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Abstract: In this paper, we study the containment control issue of second-order multi-agent systems in a sampled-
data setting under the assumption that only the sampled position information can be measured. The communication
topology graph between the leaders and followers is assumed to be directed, while the topology among the follow-
ers is assumed to be undirected. Necessary and sufficient containment control criteria for multi-agent systems with
periodic sampling are first established, where we present the specific range size of parameters and the relationship
among the eigenvalues of Laplacian matrix, sampling interval, and scaling parameter. Then we extend our results
to multi-agent systems with non-periodic sampling interval. Finally, experimental results are provided to illustrate
the effectiveness of the theoretical results.
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1 Introduction

The past decades have witnessed rapidly growing
papers concerning distributed control and cooperative
control of multi-agent systems [1-5]. This is due to
its broad applications in many areas such as comput-
er science, sensor networks, robotic teams, and so on.
Some basic topics such as consensus, distributed for-
mation control, distributed estimation and control and
so on have attracted extensive attention.

Recently, containment control issue becomes a
hot topic in distributed cooperative control of multi-
agent systems, where a group of followers is driven by
a group of leaders to be in the convex hull spanned by
the leaders. The study of containment control is mo-
tivated by numerous natural phenomena and potential
applications. For example, a group of heterogenous
agents moves from one target to another when only a
portion of the agents is equipped with necessary sen-
sors to detect the hazardous obstacles such that the a-
gents who are not equipped will be driven into a safety
area spanned by the equipped agents[6-14].

At present, there have been many results concern-
ing the containment control of second-order multi-
agent systems. Cao et al. (2011) studied the contain-
ment control issue of second-order multi-agent sys-
tems in the presence of both dynamic and station-
ary leaders. Based on a linear control protocol, Li-

u et al. (2012) studied the containment control issue
of continuous-time second-order multi-agent systems
and extended the results to discrete-time multi-agent
systems in a sampling setting. However, both papers
are based on a strict assumption: both the position
and velocity information can be measured in the
control protocol. In practice, it is more difficult to
obtain velocity and acceleration measurements than
position measurements. Hence, Li et al. (2012) stud-
ied the distributed containment control issue of mul-
tiple dynamic leaders for double-integrator dynamics
using only position measurements, whereas Zhao et
al. (2013) further studied the finite-time containment
control issue. However, Li et al. (2012) and Zhao et
al. (2013) didn’t consider the corresponding contain-
ment control issue in a sampling setting. In practical
engineering, information may not be transmitted con-
tinuously due to the unreliability of communication
channels, the limitations of sensing ability of agents,
and the constraints of total cost. Thus, it is more prac-
tical to consider the case of intermittent information
transmission. Sampled control has been widely devel-
oped and applied in many areas, such as radar tracking
systems and temperature control. This motivates us to
write this paper.

Motivated by the above analysis, this paper will
mainly study the containment control issue of second-
order multi-agent systems with only position informa-
tion available in a periodic sampling setting and non-
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periodic sampling setting, respectively. Some neces-
sary and sufficient conditions will be established to
guarantee the achievement of containment control for
both sampling settings. Our main results not only give
the convex hull spanned by the leaders, but also show
that the convergence depends on the topology struc-
ture, the eigenvalues of Laplacian matrix, sampling
interval, and gain parameters.

The remaining of this paper is organized as fol-
lows. In Section 2, we review some concepts in graph
theory, give some useful lemmas and formulate our
problems. Main results are stated in Sections 3. In
Section 4, some examples are provided to illustrate
the effectiveness of the theoretical results. Conclu-
sions are given in Section 5.

Notations: Let In and On be n−order identity
matrix and zero matrix, respectively. Given a com-
plex number λ ∈ C, Re(λ), Im(λ) and |λ| are the
real part, the imaginary part, and the modulus of λ,
respectively. 1n ∈ Rn is the column vector with all
entries being 1. diag{a1, · · · , an}, represents the di-

agonal matrix


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an

. For any square

matrix H , Λ(H) denotes the set of all eigenvalues of
H . det(·) represents the determinant of a matrix. ⊗
denotes the Kronecker product.

2 Preliminaries

In this section, we first review some basic knowl-
edge on graph theory, definitions, lemmas as the pre-
liminaries of this paper.

