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Abstract: In this paper a theoretical framework of robust fault-tolerant control (FTC) for a class of nonlinear
nonaffine-in-control systems is developed. In the framework, an observer-like auxiliary system is designed via
adaptive and sliding mode techniques, which is only required to ensure that the output of the auxiliary system
asymptotic tracking plant output. Based on the auxiliary system, a reconfigurable fault-tolerant tracking controller
is proposed for nonaffine-in-control systems. In this paper, the focus is on the accommodation of the actuator
faults and resulting disturbances. It is shown that the proposed FTC design results in asymptotic convergence of
the tracking error to zero. Finally, the proposed approach is verified using a three-degree-of-freedom simulation of
a typical fighter aircraft and the significantly improved system response demonstrates the practical potential of the
theoretic results obtained.

Key–Words: Fault tolerant control, Adaptive sliding mode observer, Non-affine nonlinear systems, Actuator faults,
Disturbances.

1 Introduction
The increasing demands on system performance will
consequently increase the possibility of system fail-
ures. Faults may occur in any locations and dramati-
cally change the system behaviour resulting in degra-
dation or even instability. To improve control system
reliability and stability, fault-tolerant control (FTC)
for dynamic systems has become an attractive topic
and have received considerable attention during the
past two decades. A fault tolerant controller is a con-
troller able to satisfy control specifications both in
nominal operation and after the occurrence of a fault.
FTC can be mainly classified into two types: passive
and active [1]. In passive approach, the same con-
troller is used throughout the normal case as well as
the fault case [2]. An active FTC system compensates
for the effect of fault by synthesizing a new control s-
trategy based on online accommodation [3-9]. Gener-
ally speaking, the active approach is less conservative
than the passive one, which has increasingly been the
main methodology in designing FTC systems [10].

Fig. 1 (A) shows the block diagram of tradition-
al active FTC. It can be seen that there are two major
difficulties in traditional robust active FTC for non-
linear nonaffine-in-control systems. One is the ro-
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Figure 1: (A) Block diagram of traditional active FTC.
(B) Block diagram of Proposed robust FTC.

bust estimation of fault parameters. Obviously, how
to draw accurate fault information from uncertain sys-
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tems with disturbances is not an easy task. The other
is reconfigurable controller design. Traditional meth-
ods include linearization of the nonlinear plant model
around one or multiple operating points, inverse sys-
tem method et al. However, in some flight nonaffine-
in-control systems, operating points dependent on the
current flight regime. Using a fixed linear controller or
finite linear controllers may result in an unacceptable
response and even in instability of the closed-loop
system [11], and it is generally difficult to prescribe
a technique to actually obtain such an inverse. Re-
cently, some new nonaffine controller design methods
have been developed in [12-15]. Although [12] pro-
posed a PI-like fault tolerant controller design method
for a class SISO nonaffine-in-control systems. For
more general multivariable nonlinear systems, there
is a clear need for the development of systematic FTC
design techniques.

In summary, a novel robust FTC framework is
proposed in this paper, which is shown as Fig. 1 (B).
In the framework, an auxiliary system is designed,
which does not need the accurate fault information for
uncertain nonlinear systems. In doing so, a thorny
problem can be avoided, that is robustness and ac-
curacy of fault estimation. Then, using dynamic ap-
proximation technique [16-17], the nonaffine nonlin-
ear control method the reconfigurable controller is de-
signed based on the dynamic model of auxiliary sys-
tem. The rest of this paper is organized as follows.
In Section II, a brief of actuator faults is described for
non-affine nonlinear systems. In Section III, main re-
sults are given, which include auxiliary system design,
reconfigurable controller design, and stability analysis
of tracking close-loop system. Finally, the proposed
approach is tested using a three-degree-of-freedom
(3-DOF) unmanned aerial vehicle (UAV) point mass
model.

2 Actuator Fault Modeling

Consider the following non-affine nonlinear system

ẋ = f(x, u) + d(t) (1)

where x ∈ Rr is the state vector, u ∈ Rm is the input
vector, and d ∈ Rr is unknown but bounded external
disturbance vector, respectively. f(·) is the nonlinear
functions. Let Ωx ∈ Rp be compact set defined by
Ωx , {x||x| 6 bx} where bx > 0 is a positive con-
stant.

