convex combination
technique, they raised a novel criterion to ensure the
exponential stability of the error dynamics.

It is worth noting that most of the existing re-
sults on complex networks are concerned with a di-
agonal inner-coupling matrix, and little progress has
been made toward a non-diagonal inner-coupling ma-
trix from complex networks with time coupling de-
lays. The synchronization stability analysis for com-
plex networks, as one of the foremost problems, also
reserves largely unsolved and challenging, which s-
timulates this study.

In the paper, we discuss the problem of synchro-
nization stability analysis for the complex dynamical
network with coupling lags. Taking advantage of lin-
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ear matrix inequality, then a new general stability cri-
terion has been proposed. Finally, two numerical ex-
amples are provided to show the effectiveness of the
proposed theorem. The rest of the brief is organized as
follows. In Section II, a general complex dynamical
network is introduced. The stability criterion of the
synchronization state is derived in Section III. Then
numerical examples are given in Section IV, and con-
clusion is presented in Section V.

Notation: The notation used throughout the paper
is fairly standard. LetRn denotes then-dimensional
Euclidean space over the reals with the norm‖ · ‖.
For anyu = (ui)1≤i≤n,v = (vi)1≤i≤n andu, v ∈ Rn,
we define the scalar product of the vectorsu and v
as:〈u, v〉 =

∑n
i=1 uivi. Let R = (−∞,+∞),R+ =

[0,+∞), R∗

+ = (0,+∞), R∗n
+ = {v = (vi)1≤i≤n ∈

Rn, vi ∈ R∗

+,∀i = 1, 2, ..., n}. Letλ(M) denotes the
set of eigenvalues of the matrixM , M ′ its transpose
andM−1 its inverse.We define|M | = (|mij |)1≤i,j≤n

if M = (mij)1≤i,j≤n. Let Cn = C([−τ, 0], Rn)
be the Banach space of continuous functions map-
ping the interval with the topology of uniform con-
vergence. For a givenφ ∈ Cn ,we define‖φ‖ =
sup−τ≤θ≤0‖φ(θ)‖, φ(θ) ∈ Rn. We define the func-
tion sgn(·) andM∗ = (mij)1≤i≤n are

sgn(ϑ) =







1 ϑ ∈ R∗

+

−1 −ϑ ∈ R∗

+

0 ϑ = 0

,m∗

ij =

{

mij if i = j

|mij | if i 6= j

2 Problem formulation

In what follows, we consider a general complex dy-
namical network consisting ofN identical linearly
and diffusively coupled nodes, with each node being
a n-dimensional dynamical system and introduce a
complex delayed dynamical network model.







ẋi = f(xi) + c
N∑

j=1
CijG(t)xj(t− τ), i = 1, 2, ..., N

x(t) = Φ(t), t ∈ [−h, 0]
(1)

wherexi = (xi1, xi2, , xin)
T ∈ Rn is a state vec-

tor representing the state variables of nodei, G(t) =
(gij(t))n×n ∈ Rn is a coupling link matrix between
nodei and nodej(i 6= j) for all 1 ≤ i, j ≤ N at time
t, the constantc > 0 is the coupling strength,C(t) =
(Cij(t))N×N is the coupling configuration matrix rep-
resenting topological structure of the network at time
t, in which Cij(t) is defined as follows: if there is
a connection from nodei to node j(i 6= j),then
Cij = Cji = 1, otherwiseCij = Cji = 1(i 6= j),
τ(τ > 0) is the time delay and the diagonal elements

of matrixC(t) are defined by

Cii(t) = −
N∑

j=1,j 6=i

Cij, i = 1, 2, ..., N (2)

The time delay,τ , is a constant that satisfies

0 ≤ τ ≤ h

whereh > 0 is a constant. The initial condition,Φ(t),
is a continuous and differentiable vector-valued func-
tion of t ∈ [−h, 0].

There have been various definitions of synchro-
nization in the literature [14, 15]. Here a rigorous
mathematical definition of complete synchronization
for delayed dynamical networks is introduced as fol-
lows.