2.1 Graph theory

Let G = (V, E ,A) denote a graph, where V =
(v1, v2, · · · , vn) is the node set, E ⊆ V × V denotes
the edge set and A = [aij ] is a adjacency matrix with
nonnegative elements. An edge of G is denoted by
eij = (j, i). The adjacency elements associated with
the edges are positive, i.e., eij ∈ E ⇐⇒ aij > 0.
Here we assume aii = 0 for all i ∈ V . The set of
neighbors of node i is denoted by Ni = {j ∈ V :
(j, i) ∈ E}. An agent is called a leader if the agent has
no neighbor. Otherwise, an agent is called a follower
if the agent has at least one neighbor. In this paper,
we suppose that there are n−m followers, labelled as
agents 1 to n − m, and m leaders labelled as agents
n − m + 1 to n. Denote the set of leaders as R and

the set of followers as F . A path in G is a sequence
i0, i1, · · · , im of distinct nodes such that (ij−1, ij) ∈
E for j = 1, · · · ,m. A digraph G contains a spanning
tree if there exists at least one node having a directed
path to all other nodes.

The Laplacian matrix of the graph is defined as
L = [lij ] ∈ Rn×n, where

lij =


−aij , i ̸= j

n∑
k=1,k≠i

aik, i = j

It is easy to verify that L has at least one ze-
ro eigenvalue with a corresponding eigenvector 1n,
where 1n is an all-one column vector with a com-
patible size. In this paper, L can be rewritten as:

L =

[
LFF LFR

0m×(n−m) 0m×m

]
.

2.2 Definitions and lemmas

Definition 1. A set C ⊆ Rp is said to be convex
if for any x, y in C, the point (1 − t)x + ty ∈ C
for any t ∈ [0, 1]. The convex hull of a finite set
of points x1, · · · , xm ∈ Rp is the minimal convex
set containing all points xi, i = 1, · · · , n, denot-
ed by co{x1, · · · , xn} = {

∑n
i=1 aixi|ai ∈ R, ai ≥

0,
∑n

i=1 ai = 1}.

Definition 2. (Alefeld G and Schneider N, 1982) Let
α ∈ R and C ∈ Rn×n. A matrix B = [bij ] ∈ Rn×n

is called an M -matrix if it can be written as

B = αIn − C,

where α > 0, C ≥ 0, and ρ(C) ≤ α. The matrix B is
called a nonsingular M -matrix if ρ(C) < α.

Lemma 1. (Mei et al., 2011) LFF is a nonsingular
M -matrix if and only if for each of the n − m fol-
lowers, there exists at least one leader that has a di-
rected path to the follower. In addition, if LFF is a
nonsingular matrix, then each entry of −L−1

FFLFR is
nonnegative and all row sums of −L−1

FFLFR equal to
one.

Lemma 2. (Horn RA and Johnson CR, 1985) For
third-order real coefficient polynomial f(s) = b0s

3 +
b1s

2 + b2s+ b3, where b0 > 0, f(s) is Hurwitz stable
if and only if b1, b2, b3 > 0 and b1b2 − b0b3 > 0.
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2.3 System modeling and problem formula-
tions

Consider a second-order multi-agent system as
follows: {

ẋi = vi,
v̇i = ui, i ∈ {1, · · · , n}, (1)

where xi ∈ R, vi ∈ R, ui ∈ R denote the position,
velocity and control input of agent i, respectively.

Suppose that the communication topology graph
satisfies the following assumption.

Assumption 1. The communication topology between
the leader and follower is assumed to be directed,
while the communication topology among followers
is assumed to be undirected. For every follower, there
exists at least one leader having a directed path to it.

In some practical situations, the relative velocity
information is impossible or quite difficult to measure
because of technological limitations and the environ-
mental disturbances. Therefore, this paper needs to
satisfy the following assumption.

Assumption 2. Only the position information can be
obtained at the sampling instants, while the corre-
sponding velocity information is unavailable.

2.4 System model with periodic sampling

Inspired by the control protocol Gao et al. (2009)
and Ma et al. (2013), for t ∈ [tk, tk+1), we consider
the following containment control protocol:

ui(t) =



−α
n∑

j=1

lijxj(tk−1)− β×
n∑

j=1

lij
xj(tk−1)− xj(tk−2)

h
,

t ∈ [kh, kh+ τ), i ∈ F

−α
n∑

j=1

lijxj(tk)− β×
n∑

j=1

lij
xj(tk)− xj(tk−1)

h
,

t ∈ [kh+ τ, kh+ h), i ∈ F ,
0, i ∈ R,

(2)

where α, β > 0 are gain parameters, h = tk+1 −
tk is the sampling interval, tk is the sampling instant
satisfying 0 = t0 < t1 < · · · < tk < · · · .