To formulate the FTC problem, the fault model
must be established. According to the fault type for
flight-control system established in [24], the fault type
considered in this study is the loss of actuator effec-
tiveness. We use uFi (t) to describe the control signal

sent from the ith actuator [3,4] as follows:

uFi (t) = σiui(t), σi ∈ [σi, σi]

0 < σi ≤ 1, σi ≥ 1 , i = 1, 2, · · · · · · ,m
(2)

where σi is an unknown constant, and which is called
as lose of effectiveness (LOE) factor. σi and σi rep-
resent the known lower and upper bounds of σi, re-
spectively. When σi = σi = 1, meaning that the ith
actuator ui(t) is in fault free case.

The control input in faut case can be described by:

uF1 (t) = [uF1 (t), u
F
2 (t), · · · · · · , uFm(t)]T = σu(t)

with σ = diag[σ1, · · · , σm].
Hence, the non-affine nonlinear systems (1) with

actuator faults (2) can be transformed into

ẋ = f(x, σu) + d(t) (3)

and the failure model of (3) can be expressed as the
following general formula

ẋ = f(x, u, σ) + d(t) (4)

where σ = [σ1, · · · , σm]T . The preceding model is
subject to the following Assumption 1.

Assumption 1: f(x, u, σ) is C1 for all x, u, σ and
is a smooth function with respect to state x, control
input u and LOE factor σ. And the norm of the control
signal u(t) is uniformly bounded by constants β > 0,
i.e., ∥u∥ ≤ β.

The desired dynamics of the nonlinear systems
(1) is now chosen in the form

ẋm = Amxm +Bmr (5)

where xm ∈ Rr denotes the state of the reference
model. Amis asymptotically stable. r ∈ Rn denotes
a vector of bounded piecewise continuous reference
inputs.

FTC Objective: Design a FTC input u(t) such
that ∥x(t) − xm(t)∥ ≤ ϵ for all time despite the ef-
fect of the disturbance ω(t), actuator faults.

3 Main Results

For uncertain nonaffine-in-control systems, two part-
s must be developed, which are auxiliary system and
reconfigurable tracking controller. And some stabili-
ty analysis is given for the closed-loop fault tolerant
tracking system.
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3.1 Auxiliary System Design

From Assumption 1, the first-order Taylor expansion
of the nonlinear function f(x, u, σ) with respect to σ
around the neighborhood σ̂ can result in

f(x, u, σ) = f(x, u, σ̂) + g1(x, u, σ̂)(σ − σ̂) + ξ(t)
(6)

where

g1(x, u, σ̂) =
∂f(x, u, σ)

∂σ

∣∣∣∣
σ=σ̂

and

ξ(t) =

∞∑
i=2

∂if(x, u, σ)

∂σi

∣∣∣∣∣
σ=σ̂

(σ − σ̂)i

Then, the (4) can be rewritten as

ẋ = f1(x, u, σ̂) + g1(x, u, σ̂)σ + υ(t) (7)

where

f1(x, u, σ̂) = f(x, u, σ̂)− g1(x, u, σ̂)σ̂

υ(t) = ξ(t) + d(t)

Notice that υ(t) is unknown but bounded, that is to say
there exists an unknown constant υ such that ∥υ(t)∥ ≤
υ. Let x̃ = x̂−x. Under Assumption 1, we can design
a following auxiliary system for (7).

˙̂x = A(x̂− x) + f1(x, u, σ̂) + g1(x, u, σ̂)σ̂ + ν(t)
(8)

where σ̂ = [σ̂1, · · · , σ̂m]T denotes the estimation of
actuator efficiency factor, which is obtained as

˙̂σ = Proj[σi,σi]{−2γ1g
T
1 (x, u, σ̂)Px̃} (9)

where γ1 > 0, and P = P T > 0 is a solution to the
Lyapunov matrix equation ATP + PA = −Q, where
Q = QT > 0. (In the preceding equations Proj{·}
denotes the projection operator [19] the role of which
is to project the estimates σ̂i to the intervals [σi, σi]).
And ν(t) is defined as

ν(t) =

{
− P x̃

∥P x̃∥m(t), if ∥Px̃∥ ̸= 0

0, otherwise
(10)

In (10), m(t) is given by the following update law

ṁ(t) = Gx̃T x̃, m(0) > 0 (11)

where G is a design constant that can be used to reg-
ulate the increasing rate of m(t) and thus the rate of
the state estimation error converging to zero. Larger
G means that the state estimation error converges to
zero faster.