Let xi(t,X0)(i = 1, 2, , N) be a solution of the
nonautonomous dynamical network

ẋi = f(xi)+gi(t, x1(t−τ), ..., xN (t−τ)), i = 1, 2, ..., N
(3)

whereX0 = ((x01)
T , (x02)

T , ..., (x0N )T )T ∈ RnN , f :
D → Rn andgi : D × · · ·D → Rn are continuous
differentiable withD ⊆ RN , and for allt. If there is
a nonempty open subsetE ⊆ D, with x0i ∈ E(i =
1, 2, ..., N), such thatxi(t,X0) ∈ D for all t ≥ 0
,i = 1, 2, ..., N , and

lim
t→∞

‖xi(t,X0)− s(t,X0)‖ = 0, 1 ≤ i ≤ N (4)

wheres(t, x0) is a solution of the systeṁx = f(x)
with x0 ∈ D, then the dynamical network (3) is said
to realize synchronization andE ×E...×E is called
the region of synchrony for network (3). Moreover,
X(t,X0) = (xT1 (t,X0), ..., x

T
N (t,X0)) is called the

synchronous solution of network (3), ifxi(t,X0) =
xj(t,X0) for all t ≥ 0 and1 ≤ i, j ≤ N .

Hereafter, the delayed dynamical network (1) is
said to achieve (asymptotical) synchronization if

x1(t) = x2(t) = ... = xN (t) = s(t), as t → ∞
(5)

where s(t) ∈ Rn is a solution of an isolate node,
namely,ṡ(t) = f(s(t)).

For later use, we will need the following lemmas.

Lemma 1 Suppose that the irreducible matrixC sat-
isfies Eq. (2), then:

(1) 0 is an eigenvalue ofC with multiplicity 1as-
sociated with the eigenvector(1, 1, .., 1)T ;

(2) All the other eigenvalues ofC are less than
0 andλi(i = 1, 2, ..., N) can be ordered as follows:
0 = λi ≥ λi ≥ ...λN .
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Lemma 1 implies that the irreducible matrixC
has a 0 eigenvalue of multiplicity 1.

Lemma 2 [12] If C satisfies Lemma 1, then there ex-
ists a unitary matrix,Φ(φ1, φ2, .., φN ), such that

CTφk = λkφk, k = 1, 2, ..., N

whereλi, i = 1, 2, ..., N , are the eigenvalues ofC.

Lemma 3 [14] Consider the delayed dynamical net-
work (1). Let

0 = λ1 ≥ λ2 ≥ ...λN (6)

be the eigenvalues of the outer-coupling matrixC. If
the followingN − 1 of n-dimensional delayed differ-
ential equations are asymptotically stable about their
zero solutions:

ẇ = J(t)w(t)+cλiG(t)w(t−τ), i = 2, 3, ..., N (7)

whereJ(t) = f ′(s(t)) ∈ Rn×n is the Jacobian of
f(x(t)) at s(t), then the synchronized states (5) are
asymptotically stable for the dynamical network (1).

3 Main results
In this section, we will derive the main results about
the stability analysis of synchronization for the com-
plex delayed dynamical network (1). The inner-
coupling matrixG(t) is often regarded as a diago-
nal matrix, we assume that it is an ordinary constant
matrix in the paper andJ(t) of system (7) is a con-
stant matrix. For simplicity, we letG(t) = G and
J(t) = J . Based on the above-mentioned assump-
tions and definitions, we can obtain the following the-
orem.

Theorem 4 For the dynamical system (7), if there ex-
istsY = (yij)1≤i,j≤n = −A− τB such that

(1) yii > 0, i = 1, 2, ..., n andyij ≤ 0, for i 6= j,
i, j = 1, 2, ..., n

(2) Successive principal minors ofY are positive,
that is,

det






y11 y12 · · · y1i
· · · · · · · · · · · ·
yi1 yi2 · · · yii




 > 0, i = 1, 2, ..., n

whereA = (J + cλiG)∗ and B = |cλi||GJ | +
(cλi)

2|G2|, then zero solution of system (7) is asymp-
totically stable.

