
Microcontroller Software Library for Process Control

JAN DOLINAY, PETR DOSTÁLEK, VLADIMÍR VAŠEK
Department of Automation and Control Engineering

Tomas Bata University in Zlin
 nám. T. G. Masaryka 5555, 76001 Zlín

CZECH REPUBLIC
dolinay@fai.utb.cz

Abstract: - This paper deals with library of program modules for process control applications running on
microcontrollers. The aim of the library is to make it easier to create control applications for microcontrollers.
It should allow creating such applications by putting together existing program modules provided in the library
with little new code required. The software is written in C language and works with Freescale HCS08 8-bit
microcontrollers and the Kinetis series 32-bit ARM-based microcontrollers. It should also be easy to port the
code to other platforms.

Key-Words: - discrete controller, hcs08, kinetis, microcontroller, program library, pwm

1 Introduction
Nowadays, microcontrollers (MCU) can be
encountered in all areas of our life. MCU
applications range from simple devices, such as
toys, to complex embedded systems found in
modern cars or aircrafts. Many of the MCU
applications require implementing some control
algorithm in the program. These applications could
benefit from a library, which would contain such
control algorithms, and possibly also some related
useful code, in a form ready-to-use, without the
need to write the algorithm from scratch and then
debug it.
Generally speaking, one of biggest challenges in
software development is the reuse of existing code.
Probably everyone will agree that it can save
considerable time and money, but in reality the
situation is far from ideal and huge amount of code
is rewritten over and over again. The higher-level
programming languages used for PC programming
encourage code reuse in some ways, but most of the
MCU applications are written in C language and the
code reuse is more in the hands of the programmer.
Writing reusable code requires carefully designed
and implemented code modules which are not
focused just on fulfilling the task on given MCU,
but also take into account the possible reuse on a
different MCU. This is naturally harder than writing
the code just for the application currently in focus
and it probably explains why it seems that in MCU
programming big part of the code is developed from
scratch for every application. Certainly, there are
some good reasons for this, such as that the
hardware differs much across the MCU

applications, but it may be in part also caused by the
lack of effort to write portable code. This can hardly
be surprising given the tight deadlines and pressure
for high performance from the employers and the
human nature of choosing the easier way to achieve
the goal. For the programmer it is easier to write
hardware-specific code for single MCU than write
more generic code which is ready for future porting
to another MCU.
Whatever the reasons are, the result is that the cost
of embedded software is high and time-to-market is
long. Or, in some cases, the quality of the software
is poor.
One possible solution is in the usage of program
libraries, which provide code usable in different
applications. In the area of embedded programming,
however, the hardware may be very diverse in
different applications - which use different MCUs.
Due to great variety in the hardware, it is in general
not easy to create program libraries, which would be
usable on several types of MCUs. Nevertheless,
there are areas of problems which are virtually
hardware-independent. For such areas it is possible
to create libraries which will work on wide range of
devices. One such area is system control. The
control algorithm may be relatively complex, which
makes it hard and time-consuming to implement and
debug, but on the other hand, once the code is
written and debugged in a portable programming
language, such as C, it can be used on many devices
without change.
In this paper we describe such program library for
control applications. The main part of the library
consists of discrete controllers, but it also proposes
the framework for the whole control application

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2856 105 Volume 10, 2015

which allows separating the hardware-dependent
code from the hardware-independent and thus
makes the application easily portable to new MCUs.
In the course of writing and testing the library also
some supporting code (hardware drivers) was
created, which is also included in the library.
The described software was developed for Freescale
HCS08 8-bit microcontrollers [2] and for Freescale
Kinetis family, which are 32-bit MCUs with ARM
architecture [3], [4]. The idea of such a library
originates from our previous work [7], [8], but the
design and code is completely new.