3.1.1 Stability analysis

We have the following results regarding to the stability
of the resulting state estimation error dynamics result-
ing from the proposed auxiliary system.

Let σ̃ = σ̂ − σ. By using the above auxiliary
system, the resulting state estimation error dynamics
is

˙̃x = Ax̃+ g1(x, u, σ̂)σ̃ + ν(t)− υ(t) (12)

Theorem 1: Under Assumptions 1, if we apply
the auxiliary system given by (8) – (11) to system (4),
then state estimation error dynamics given by (12) is
globally asymptotically stable, that is, for any initial
conditions x̃(0) and m(0), we have limt→∞ x̃(t) = 0,
σ̃(t) and m(t) is bounded.

Proof: Consider the Lyapunov function

V1(t) = x̃TPx̃+
1

2γ1
σ̃T σ̃

The derivative of V1(t) along the trajectory of the aug-
mented state-error dynamics (12) can be written as

V̇1(t) = ˙̃xTPx̃+ x̃TP ˙̃x+
1

γ1
σ̃T ˙̃σ

=− x̃TQx̃+ σ̃T (2gT1 Px̃+
1

γ1
˙̃σ)

+ 2x̃TP (ν − υ) (13)

Substituting the adaptive update law (9) and sliding
mode term (10) into (13) yields the following equation

V̇1(t) =− x̃TQx̃+ 2x̃TP (ν − υ)

=− x̃TQx̃− 2∥Px̃∥m(t)− 2x̃TPυ

≤− x̃TQx̃− 2∥Px̃∥m(t)− 2∥Px̃∥υ
=− x̃TQx̃− 2∥Px̃∥[m(t)− υ] (14)

Now, we prove the m(t) is bounded via reductio ad
absurdum. First, we assume that m(t) is unbound-
ed. From the definition (10), we can obtain the m(t)
is positive and increasing (i.e. limt→∞m(t) = ∞).
Hence, there exists a time T , we have m(t) ≥ T for
all t > T . So we have

V̇1(t) ≤ −x̃TQx̃ (15)

Because Q > 0, so V1(t) is bounded and decreasing.
And we can get

λmin(Q)

∫ t

T
x̃(τ)T x̃(τ)dτ ≤

∫ t

T
x̃(τ)TQx̃(τ)dτ

≤ V1(x̃(T ))− V1(x̃(t))
(16)
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Hence we can obtain
∫∞
T x̃(τ)T x̃(τ)dτ is bounded,

which also means that m(t) =
∫ t
0 Gx̃T (τ)x̃(τ)d(τ)+

m(0) is bounded. This leads to a contradiction to the
assumption that m(t) is not bounded. Therefore, we
have proved that m(t) has to be bounded and there
exists a positive constant m̄ such that limt→∞m(t) =
m̄.

Because m(t) is bounded. We can obtained
x̃(t) is bounded too. This together with (12) im-
plies that ˙̃x(t) is bounded. By using Barbalat lem-
ma [25], the boundness of m(t), the boundness of∫∞
0 x̃(τ)T x̃(τ)dτ implies limt→∞ x̃(t) = 0. This

together with the inequality in (14) implies that
limt→∞ V̇ (t) = 0, which in turn implies that σ̃(t) is
bounded. The proof is complete.

Remark 1: In auxiliary system (8), sliding mode
term ν(t) is modified as

ν(t) = − Px̃

∥Px̃∥+ δ
m(t)

where δ = δ0 + δ1∥x̃∥, and δ0, δ1 are two positive
constants.

Remark 2: The novelty of the auxiliary system
lies in the adaptive update law (9) and the sliding
mode gain m(t), which is introduced to deal with un-
known bounded υ.

3.2 Controller Design and Stability Analysis

The problem of controlling the plants characterized by
models that are non-affine in the control input vector
is a thorny one, especially for the tracking control. So
far, concentrated research has been conducted for the
controller design only for affine nonlinear systems.