Then, using the control protocol (2), system (1)

becomes

xi(k + 1) = xi(k) + hvi(k)−
(h− τ)2

2

n∑
j=1

lij

(αxj(tk) + β
xj(tk)− xj(tk−1)

h
)

− (2h− τ)τ

2

n∑
j=1

lij(αxj(tk−1)

+β
xj(tk−1)− xj(tk−2)

h
),

vi(k + 1) = vi(k)− (h− τ)
n∑

j=1

lij(αxj(tk)

+β
xj(tk)− xj(tk−1)

h
)− τ

n∑
j=1

lij

(αxj(tk−1) + β
xj(tk−1)− xj(tk−2)

h
),

(3)

Denote x(k) =: [xT1 (k), x
T
2 (k), · · · , xTn (k)]T ,

v(k) =: [vT1 (k), v
T
2 (k), · · · , vTn (k)]T , z(k +

1) =: [xT (k + 1), vT (k + 1), xT (k), vT (k), xT (k −
1), vT (k − 1)]T .

Then, system (1) can be written as the following
matrix form

z(k + 1) = (In ⊗H1 − L⊗G1)z(k), (4)

where H1 =



1 h 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

,

G1 =



(αh+ β)(h− τ)2

2h
0

τ(2h− τ)(αh+ β)− (h− τ)2β

2h
(h− τ)(αh+ β)

h
0 −βh− 2τβ − ταh

h
0 0 0
0 0 0
0 0 0
0 0 0

0 −βτ(2h− τ)

2h
0

0 −βτ

h
0

0 0 0
0 0 0
0 0 0
0 0 0


.

Furthermore, system (4) can be rewritten as
zF (k + 1) = (In−m ⊗H1 − LFF ⊗G1)zF (k)
−(LFR ⊗G1)zR(k),
zR(k + 1) = (Im ⊗H1)zR(k).

(5)

2.5 System model with non-periodic sam-
pling
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For control protocol (2), if tk+1 − tk is not fixed
as above, then protocol (2) becomes a non-periodic
sampling-data protocol. For this case, we need the
following assumption:

Assumption 3. The time-varying sampling interval is
selected in turn from the set of {h, 2h}, where h > 0.

Remark 1. In this paper, we only consider the
case that all the intervals are selected in turn
from the set {h, 2h}. For the set of {l1h, l2h}
or {l1h, l2h, · · · , lmh}, similar analysis can be ob-
tained.

When h′ is selected in turn from the set of
{h, 2h}, similar to the periodic sampling case, from
(2), we get

z(k + 1) = Φ(t)z(k), (6)

where z(k) is defined as above, Φ(t) ∈ {Φ0,Φ1},

Φ0 = In ⊗H1 − L⊗G1,H1 =


1 h 0 0
0 1 0 0
1 0 0 0
0 1 0 0

 ,

G1 =


h2α+ hβ

2
0

−hβ

2
0

hα+ β 0 −β 0
0 0 0 0
0 0 0 0

 , Φ1 =

In ⊗H2 − L⊗G2,H2 =


1 2h 0 0
0 1 0 0
1 0 0 0
0 1 0 0

 ,

G2 =


2h2α+ hβ 0 hβ 0
2hα+ β 0 −β 0

0 0 0 0
0 0 0 0

 .

It is easy to obtain from (6) that

z(1) = Φ0z(0)
z(2) = Φ1z(1) = (Φ1Φ0)z(0)
z(4) = (Φ1Φ0)z(2)
...
z(2r) = (Φ1Φ0)z(2(r − 1)).

Define y(r) = z(2r), then

y(r + 1) = (Φ1Φ0)y(r), (7)

where

Φ1Φ0 = (In ⊗H2 − L⊗G2)(In ⊗H1 − L⊗G1)

= In ⊗H2H1 − L⊗ (H2G1 +G2H1)

+L2 ⊗G2G1.

Remark 2. It thus follows from (7) that system (1)
achieves containment control if and only if system (7)
achieves containment control.

3 Containment control analysis in a
sampled-data setting

In this section, we will establish the containmen-
t control problem of system (1) with only sampled
position information available in a periodic and non-
periodic sampling-data setting, respectively.