2 Control library
When designing the library, the following
requirements were defined:

• Provide discrete controllers usable in many
common MCU applications

• The library should have easy-to-use
programming interface

• It should be easily portable to new MCUs

From the logical point of view the library can be
divided into four main parts:

• controller modules
• template code for user application
• software-PWM generator
• supporting code
• documentation and examples

The core of the library is represented by the
controller modules. The word module is used here
in the meaning common in C-language
programming; i. e. the module is physically a pair of
header (.h) and source (.c) file, which contains the
definition and implementation of a single controller.
In the following subsections the main parts of the
library are described in more details.

2.1 Controller modules
As already mentioned, the controller modules can be
considered the core part of the library. From the
logical point of view, the controller module is an
“object” of one type of a controller, e.g. a discrete
PID controller. The interface of the controller
modules implemented so far in the library consists
of two C functions:

• initialization function which initializes the
internal data of the controller

• and “step” function which computes the
controller output in each step of the control
process (in each sampling period).

2.2 Template code for user applications
Besides the actual working code - the controller
modules, the library also suggest preferred way of
using these controllers by providing template files
for user application. These template files contain
skeleton code of a general control application. The
user is advised to add these template files into
his/her program and use it as a starting point for
his/her application. The template files should guide
the user in implementing the application-specific
and hardware-specific code.
However, the user is not forced to use these
application templates or any other particular style of
programming. He/she is free to use any part of the
library separately, for example, just the controller
module(s), which are C functions and therefore can
be called from any C program.

2.3 PWM generator
Another part of the library is a multi-channel
generator of pulse-with-modulated signal. This
signal can be used as a simple replacement for
digital-to-analogue converter and therefore is
utilized in many control applications for driving the
actuators, e.g. for turning a heating element on and
off in applications which control temperature.
In a typical microcontroller, there are several
hardware timers capable of generating PWM signal,
but if the application can use PWM signal with
relatively long period (about 1 second or more), the
software generator included in the library can be
advantageous, because it is easier to use than the
hardware PWM generator contained in the MCU
and the code is hardware-independent.

2.4 Supporting code
The library also contains supporting code, which
was created during the development of the library
for testing its functions on real hardware. An
example of such code is the driver for serial
communication interface (UART).
This code can be directly used in applications
targeting one of the MCUs supported by the library.
For other MCUs it may at least provide starting
point for the user’s own implementation of similar
code, which will be likely needed when using the
library on any MCU.

2.5 Documentation and examples
The library also contains documentation and
example programs. The documentation consists of a
user manual, which describes the library and its use
and reference documentation created from the
source code comments using the Doxygen tool.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2856 106 Volume 10, 2015

There are also example programs which
demonstrate the recommended use of the library in
real application. For user convenience, the example
programs are provided with complete projects for
the CodeWarrior IDE.

3 Usage of the library
This section describes how the library is used in the
client program. This description should also provide
better insight into the overall design of the library.
The following picture shows the main components
of the application which uses the library in the
recommended way.

Fig. 1 Overall view of the application using the library

As can be seen in the figure 1, there are three main
parts of the software of the application (on top of the
MCU hardware): user code, library template files
and device drivers.
Considering just the library code, there are two main
parts:

• Application (ucp_app);
• Hardware abstraction layer (ucp_hal).

These main parts are located in two template files
provided by the library: ucp_app.c and ucp_hal.c.
The interface between these files and the user
application is defined by the library and consists of
the following functions:
For the application module (ucp_app):
• ucp_app_init
• ucp_app_on_sample

For the HAL module (ucp_hal):
• ucphal_init
• ucphal_read_input
• ucphal_read_setpoint
• ucphal_write_output

These functions are described in detail in the
following chapter. For explaining the concepts here,
their names should be sufficiently self-explanatory.
As shown in the figure 1, the basic user code is
contained within the main.c file. From this file the
ucp_app interface functions are called. These
ucp_app functions then contain most of the
hardware-independent functionality of the
application, such as initializing the controllers and
calling the controller “on_step” function to calculate
new value of the actuating signal in each sampling
period.
Example of a simple main.c file can be seen in
figure 2.