That is, the synchronized states (5) are asymptot-
ically stable for the dynamical network (1).

Proof: Suppose thatw(t) is continuously differ-
entiable whent ≥ 0, by using the Newton–Leibniz
formula, we can get

w(t− τ) = w(t)−

∫ t

t−τ
ẇ(s)ds (8)

Substituting Eq. (7) into Eq. (8), we achieve

w(t−τ) = w(t)−J

∫ t

t−τ
w(s)ds−cλiG

∫ t

t−τ
w(s−τ)ds

(9)
Then systems (7) can be rewritten

ẇ(t− τ) = (J + cλiG)w(t) − cλiGJ

∫ t

t−τ
w(s)ds

− (cλi)
2G2

∫ t

t−τ
w(s− τ)ds

(10)

Let v ∈ Rn with componentsvi > 0(i = 1, 2, ..., n)
and let us consider the radially unbound Lyapunov
functional given by

U(t) = U1(t) + U2(t) + U3(t) + U4(t) (11)

where
U1(t) =< |w(t)|, v > (12)

U2(t) = |cλi| < |GJ |

∫ 0

−τ

∫ t

t+s
|w(θ)|dθds, v >

(13)

U3(t) = (cλi)
2 < |G2|

∫ 0

−τ

∫ t

t+s
|w(θ − τ)|dθds, v >

(14)
and

U4(t) = τ(cλi)
2 < |G2|

∫ t

t−τ
|w(θ)|dθ, v > (15)

Then it is obvious that

U(t) < ∞, t > 0 (16)

The right Dini derivative ofU along the solution of
Equation (10) gives

D+U(t)|(10) = D+U1(t)|(10) +D+U2(t)|(10)

+D+U3(t)|(10) +D+U4(t)|(10)
(17)

We have

D+U1(t)|(10) =<
d+|w(t)|

dt+
, v >

< Dw(t)
d+w(t)

dt+
, v >

(18)
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whereDw(t) = diag{sgn(w1), sgn(w2), ..., sgn(wn)}.
Then we can obtain

D+U1(t)|(10) =< Dw(t)(J + cλiG)w(t), v >

− < Dw(t)(cλiGJ

∫ t

t−τ
w(s)ds), v >

− < Dw(t)(cλi)
2G2

∫ t

t−τ
w(s− τ)ds, v >

(19)

Next, by overvaluingD+U1(t)|(10), we can get

D+U1(t)|(10) ≤< (J + cλiG)∗|w(t)|, v >

+ < |cλi||GJ |

∫ t

t−τ
|w(s)|ds, v >

+ < (cλi)
2|G2|

∫ t

t−τ
|w(s − τ)|ds, v >

(20)

Similarly, we have

D+U2(t)|(10) = |cλi| < |GJ |(τ |w(t)|), v >

− |cλi| < |GJ |(

∫ t

t−τ
|w(θ)|dθ), v >

(21)

D+U3(t)|(10) = (cλi)
2 < |G2|(τ |w(t − τ)|), v >

− (cλi)
2 < |G2|(

∫ t

t−τ
|w(θ − τ)|dθ), v >

(22)

and

D+U4(t)|(10) = (cλi)
2 < τ |G2|(|w(t)| − |w(t− τ)|), v >

(23)

From Eqs. (20)-(23) and Eq. (11), we obtain

D+U(t)|(10) ≤< −Y |w(t)|, v > (24)

whereY = −A − τB, A = (J + cλiG)∗ andB =
|cλi||GJ |+ (cλi)

2|G2|.
If Y satisfies the condition (1) and the condition

(2), we can find a vectorρ ∈ R∗

+[20], i.e with compo-
nentsρk ∈ R∗

+ satisfying the relationY1v = ρ, ∀v ∈
R∗

+, here< −Y |w(t)|, v >=< −Y1v, |w(t)| >. So,
we have

< −Y |w(t)|, v >=< −ρ, |w(t)| > (25)

In the end, we can get

D+U(t)|(10) < −
n∑

k=1

ρk|wk(t)| < 0 (26)

Then, it follows that zero solution of system (7) is
asymptotically stable. Form Lemma 3, we know that
the synchronized states (5) are asymptotically stable
for the dynamical network (1).The proof is complet-
ed. ⊓⊔

4 Numerical simulation
In the previous sections, we discuss a general com-
plex dynamical network.Then a new general stabil-
ity criterion of synchronization state have been pro-
posed. The above synchronization conditions can be
applied to networks with different topologies and dif-
ferent sizes. In order to illustrate the main results of
the above theoretical analysis, we consider a lower-
dimensional network model with five nodes, in which
each node is a simple three-dimensional stable linear
system described in the reference [14].