Define F (x, u, σ̂) = f1(x, u, σ̂) + g1(x, u, σ̂)σ̂.
Then, the Taylor expansion of the nonlinear function
F (x, u, σ̂) with respect to u(t) around the neighbor-
hood un(t) can result in

F (x, u, σ̂) = F (x, un, σ̂)+Fd(x, un, σ̂)(u−un)+O(·)
(17)

where

Fd(x, un, σ̂) =
∂F (x, u, σ̂)

∂u

∣∣∣∣
u=un

and

O(·) =
∞∑
i=2

∂iF (x, u, σ̂)

∂ui

∣∣∣∣∣
u=un

(u− un)
i

If we let Fn(x, un, σ̂) = F (x, un, σ̂) −
Fd(x, un, σ̂)un, so we can rewrite (8) as

˙̂x = Ax̃+ Fn(x, un, σ̂) + Fd(x, un, σ̂)u+O(·) + ν(t)
(18)

From (17), it can be seen that if we let lim ∥u −
un∥ = 0, then lim ∥O(·)∥ = 0. We consider lag prop-
erty of the filtering as [16-17]

u̇n = −ζun + ζu (19)

Then limζ→∞ un = u. So use the above filter (19), it
can be ensure that limζ→∞ ∥O(·)∥ = 0.

From above analysis, the observer (8) can be de-
scribed as an affine system with time-varying param-
eters by following

u̇n = −ζun + ζu

˙̂x = Ax̃+ Fn(x, un, σ̂) + Fd(x, un, σ̂)u+ ν(t) +O
(20)

Remak 3: Here, ζ → ∞ is only a rigorous ex-
pression for mathematics meanings, in general, ζ ∈
[5, 50]. The filter (19) is not unique. The filtering un
can be completely replaced by other filtering equation,
such as higher-order differentiator etc. In actual pro-
cesses, the dynamics of filter (19) also can be chosen
as same as actuator dynamics.

For the given bounded piecewise continuous ref-
erence inputs r. Define the estimated tracking errors
as ê = x̂−xm. So the control law can be chosen with
(19) as

u̇n = −ζun + ζu

u = −F−1
d (x, un, σ̂) [Ax̃+ Fn(x, un, σ̂)

+ ν(t) +Kê−Amxm −Bmr]
(21)

It can be seen that we can designed the gain matrix K
by following Riccati equation:

KTP1 + P1K = −Q1 (22)

where P1 = P T
1 > 0 and Q1 = QT

1 > 0.
Remark 4: Strictly speaking, when the dimen-

sion of control inputs is not equal to that of state
variables, the inverse matrix of Fd(x, un, σ̂) is in
the nonexistence. Thus, in this study, we adopt the
generalized matrix inverse of Fd(x, un, σ̂), denoted
as F−1

d (x, un, σ̂), which also meets the condition
F−1
d (x, un, σ̂)Fd(x, un, σ̂) = I .

Theorem 2: Consider the actuator faulty system
(4), under the auxiliary system (8)-(11) and control
law (21). Let e = x− xm, we have limζ→∞ ê(t) = 0
and limζ→∞ e(t) = 0.

Proof: Substituting (21) into (20) yields

˙̂e = Kê+O(·) (23)
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Figure 2: System response without FTC.

Choose the following Lyapunov function:

V2 = êTP1ê

The time derivative of V2 is given by

V̇2 = −êTQ1ê+ 2êTP1O(·)

Under Young inequality 2aT b 6 εaTa + ε−1bT b, we
have

V̇2 6 −
[
λmin(Q1)

λmax(P1)
− ε1

]
V + ε−1

1 λmax(P1)∥O(·)∥2

6 −λ1V1 + φ(t)

where

λ1 =
λmin(Q1)

λmax(P1)
− ε1

and

φ(t) = sup
t→∞

{
ε−1
1 λmax(P1)∥O(·)∥2

}
λmax(·), and λmin(·) are largest and smallest eigenval-
ues of a matrix. Hence, using global uniform ultimate

boundedness (GUUB) stability [25], V2 is exponential
convergence, and the estimated tracking error ê(t) can
converge to a closed ball domain

Ωs =

{
ê(t)

∣∣∥ê(t)∥2 6 φ(t)

λ1 · λmin(P1)

}
(24)

Using the results limζ→∞ ∥O(·)∥ = 0 and (24), we
can obtained that limζ→∞ ê(t) = 0 when t → ∞. so
from Theorem 1, the result limζ→∞ e(t) = 0 can be
obtained at t → ∞.