Fig. 2 The main function of a control application with the
library

As can be seen in the code listing, all that happens
in the main function is a call to the ucp_app_init
function at the start of the program and then
repeated calls to the ucp_app_on_sample. These
calls should occur with the sampling period of the
system. In real-world application it would probably
use better timing tool than the busy-wait delay used
in this simple example.
Both the ucp_app_init and ucp_app_on_sample
functions are implemented in the template file
ucp_app.c provided by the library. Obviously, the
template cannot deliver the functionality for the user
application. It is the user of the library who needs to
write the program. However, the library tries to
make this task easier by providing as much code as
possible; for example, calling the HAL API where
needed and providing skeleton of the application
together with example code. The default contents of
these two functions can be seen in figures 3 and 4.

User code

Library
templates

main.c

ucp_app.c

ucp_hal.c

Microcontroller hardware

Drivers

ucp_app_init
ucp_app_on_step

User code
+

Library code

ucphal_init
ucphal_read_input

ucphal_read_setpoint
ucphal_write_output

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2856 107 Volume 10, 2015

Fig. 3 The ucp_app_init function in the template file

Fig. 4 The ucp_app_on_sample function

For accessing the MCU hardware the library
recommends using its hardware-abstraction layer
(HAL) which is represented by the ucp_hal interface
in the library. As can be seen in the listings in
figures 3 and 4, the ucp_app functions do not access
the hardware directly, but use the ucp_hal functions,
for example, ucphal_init or ucphal_read_input.
Besides the calls to the HAL, there is some example
code in the comments which shows how to initialize
the controller and how to obtain the new controller
output in each sampling period.
The following two figures show the functions
contained in the HAL template file. As in case of
the ucp_app functions, also the HAL functions
contain some example code in comments.
Figure 5 shows the ucphal_init function, which is
called when the application starts and should
perform all the initialization for the hardware used
by the application. The example code provided in
the template initializes the software PWM
generator, which is part of the library. It also
initializes the model of the heating plant, which was
used for testing the library, as mentioned later in this
article. The model is initialized by calling function

InitTop from its software driver. Obviously, the user
will most likely not need this particular code, but it
illustrates how the various peripherals used by the
application can be initialized using their own
software drivers. Another option is to perform the
initialization by directly accessing the MCU’s
peripheral registers from the ucphal_init function.

Fig. 5 The ucphall_init function in the HAL template

Figure 6 shows the ucphal_read_input function
which is called in each step of the control process
from the ucp_app_on_sample and should obtain the
current value of the output of the controlled plant. In
the template this is again illustrated by reading the
temperature from the model of the heating plant
using its driver function GetTemp. In general, the
user will write here the code to access the peripheral
used to measure the signal, for example, analog-to-
digital converter.

Fig. 6 The ucphall_read_input function in the HAL
template

It should be noted, that the library supports multiple
controlled variables and controllers in one
application. In the code the term channel is used in
the meaning of one pair of input and output signal or
one controlled property (one instance of a

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2856 108 Volume 10, 2015

controller). As can be seen in the code listings, the
functions such as ucphal_read_input receive the
channel number as their input parameter.
The recommended scenario for using the library is
as follows:

• User will create an instance of a controller
by defining one variable (a C structure
which holds the private data of this instance
of the controller).

• After creating the variable for controller
data, user passes this variable into the
controller initialization function.

• Then he/she ensures that controller “step”
function is called regularly with the period
equal to sampling period of the system. This
can be done using simple busy loop in the
main function, or (preferably) by using
hardware timer.

The user is assumed to add the template files
ucp_app.h and .c and ucp_hal.h and .c to his/her
project and implement the application and hardware
specific code in these files. The application logic
including the controller variable(s) is contained in
ucp_app.c file.
Note that the fact that the user provides the memory
for storing the controller data is advantageous for
embedded systems with limited amount of RAM,
because only as much memory is occupied as is
needed. Other approaches which provide the
memory internally and automatically in the library
may be somewhat easier to use, but they require
more resources. Either the memory needs to be
statically allocated inside the library, which limits
the number of available controllers and wastes
memory of the unused controllers, or there needs to
be dynamic memory management used, which
brings large overhead to the code.