3.1 Containment control in a periodic
sampled-data setting

First, for the periodic sampling control protocol
(2), we give the following theorem.

Theorem 1. For system (1) under control proto-
col (2), the states of the followers will asymptoti-
cally converge to the convex hull formed by the s-
tates of the dynamic leaders if and only if Assump-
tion 1 always holds and h, α, β satisfy max

λ∈Λ(LFF )
λ <

4β − 2hα

hβ(hα+ 2β)
. Furthermore, the final positions of

the followers are given by −L−1
FFLFRxR(t), where

xR(t) is the position of the leaders.

Proof. (Sufficiency) From Lemma 1, note that LFF
is nonsingular, L−1

FF exists and every entry of L−1
FF is

nonsingular. Define

w(k) = zF (k) + (L−1
FFLFR ⊗ I4)zR(k). (8)

It is obvious to get that containment control for system
(1) can be guaranteed by w(k) → 0, as k → +∞.
Furthermore, from (6) and (7),

w(k + 1) = zF (k + 1) + (L−1
FFLFR ⊗ I4)zR(k + 1)

= (In−m ⊗H1 − LFF ⊗G1)w(k). (9)

Hence, the achievement of containment control for
system (1) can be further guaranteed by the Schur sta-
bility of system (9), i.e., all the eigenvalues of the ma-
trix In−m ⊗ H1 − LFF ⊗ G1 should lie in the unit
circle.

Let λ1, · · · , λn−m denote the eigenvalues of
LFF . According to matrix theory in Huang
(1984), there exists an invertible matrix W such that
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W−1LFFW = diag{λ1, · · · , λn−m}. Then, we have

(W−1 ⊗ I4)(In−m ⊗H1 − LFF ⊗G1)(W ⊗ I4)

= In−m ⊗H1 − diag{λ1, · · · , λn−m} ⊗G1

= diag{


1− hα2 + hβ

2
λ1 h

hβλ1

2
0

−(hα+ β)λ1 1 βλ1 0
1 0 0 0
0 1 0 0

 ,

· · · ,


1− hα2 + hβ

2
λn−m h

hβλn−m

2
0

−(hα+ β)λn−m 1 βλn−m 0
1 0 0 0
0 1 0 0

}
i = 1, · · · , n−m.

Obviously, the eigenvalues of (In−m⊗H−LFF⊗
G) can be obtained by solving ai(s) = 0, i =
1, · · · , n−m, where

ai(s)

= det(sI4 − (H1 − λi ⊗G1))

= det


s− 1 +

hα2 + hβ

2
λi −h −hβλi

2
0

(hα+ β)λi s− 1 −βλi 0
−1 0 s 0
0 −1 0 s


= s[s3 − s2(2− hα2 + hβ

2
λi)

+s(1 + h2αλi −
hα2λi

2
)− hβλi

2
]

i = 1, · · · , n−m.

Noticing that they have the same form, we can
analyze them uniformly. Let λ ∈ Λ+(LFF ) represent
the eigenvalues of LFF . Then, we only need to deter-
mine the Schur stability of the following polynomial:

a(s) = s[s3 − s2(2− hα2 + hβ

2
λ) (10)

+s(1 + h2αλ− hα2λ

2
)− hβλ

2
]. (11)

From the above polynomial, it is easy to obtain

that s1 = 0. Let f(s) = s3 − s2(2 − hα2 + hβ

2
λ) +

s(1 + h2αλ − hα2λ

2
) − hβλ

2
. Therefore, (10) is

Schur stable if and only if f(s) is simultaneously
Schur stable. By applying the bilinear transformation

s =
σ + 1

σ − 1
, f(s) can be rewritten as a new polynomial

r(σ) = b0σ
3 + b1σ

2 + b2σ + b3, (12)

where b0 = h2αλ, b1 = 2hβλ, b2 = 4 − h2αλ −
2hβλ, b3 = 4.

Then, the Schur stability of the polynomial f(s)
is equivalent to the Hurwitz stability of the polynomial
(12). Since b0 > 0 always holds, by Lemma 2, the
polynomial (12) is Hurwitz stable if and only if the
following conditions hold:

(a) b1, b2, b3 > 0,
(b) b1b2 − b0b3 > 0.
For (a), it follows that

b1 = 2hβλ > 0,
b2 = 4− h2αλ− 2hβλ > 0,
b3 = 4 > 0.