Remak 5: We know, in traditional active FTC
framework for uncertain systems, robust fault estima-
tion and robust controller must be considered and de-
signed. However, in the paper, the fault information
and resulting disturbances are hidden in the auxiliary
system, without the need for accurate fault informa-
tion. And the reconfigurable controller is designed
using dynamic model of the auxiliary system. So, the
robustness problems of the reconfigurable controller
and fault estimation are effectively addressed through
the introduction of the auxiliary systems.
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4 Simulation Results

In this section the intention is to evaluate the per-
formance of the novel robust adaptive fault-tolerant
tracking control. The evaluation is carried out on the
3-DOF model of UAV dynamics that can be found
in [19,27]. The differential equations governing the
point-mass UAV dynamics are given by

V̇ = g

(
T −D

W
− sin γ

)
γ̇ =

g

V
(n cosµ− cos γ)

χ̇ =
gn sinµ

V cos γ
(25)

The state variables are airspeed V , flight path an-
gle γ, flight path heading angle χ, and the control vari-
ables are thrust T , load factor n, and bank angle µ.
The drag force D is represented by a simple drag po-
lar model as

D = 0.5ρV 2SCD0 +
2kn2W 2

ρV 2S

Detailed UAV model parameters are summarized in
Table 1.

Table 1: UAV model parameters

Description Value
density, ρ 1.2251 kg/m3

weight, W 14, 515 kg
reference area, S 37.16 m2

Maximum thrust, Tmax 113, 868 N
Maximum lift coefficient, CLmax2.0
Maximum load factor, nmax 7
induced drag coefficient, k 0.1
parasite drag coefficient, CD0 0.02

Let x = [V, γ, χ]T , u = [T, n, µ]T ,
and σ = [σ1, σ2, σ3]

T . Assume external
disturbance vector ω = [ω1, ω2, ω3]

T =
[0.2 cos(2t), 0.0002 sin(t), 0.0002 cos(t)]T . Then
the 3-DOF dynamics model (25) with actuator LOE
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faults becomes

ẋ1 = c11x
2
1 +

c12σ
2
2u

2
2

x21
+ c13 sin(x2) + c14σ1u1 + ω1

ẋ2 =
1

x1
(c21 cos(x2) + c22σ2u2 cos(σ3u3)) + ω2

ẋ3 =
c31σ2u2 sin(σ3u3)

x1 cos(x2)
+ ω3 (26)

where c11 = −0.5ρgSCD0/W , c12 = −2kgW/(ρS),
c13 = −g, c14 = g/W , c21 = −g, c22 = g and
c31 = g.

In all simulations, it is assumed that the objective
is to assure that the forward velocity V (t) = x1(t) is
regulated around their desired values 300 m/s. The
flight-path angle γ(t) = x2(t) and heading angle
χ(t) = x3(t) respectively follow outputs of two refer-
ence models

ẋm1 = xm2

ẋm2 = −9xm1 − 6xm2 + 9rγ(t)

and ẋm = −xm + rχ(t). Where rγ(t) is a 5 − deg

heading angle doublet

rγ(t) =


0 t 6 15

0.5(t− 15) 15 < t 6 25
5 25 < t 6 35

0.5(45− t) 35 < t 6 45
0 t > 45

and rχ(t) = 30 sin(πt/18).
In the simulations, both constant and time-

varying actuator faults σ are created as follows:

σ1 =


1.5(2.6/3− 0.02t) 10 < t 6 30
1.5(0.02t− 1/3) 30 < t 6 50

1 others

σ2 =

{
1 t 6 20
0.6 20 < t

σ3 =

{
1 t 6 20
0.8 20 < t

The initial flight condition are chosen as V (0) =
300 m/s, γ(0) = 0 deg, and χ(0) = 0 deg. The ini-
tial state values of observer (8) are chosen as same as

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Hongcheng Zhou, Dezhi Xu

E-ISSN: 2224-2856 35 Volume 10, 2015



initial flight condition. Other initial values of observer
are m(0) = 0.15, and σ(0) = [1, 1, 1]T . The observ-
er and controller parameters are selected as γ1 = 2,
G = 1000, δ0 = 5, ζ = 50, A = diag(−2,−2,−2),
K = diag(1, 1, 1), and

P =

0.3 0 0
0 1800 0
0 0 2000


4.1 Simulation 1: Without FTC

The simulation is focused on the case when the system
is controlled by non-affine nonlinear controller, but
the parameters of actuator LOE factor are unknown.
The control law is now chosen as

u̇n = −ζun + ζu

u = −F−1
d [Fn|σ̂=1 +Ke−Amxm −Bmr]

The response of the flight control system in this case
is shown in Figure 1. The superscript m denotes the
outputs of the reference model. It is seen that the pa-
rameter variations lead to large errors.