ẋ1 = −x1
ẋ2 = −2x2
ẋ3 = −3x3

which is asymptotically stable ats(t) = 0, and its
Jacobian isJ(t) = diag{−1,−2,−3}.

Assume that the outer-coupling matrixC and the
inner-coupling matrixG are given as follows

C =










−2 1 0 0 1

1 −3 1 1 0
0 1 −2 1 0
0 1 1 −3 1
1 0 0 1 −2










G =






1.5267 1.2382 0
−1.8824 0 1.0337

0 1.4472 0






Obviously, C is an irreducible symmetric
matrix. The eigenvalues ofC are λi =
0,−1.382,−2.382,−3.618,−4.618. For clearer vi-
sions, we take the coupling strengthc = 0.2 and
τ = 0.05.

In terms of Theorem 4, if the condition (1)
and the condition (2) are satisfied, then it is in-
ferred that the synchronization of the complex
network (1) can be achieved. Whenλi =
−1.382,−2.382,−3.618,−4.618, we can get

Y =






1.4009 −0.3837 −0.0049
−0.5573 1.9968 −0.3286
−0.0104 −0.4400 2.9943






Y =






1.6910 −0.6703 −0.0145
−0.9742 1.9905 −0.5663
−0.0309 −0.7584 2.9830






Y =






2.0495 −1.0350 −0.0335
−1.5054 1.9781 −0.8602
−0.0713 −1.1519 2.9608
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Figure 1: (color online)Synchronization errors for the
delayed network with coupling strengthc = 0.2 and
time delayτ = 0.05.

and

Y =






2.3396 −1.3386 −0.0546
−1.9481 1.9644 −1.0979
−0.1162 −1.4703 2.9362






, respectively. Obviously, the condition (1) of
Theorem 4 is satisfied. At the same time,
we observe that eigenvalues of the above four
matrices are d1 = (1.1287, 2.1280, 3.1353),
d2 = (0.9204, 2.3518, 3.3923), d3 =
(0.5199, 2.6051, 3.8634) and d4 =
(0.1436, 2.7707, 4.3258), respectively. There-
fore, the condition (2) of Theorem 4 is satisfied
and the synchronized states (5) of network (1) are
asymptotically stable. In Fig. 1, we plot the curves of
the synchronization errors between the states of node
i and nodei+ 1(that is,eij(t) = xij(t) − xi+1,j(t)),
for i = 1, 2, 3, 4, j = 1, 2, 3, with the coupling
strengthc = 0.2 and time delayτ = 0.05.

When the coupling strengthc = 0.2 and time de-
lay τ = 0.05, by using Theorem 2(see Ref. 14), we
found that there exist two positive-definite matrices
and we know that the synchronized states (5) of net-
work (1) are asymptotically stable as shown in Fig. 2.
When the coupling strengthc = 0.5, we found that
there does not exist two positive-definite matrices by
use of the Matlab LMI Toolbox. So Theorem 2 fails.
Here we give the curves of the synchronization errors
in Fig. 3, when the coupling strengthc = 0.5 and
time delayτ = 0.05. However, by using Theorem 4 in
our paper, we can verify that the synchronized states
(5) of network (1) are asymptotically stable. As shown
in Fig. 4, the synchronization errors converge to zero
when the coupling strengthc = 0.5 and time delay
τ = 0.05.