(13)

For (b), b1b2 − b0b3 > 0, we can get

hβλ(4− h2αλ− 2hβλ)− 2h2αλ > 0. (14)

By solving inequality (14), we can obtain

λ <
4β − 2hα

hβ(hα+ 2β)
. (15)

Through simple calculations, the inequality (15)
can guarantee that (13) is valid. According to
the above analysis, we can get that max

λ∈Λ(LFF )
λ <

4β − 2hα

hβ(hα+ 2β)
holds.

(Necessity) Suppose that the Assumption 1 is not
satisfied in the directed graph G. Therefore, there ex-
ists at least one follower (labelled as k), satisfying that
all leaders have no directed path to it. It follows that
the states of follower k is independent of the states of
the leaders. Obviously, follower k cannot asymptoti-
cally converge to the convex hull formed by the states
of the leaders.

3.2 Containment control in a non-periodic
sampled-data setting

In the sequel, we aim to establish the containment
control criteria for the non-periodic sampled-data set-
ting.

System (7) can be further rewritten as
yF (k + 1) = (In−m ⊗H2H1 − LFF⊗

(H2G1 +G2H1) + L2
FF ⊗G2G1)yF (k)

+(LFFLFR ⊗G2G1 − LFR⊗
(H2G1 +G2H1))yR(k),

yR(k + 1) = (Im ⊗H2H1)yR(k).
(16)

Define

m(k) = yF (k) + (L−1
FFLFR ⊗ I2)yR(k). (17)
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Furthermore, we can get that

m(k+1) = yF (k+1)+ (L−1
FFLFR⊗ I2)yR(k+1).

(18)
By (16)-(18), we get

m(k + 1) = (In−m ⊗H2H1 − LFF ⊗ (H2G1 +G2H1)

+L2
FF ⊗G2G1)m(k). (19)

Similar to the proof of Theorem 1, from (18), it
is easy to get that the Schur stability of (16) can guar-
antee the achievement of containment control of sys-
tem (1) under the non-periodic sampling protocol (2).
Hence, in the sequel, we only need to guarantee that
all the eigenvalues of the matrix In−m ⊗ H2H1 −
LFF ⊗ (H2G1 + G2H1) + L2

FF ⊗ G2G1 lie in the
unit circle.

By matrix theory, there exits an invertible matrix
W such that W−1LFFW = diag{λ1, · · · , λn−m}.
Then, W−1L2

FFW = diag{λ2
1, · · · , λ2

n−m},

(W−1 ⊗ I4)(In−m ⊗H2H1 − LFF ⊗
(H2G1 +G2H1) + L2

FF ⊗G2G1)(W ⊗ I4)

= In−m ⊗H2H1 − diag{λ1, · · · , λn−m} ⊗
(H2G1 +G2H1) + diag{λ2

1, · · · , λ2
n−m} ⊗G2G1

= diag


P 3h− h2λi(2hα+ β)
Q 1− hλi(2hα+ β)

1− 1

2
hλi(hα+ β) h

−hαλi − βλi 1

5

2
hβλi −

1

2
h2βλ2

i (hα+ β) 0

βλi − 2hλ2
i (hαβ + β2) 0

1

2
hβλi 0

βλi 0

.
i = 1, · · · , n−m,

where

P = 1− 1

2
hλi(9hα+5β)+

1

2
h2λ2

i (2h
2α2+

3hαβ + β2),

Q = −3hαλi−βλi+
1

2
hλ2

i (2h
2α2+3hαβ+

β2).

Then, similar to the proof process of Theorem 1,
we can get the following containment control criteri-
on.

Theorem 2. For system (1) under the non-period
sampled interval of control protocol (2), the states of
the followers will asymptotically converge to the con-
vex hull formed by the states of the dynamics leaders if
and only if the Assumption 1 holds and h, α, β satisfy

the following conditions:

6hβλi + 4h2αλi − 3h3αβλ2
i − 2h4α2λ2

i > 0,
4− 9h2αλi − 2h2β2λ2

i > 0,
4− 6hβλi − 4h2αλi + 2h2β2λ2

i

+3h3αβλ2
i + 2h4α2λ2

i > 0,
24hβλi − 20h2αλi − 8h3αβλ2

i

−12h3β3λ3
i − 8h4α2λ2

i − 26h4αβ2λ3
i

+6h5αβ3λ4
i + 4h6α2β2λ4

i > 0,
h > 0, α > 0, β > 0.