4.2 Simulation 2: With FTC

The system responses of the UAV with the adaptive
FTC is shown in Figure 2. It is seen that the state re-
sponse is substantially improved compared to the case
of without FTC. Figure 3 shows estimates of actuator
LOE factor σ. From Figure 3, it is seen that fault esti-
mates σ̂ converge close to true values σ.

5 Conclusion

To rely on adaptive and sliding mode techniques, we
propose fault tolerant tracking control scheme for the
plants that are non-affine in the control input vector
against actuator faults. In the developed FTC, two
main problems are solved, there are 1): Robust ac-
tuator LOE factor estimates that are non-affine, and
the knowledge of upper bound of uncertainty or exter-
nal disturbance is not needed 2): RFTC for nonlinear
models which are non-affine in the control input. The
RFTC is different from other existing methods. Sta-
bility analysis is given for the closed-loop fault toler-
ant tracking system. The proposed FTC approach is
tested using a 3-DOF UAV point mass model and is
shown to result in substantially improved system re-
sponse.

The proposed method can also been applied
in the area of flight control where the correspond-
ing nonlinear models are characterized by the con-
trol input variables appearing in a non-affine fashion

and where model parameters are generally unknown,
time-varying, and non-affine.

Acknowledgements: This work was supported by
National Natural Science Foundation (NNSF) of Chi-
na under Grant (No. 90716028, 61403161), the Fun-
damental Research Funds for the Central Universities
(JUSRP11562).

References:

[1] Y. M. Zhang and J. Jiang, Bibliographical review
on reconfigurable fault tolerant control systems,
Annu. Rev. Control, vol. 32, no. 2, pp. 229-252,
2008.

[2] S. C. Tong, T. C.Wang, and W. Zhang, Fault-
tolerant control for uncertain fuzzy systems with
actuator failures, Int. J. Innovative Comput. Inf.
Control, vol. 4, no. 10, pp. 2461-2474, 2008.

[3] B. Jiang, Z. F. Gao, P. Shi and Y. Xu, Adaptive
fault-tolerant tracking control of near space ve-
hicle using Takagi-Sugeno fuzzy models, IEEE
Trans. on Fuzzy Systems, vol.18, no.5, pp. 1000-
1007, 2010.

[4] D. Ye and G. H. Yang, Adaptive fault-tolerant
tracking control against actuator faults with ap-
plication to flight control, IEEE Trans. Control
Syst. Technol., vol. 14, no. 6, pp. 1088-1096,
2006.

[5] B. Jiang, K. Zhang and P. Shi, Integrated
fault estimation and accommodation design for
discrete-time Takagi-Sugeno fuzzy systems with
actuator faults, IEEE Trans. on Fuzzy Syst., vol.
19, no. 2, pp. 291-304, 2011.

[6] M. Liu, P. Shi, L. Zhang and X. Zhao, Fault
tolerant control for nonlinear Markovian jump
systems via proportional and Derivative sliding
mode observer, IEEE Trans. on Circuits and Sys-
tems I: Regular Papers, vol. 58, no. 11, pp. 2755-
2764, 2011.

[7] B. Jiang and F. N. Chowdhury, Fault estimation
and accommodation for linear MIMO discrete-
time systems, IEEE Trans. Control Syst. Tech-
nol., vol. 13, no. 3, pp. 493-499, 2005.

[8] M. M. Polycarpou, Fault accommodation of a
class of multivariable nonlinear dynamical sys-
tems using a learning approach, IEEE Trans.
on Autom. Control, vol. 46, no. 5, pp. 736-742,
2001.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Hongcheng Zhou, Dezhi Xu

E-ISSN: 2224-2856 36 Volume 10, 2015



[9] G. Tao, X. D. Tang, S. H. Chen, J. T. Fei, and
S. M. Joshi, Adaptive failure compensation of
two-state actuators for a morphing aircraft lat-
eral model, IEEE Trans. Control Syst. Technol.,
vol. 14, no. 1, pp. 157-164, Jan. 2006.