When the coupling strengthc = 0.08 and time
delay τ = 0.5 and the two coupling matrix are the
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Figure 2: (color online)Synchronization errors for the
delayed network with coupling strengthc = 0.2 and
time delayτ = 0.05.
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Figure 3: (color online)Synchronization errors for the
delayed network with coupling strengthc = 0.5 and
time delayτ = 0.05.
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Figure 4: (color online)Synchronization errors for the
delayed network with coupling strengthc = 0.5 and
time delayτ = 0.05.
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Figure 5: (color online)Synchronization errors for the
delayed network with coupling strengthc = 0.08 and
time delayτ = 0.5.

same as the above example, we can also derive the
conclusion that the two conditions of Theorem 4 are
satisfied. The curves of the synchronization errors are
shown in Fig. 5. We see that the synchronization er-
rors converge to zero under the above conditions.

5 Conclusion
In the paper, we introduce a class of time-varying
complex delayed dynamical network model. Accord-
ing to the stability theory of the linear time-delay sys-
tem, we have obtained a new general stability crite-
rion of synchronization state in the complex dynami-
cal networks. By using of constructing the Lyapunov
function, the criterion is easy to be verified. And two
examples are numerically investigated. All involved
numerical simulations are in line with the theoretical
analyses.

Acknowledgements: This work was supported
by the Natural Science Foundation of China (grant
No. 61231002 and No. 51075068), by the Natu-
ral Science Foundation of Fujian Province (grant No.
2013H2002), by the Foundation of Quanzhou (grant
No. 2014Z103).

References:

[1] S. H. Strogatz, Exploring complex networks,
Nature.vol. 410, pp. 268-276, Mar. 2001.

[2] A. -L. Barab́asi and R. Albert, Emergence of s-
caling in random networks,Science., vol. 286,
pp. 509-512, Oct. 1999.

[3] R. Albert and A. -L. Barab́asi, Statistical me-
chanics of complex networks,Rev. Modern
Phys., vol. 74, pp. 47-97, Jan. 2002.

[4] X. F. Wang and G. Chen, Synchronization in
small-world dynamical networks,Int. J. Bifur.
Chaos, vol. 12, pp. 187-192, Jan 2002.

[5] C. S. Zhou, A. E. Motter and J. Kurths, Univer-
sality in the Synchronization of Weighted Ran-
dom Networks,Phys. Rev. Lett., vol. 96, pp.
034101, Jan. 2006.

[6] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez
and D. -U. Huang, Complex networks: Struc-
ture and dynamics,Physics Reports, vol. 424, p-
p. 175-308, Feb. 2006.

[7] J. D. Cao, P. Li and W. W. Wang, Global syn-
chronization in arrays of delayed neural net-
works with constant and delayed coupling,Phys.
Lett. A, vol. 453, pp. 318-325, May 2006.

[8] M. Chen, Some simple synchronization criteria
for complex dynamical networks,IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 53, pp. 1185-
1189, Nov. 2006.

[9] Z. Li and G. Chen, Global synchronization and
asymptotic stability of complex dynamical net-
works,IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 53, pp. 28-33, Jan. 2006.

[10] Z. Y. Fei, H. J. Gao and W. X. Zheng, New
Synchronization Stability of Complex Networks
With an Interval Time-Varying Coupling Delay,
IEEE Trans. CAS-II, vol. 56, pp. 499-503, Jun.
2009.

[11] Z. Wang, Y. Wang and Y. Liu, Global syn-
chronization for discrete-timestochastic com-
plex networks with randomly occurred nonlin-
earities and mixed time-delays,IEEE Trans.
Neural Netw., vol. 21, pp. 11-25, Jan. 2010.

[12] X. F. Wang and G. Chen, Synchronization in
scale-free dynamical networks: robustness and
fragility, IEEE CAS-I, vol. 49, pp. 54-62, Jan.
2002.

[13] W. L. Lu and T. P. Chen, Synchronization in
complex networks of coupled systems with di-
rected topologies,International Journal of Sys-
tems Science, vol. 40, pp. 909-921, Sep. 2009.

[14] C. G. Li and G. Chen, Synchronization in gen-
eral complex dynamical networks with coupling
delays,Physica A, vol. 343, pp. 263-278, Nov.
2004.
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