(20)

Furthermore, the final positions of the followers are
given by −L−1

FFLFRxR(t), where xR(t) is the posi-
tion of the leaders, λi is the nonzero eigenvalues of the
Laplacian matrix LFF , i = 1, 2, · · · , n −m, respec-
tively.

Remark 3. In Theorems 1-2, we not only establish
necessary and sufficient containment control condi-
tions, but also give the final states of the followers,
namely, xF (t) → −L−1

FFLFRxR(t). Furthermore,
from the proof of these two theorem, we can see that
the velocity of followers will also asymptotically con-
verge to the convex hull formed by the velocity of lead-
ers.

Remark 4. Theorems 1-2 not only prove that the
topology structure, the eigenvalues of Laplacian ma-
trix, sampling interval, and gain parameters play an
important role in the achievement of containment con-
trol, but also give the specific range size of these pa-
rameters.

4 Numerical simulations

This section provides two examples to illustrate
our main theoretical results. For system (1) with four
followers (i = 1, 2, 3, 4) and two leaders (i = 5, 6),
the corresponding communication topology is shown
in Fig. 1 below.

��
��

5 -��
��

1 ��
��

3

��
��

2 ��
��

4 � ��
��

6

Fig.1 The topology graph of agents.

The Laplacian matrix L =
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2 −1 0 0 −1 0
−1 2 0 −1 0 0
0 0 1 −1 0 0
0 −1 −1 3 0 −1
0 0 0 0 0 0
0 0 0 0 0 0

, LFF =

 2 −1 0 0
−1 2 0 −1
0 0 1 −1
0 −1 −1 3

. It is easy to com-

pute that the four eigenvalues of LFF are
λ1 = 0.382, λ2 = 1, λ3 = 2.618, λ4 = 4,
respectively. Obviously, maxλi = 4.

Example 4.1: (Periodic-sampling case) Let the
initial states of the position be [1,−2,−5, 11, 0, 0]T

and velocity be [8,−4,−1, 2, 5 sin(1), 10 sin(1)]T ,
respectively. h = 0.3, α = 1, β = 1 satisfy (15),

since,
4β − 2hα

hβ(hα+ 2β)
= 4.9 > 4. Thus, by Theorem

1, system (1) can achieve containment control. The
position and velocity trajectories shown in Fig. 2, al-
so verify system (1) can achieve containment control.
However, h = 0.3, α = 3, β = 1 cannot satisfy (15),

since,
4β − 2hα

hβ(hα+ 2β)
= 2.5 < 4. Fig. 3 shows that

system (1) under (2) cannot achieve containment con-
trol with the same initial values.

Example 4.2: (Non-periodic-sampling case)
For system (1) with communication topology graph
as shown in the Fig. 1. Let the initial states of
the position be [1,−10,−5, 20, 5, 5]T and velocity be
[8,−15,−6, 7, 5 sin(1), 10 sin(1)]T , respectively. By
calculating, h = 0.1, α = 1, β = 1 satisfy (20). Fig. 4
shows that all followers will asymptotically converge
to the convex hull formed by the states of the dynam-
ics leaders. However, Fig. 5 shows that system (1)
under control protocol (2) cannot achieve containment
control by choosing h = 0.5, α = 1, β = 1 with the
same initial values.

5 Conclusions

This paper investigated the containment control
problem of second-order multi-agent control system
by assuming that only the sampled position informa-
tion can be obtained. The topology between the lead-
ers and the followers is assumed to be directed graphs,
while the topology among the followers is assumed to
be undirected. Necessary and sufficient containment
control conditions are established, which depends on
the eigenvalues of Laplacian matrix, sampling inter-
val, and scaling parameter. Then, we attempt to re-
solve the containment control problem of multi-agent
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Fig. 2 h = 0.3, α = 1, β = 1, position and velocity
trajectories
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Fig. 3 h = 0.3, α = 3, β = 1, position and velocity
trajectories
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Fig. 4 h = 0.1, α = 1, β = 3, position and velocity
trajectories
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Fig. 5 h = 0.5, α = 1, β = 1, position and velocity
trajectories

system in a non-periodic sampling setting. Finally,
experimental results are provided to illustrate the ef-
fectiveness of the theoretical results. Future work will
focus on more complex containment control problem,
for example, the containment control with switching
topologies.
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