[10] Z. Gao, T. Breikin, and H. Wang, High-gain esti-
mator and fault-tolerant design with application
to a gas Tturbine dynamic system, IEEE Trans.
Control Syst. Technol., vol. 15, no. 4, pp. 740-
752, 2007.

[11] H. Wang and S. Daley, Actuator fault disgno-
sis: An adaptive observer based technique, IEEE
Trans. Autom. Control, vol. 41, no. 2, pp. 1073-
1078, 1996.

[12] H. Wang, Z. Huang, and S. Daley, On the use of
adaptive updating rules for actuator and sensor
fault diagnosis, Automatica, vol. 33, no. 2, pp.
217-225, 1997.

[13] M. Liu, X. Cao and P. Shi, Fault estimation
and tolerant control for fuzzy stochastic systems,
IEEE Trans. on Fuzzy Systems, DOI: 10.1109/T-
FUZZ.2012.2209432, 2012.

[14] B. Jiang, M. Staroswiecki, and V. Cocquem-
pot, Fault accommodation for nonlinear dynam-
ic systems, IEEE Trans. Automat. Control, vol.
51, no. 9, pp. 1805-1809, 2006.

[15] J. Wang, B. Jiang and P. Shi, Adaptive observer
based fault diagnosis for satellite attitude control
systems, Int. J. Innovative Comput. Inf. Control,
vol. 4, no. 8, pp. 1921- 1929, 2008.

[16] D. Xu, B. Jiang, P. Shi, Global robust tracking
control of non-affine nonlinear systems with ap-
plication to yaw control of UAV helicopter, In-
ternational Journal of Control, Automation, and
Systems, vol. 11, no. 5, pp. 957-965, 2013.

[17] D. Xu, B. Jiang, P. Shi, Nonlinear actuator fault
estimation observer: an inverse system approach
via T-S fuzzy model. International Journal of
Applied Mathematics and Computer Sciences
2012,. 22(1), 183-196.

[18] B. Xiao, Q. Hu and Y. Zhang, Adaptive slid-
ing mode fault tolerant attitude tracking control
for flexible spacecraft under actuator saturation,
IEEE Trans. Control Syst. Technol., vol. 20, no.
6, pp. 1605-1612, Jan. 2012.

[19] J. D. Boskovic, L. Chen, and R. Mehra. Adap-
tive control design for nonaffine models arising
in flight control. AIAA J. Guid., Control, Dyn.,
vol. 27, no. 2, pp. 209-217, 2004.

[20] C. Ahn, Y. Kim, and H. Kim, Adaptive slid-
ing mode control for non-affine nonlinear vehi-
cle systems, presented at the AIAA Guid., Navi-
gat. Control Conf. Exh., Hilton Head, SC, 2007,
Paper AIAA 2007-6506.

[21] S. H. Lane, and R. F. Stengel, Flight control de-
sign using nonlinear inverse dynamics, Automat-
ica, Vol. 24, No. 4, pp. 471-483, 1988.

[22] H. Nijmeijer, and V. D. Schaft, Nonlinear Dy-
namical Control Systems, Springer-Verlag, New
York, 1990.

[23] B. Yang, A. Calise, Adaptive control of a class of
nonaffine systems using neural networks, IEEE
Trans. Neural Netw., Vol. 18, No. 4, pp. 1149-
1159, 2007.

[24] A. Marcos, G. D. Zaiacomo, and L. F. Penin,
Simulation-based fault analysis methodology
for aerospace vehicles, presented at the AIAA
Guid., Navigat. Control Conf. Exh., Honolulu,
HI, 2008, Paper AIAA 2008-6623.

[25] J. Spooner, M. Maggiore, and R. Ordonez, Sta-
ble adaptive control and estimation for nonlinear
systems, Wiley, New York, 2002.

[26] H. Nijmeijer, A. Schaft. Nonlinear dynamical
control systems. Springer-Verlag, New York,
1990.

[27] H. Zhou, D. Xu, D. Wang, L. Ge. Adaptive fault-
tolerant tracking control of nonaffine nonlinear
systems with actuator failure, Abstract and Ap-
plied Analysis, Vol. 2014, pp.1-8.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Hongcheng Zhou, Dezhi Xu

E-ISSN: 2224-2856 37 Volume 10, 2015