4 API of the library
This section describes the application programming
interface of the library’s Application (ucp_app) and
HAL (ucphal) modules.

4.1 Application API
Currently, the ucp_app API consists of just two
functions:

• ucp_app_init
• ucp_app_on_sample

As already mentioned, these functions are
implemented in the ucp_app.c file.
The ucp_app_init function initializes the application
including the hardware. Its main task is to call the

HAL initialization function, which initializes the
MCU peripherals used by the application. This code
needs to be written by the user of the library. It
cannot be provided in the template files as the actual
peripherals (e.g. I/O pins) are strictly application-
specific. However, the user can take advantage of
the library drivers for some peripherals or write
custom code for the required hardware.
The ucp_app_on_sample function is called by the
main program in every step of the control process.
In general, it performs these steps:

• Read the input(s)
• Read the setpoint(s)
• Compute the actuator signal(s)
• Output the actuator signal(s)

The HAL API provides standardized functions for
these tasks. However, the internals of these
functions need to be written by the user. For
example, the reading of the input signal can be
performed using the Analog-to-Digital Converter
(ADC) in the MCU, by processing a signal from a
sensor, such as value encoded by PWM, or even
through some communication interface such as SPI
or UART. This depends on the application and
cannot be handled in the library templates.
Reading the setpoint is similar, although the setpoint
is typically entered by the user. There are many
ways how entering the desired output of the
controlled process can be handled in the application.
Therefore the UCP library uses the same ways of
abstracting access to this property as with input and
output signals. As a result, it does not matter for the
application whether the setpoint is obtained by
reading an analog value set by a potentiometer, read
from memory where the value is stored and updated
when user presses some buttons, etc. This hardware-
specific code is isolated in the ucphal_read_setpoint
function from the rest of the application.
The computation of the actuator signal is one part of
the code which is handled from the biggest part by
the library itself. This is done by calling the
controller “on step” function, for example
ucp_psd_on_step.
The realization of the output signal also depends on
the application greatly. One often used type of
output is a PWM signal. As already mentioned, the
library provides built-in support for this kind of
output. For other types of output signal, for
example, digital to analog converter or simple
discrete output, the user must provide his/her own
code. In any case this hardware-specific code should
be hidden from the rest of the application in the
ucphal_write_output function.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2856 109 Volume 10, 2015

4.2 HAL API
The ucphal API consists of four functions:

• ucphal_init
• ucphal_read_input
• ucphal_write_output
• ucphal_read_setpoint

These functions are implemented in the ucp_hal.c
file.
The ucphal_init function should perform all the
initialization of the hardware. As with all functions
in the HAL module, this needs to be written by the
user of the library according to the needs specific
for given application. The default content of this
function in the template file provided by the library
can be seen in figure 5 above.
The ucphal_read_input function should return the
current value of the controlled-process output for
given channel. The requested channel number is
specified as input parameter to this function. As
already discussed, this function provides uniform
interface to the control application for obtaining the
input signal without regard to the actual hardware
principle for obtaining this input. The default
implementation from the template file can be seen in
figure 6 above.
The ucphal_write_output function can be described
as opposite to the previous function. It takes care of
applying the output calculated by the controller to
the actuator for given channel. Again, this function
represents uniform interface for the control
application for performing this task, hiding the
actual principle used for controlling the actuator
from the application code.
The ucphal_read_setpoint function is responsible
for obtaining the current value of the setpoint for
given channel. As already discussed, the means of
obtaining the setpoint value can vary and the
purpose of this function is to allow the control
application to use one standard way of obtaining the
setpoint value without dealing with these
differences.

5 Library controller modules
Currently, two control algorithms are implemented
in the library, i.e. two types of controllers are
available: discrete PID controller (PSD controller)
and On-Off controller with hysteresis.

5.1 Discrete PID controller (PSD controller)
This module implements the incremental version of
the discrete PID algorithm. The recursive equation

used to compute the control signal in each sampling
period is:

)2()1()()1()(210 −+−++−= keqkeqkeqkuku

(1)

Where k denotes the step number, for example, e(k)
is the control error in current step and e(k-1) is the
error in previous step.
The coefficients of the controller q0, q1 and q2 can
be obtained by methods for controller tuning, such
as [1].
From the programmer’s perspective, the interface of
this module is represented by data structure
UCP_PSD_REG and functions ucp_psd_init and
ucp_psd_step. Signatures of these functions can be
seen in figure 7:

Fig. 7 Interface of the discrete PID controller

The “init” function is called by user program once at
the beginning to initialize the controller. The “step”
function should be called in every sampling period
to obtain new value of the control signal. Both these
functions receive pointer to the data structure of the
controller as their first parameter. Parameter y is the
current output of the controlled plant; setpoint is the
desired value of the controlled signal; the minval
and maxval are the boundary values for the control
signal (e.g. 0 and 100 percent for PWM signal).
These values need to be provided as the input
parameters of the controller function, because the
old values of u(k) stored inside the controller must
correspond to control signal really applied to the
controlled process.

5.2 On-off controller
This module implements simple On-Off controller
with optional hysteresis. The data structure for this
controller is called UCP_ONOFF_REG. As in the
case of the discrete PID controller, there are two
functions. The signatures are shown in the figure 8.

Fig. 8 Interface of the on off controller

As can be seen in the figure, the user can specify
two values of the hysteresis; one for the “up”
direction of the controlled signal and one for the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2856 110 Volume 10, 2015

“down” direction. The other parameters have the
same meaning as explained in the discrete PID
controller section.

6 Target hardware
The library aims to be as much hardware-
independent as possible. The hardware-specific code
which is necessary should be easily portable to other
MCUs. However, it was necessary to implement and
test the library on some specific hardware. We
selected Freescale’s 8-bit HCS08 MCUs and 32-bit
ARM-based Kinetis series MCUs as two
representatives of relatively different MCU
platforms. Important role in the selection played the
availability of the device in a development kit. For
these reasons we used the development kit from the
MCU-programming lessons at our faculty, which
contains HCS08 GB60 MCU for the 8-bit
microcontroller implementation. For the 32-bit
version a new, very affordable development kit
FRDM-KL25Z with the Kinetis MCU was used [4].

6.1 HCS08 8-bit microcontrollers
As mentioned above, for testing the library on 8-bit
MCUs we used development kit
M68EVB908GB60. This kit is no longer
manufactured, but still used in our lessons. The
GB60 derivative used in this kit is still available and
besides, it should require little effort to use the code
for the GB family on another (more modern)
member of the wide HCS08 product line, e.g. the
QG or SH families.

Fig. 9 HCS08 development kit with heating-plant model
attached

In figure 9 the evaluation kit can be seen. There can
also be seen the model of a heating plant [5]
attached to this kit, which was used for experimental
verification of the library. This model contains a
resistor which can be heated using digital output of
the MCU. There is also temperature sensor attached
to this resistor whose output is attached to the MCU.

6.2 Kinetis 32-bit microcontrollers
The second hardware platform for which the library
was implemented is Freescale Kinetis series of 32-
bit microcontrollers. Compared to the HCS08 core,
the 32-bit MCUs offer higher computing power and
more memory, which makes them suitable even for
more demanding control applications.
There is a line of low cost evaluation boards
available for the Kinetis microcontrollers called
Freedom platform [3]. In our case FRDM-KL25Z
board was used. This board contains
KL25Z128VLK4 microcontroller with 128 kB of
Flash and 16 kB of RAM memory together with
programming and debugging interface (openSDA).
The layout of the board is compatible with the
layout of popular Arduino platform [9] which makes
it possible to connect expansion boards (so called
shields) for Arduino to this board.

Fig. 10 FRDM-KL25Z board used for tests [4]

7. Experimental verification

To verify the functionality of the library several
control applications were created. The controlled
system for this verification was represented by a
model of heat plant, which we also use in
programming lessons. This model was described in
detail in [5]. The model represents a 2nd order
system with transfer function approximately:

)12.18)(15.86(
8.0)(

++
=

ss
sG

(2)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2856 111 Volume 10, 2015

This model was attached to the evaluation board
with HCS08 microcontroller by the means of its
connector – the same way it is used in our
lessons. In case of the Kinetis board, which
does not have compatible connector, the model
was connected using wires.
Figure 11 shows the result of control process
with the discrete PID controller module. It is
very simple control process, but it demonstrates
the correct function of the program library. The
parameters of the controller were designed
using method [1]. The control signal is
generated using the software PWM module
which is part of the library. In the figure, the set
point and output of the plant are depicted in
degrees Celsius; the control signal is shown in
per-cents. The set point value was 50 °C.

Fig. 11 Experimental verification of the PSD controller

8 Conclusion
This article described program library we created
for control applications. The library makes it easier
and quicker to create microcontroller applications
for control systems. This aim is achieved by set of
hardware-independent modules, which are ready-to-
use and also by providing framework for writing the
control application. This framework includes also
hardware-dependent code and the interface between
this code and the rest of the application.
The core of the library is formed by controller
modules which can be directly deployed in user
application. There are also template files which
provide the skeleton of the whole control
application with strict separation of hardware-
specific and generic code. Besides those two
components, the library contains also supporting
code such as device drivers and software PWM

generator. Documentation and example programs
are provided as well.
The library is written in C language and currently
implemented and tested on two types of
microcontrollers: Freescale’s 8-bit HCS08 and 32-
bit Kinetis (ARM) series. However, porting it to
other microcontrollers should be relatively easy and
straightforward.
This work was supported by the European Regional
Development Fund under the project CEBIA-Tech
No. CZ.1.05/2.1.00/03.0089)

References:
[1] A. Víteček, M. Vítečková, Inverse Dynamics

Method Tuning and Basic Quality Indices, 9th
International Scientific Conference CO-MAT-
TECH 2001, Slovenská technická univerzita,
2001, pp. 412-417.

[2] Freescale Semiconductor, CPU08 Central
Processor Unit Reference Manual, rev.4,
Available: http://www.freescale.com.

[3] Freescale Semiconductor, Freescale Freedom
Development Platform. Available:
http://www.freescale.com/webapp/sps/site/over
view.jsp?code=FREDEVPLA.

[4] Freescale Semiconductor, FRDM-KL25Z:
Freescale Freedom Development Platform for
Kinetis KL14/15/24/25 MCUs, Available:
http://www.freescale.com/webapp/sps/site/prod
_summary.jsp?code=FRDM-KL25Z.

[5] J. Dolinay, P. Dostálek, V. Vašek,
Educational models for lessons of
microcontroller programming, in Proc. 11th
International Research/Expert conference TMT
2007, Hammamet 2007, pp. 1447-1450.

[6] P. Dostálek, V. Vašek, J. Dolinay, Design
and implementation of portable data
acquisition unit in process control and
supervision applications, in Proc. 13th WSEAS
International Conference on CIRCUITS,
Rhodes 2009, pp. 799-808.

[7] J. Dolinay, V. Vašek, P. Dostálek,
Implementation and Application of a Simple
Real-time OS for 8-bit Microcontrollers, in
Proc. 10th WSEAS International Conference on
ELECTRONICS, HARDWARE, WIRELESS and
OPTICAL COMMUNICATIONS (EHAC '11),
Cambridge 2011, pp. 023-026.

[8] J. Dolinay, P. Dostálek, V. Vašek, P. Vrba,
Platform for teaching embedded programming,
International journal of mathematical models
and methods in applied sciences, vol. 5, no. 6,
pp. 1110-1117, 2011.

[9] Arduino, Open-source electronics prototyping
platform, Available: arduino.cc.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2856 112 Volume 10, 2015

