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Abstract: In this paper we build on our earlier work on the control of high density, electrostatically actuated, mi-
crocantilever arrays and present simple state feedback controllers that can achieve reasonable performance. These
controllers are localized, spatially distributed and yield tracking performances comparable to the performance of
the distributed H∞ controller proposed in our earlier study, for reference frequencies as high as 3000 rad/sec.
These simpler structures come with the cost of worse performance at higher frequencies, relatively inferior ro-
bustness to phase shifts and a state availability requirement. Therefore, it can be effectively used for relatively
lower bandwidth applications where the states are measurable. The above results are further verified by using a
multimodal model of the cantilever system.
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1 Introduction

The cantilever is a classical engineering structure
whose motion has been heavily studied and is fairly
well understood. Put simply, a cantilever is merely
a beam that is held rigid at one end. Nanotechnol-
ogy has led to the creation of microcantilevers. These
small scale mechanical structures can be made of ma-
terials that can actuate the cantilevers’ bending using
a voltage. This allows the control and measurement of
the beams’ microscopic bending and allows for vari-
ous scientific and industrial applications.

The importance of microcantilevers in the scien-
tific field has been clear since the advent of the atomic
force microscope (AFM). While the scanning tunnel-
ing microscope was a huge breakthrough, it had seri-
ous limitations with regards to observable materials,
necessary environments and isolating force effects,
which could not be addressed until the invention of the
AFM in 1986 by Binnig, Quate, and Gerber [4]. Five
years later the AFM was used to show atomic resolu-
tion of inert surfaces and there are now thousands of
AFMs being used in research labs [4] and numerous
other applications over the years. Due to the preva-
lence of relatively low-cost AFM cantilevers, the in-
terest in microcantilever sensors in detecting surface
stress was revived [9].

Microcantilevers have demonstrated success in a
variety of sensor applications. They have been able to
image and detect biological structures including DNA
and proteins [3, 9]. More generally, arrays of piezo-

electric microcantilevers can be specially coated and
respond to particular substances with the bending re-
sponse thereby causing a change in voltage resulting
in sensitive chemical detectors [15]. Microcantilevers
can also be used to detect particular bands of elec-
tromagnetic waves, and may serve as more afford-
able substitutes to current detectors [14]. Addition-
ally, there is the potential for fast, high-density data
storage applications, and small scale chips have al-
ready been fabricated [2].

This paper, leveraging on our previous work in
[12] and [11], and our work in [8], presents a spatially
invariant model of a system of very closely spaced mi-
crocantilevers that can be capacitively actuated and
sensed independently, and tests it with various con-
trollers. The tests are performed with respect to track-
ing performance and stability properties. The first one
of the controllers is a state feedback, decentralized
(meaning each cantilever has its own controller and
the controller does not communicate with its neigh-
bors) velocity feedforward controller with a PID com-
ponent. The second controller is a distributed (mean-
ing each cantilever has its own controller and the con-
troller communicates with the immediate neighbors
only), state feedback LQR controller from [5] that
is designed with simultaneous localization and opti-
mization. The state feedback controllers are easy to
implement, do not involve many calculations and pro-
vide quite satisfactory results. Distributed H∞ con-
troller is the main alternative for the cases where the
displacements of the cantilevers are not measurable.
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In order to obtain a more accurate picture, the control
tests are also performed with a more complex, multi-
modal modeling of the system.

The paper is organized as follows: In Section 2
modeling and description of the system is presented.
This is followed by showing the feedforward, LQR
and the H∞ controller designs and their simulation re-
sults in Section 3. In Section 4 the multimodal model
of the system and the results with the previous con-
trollers are presented. The robustness of the system
with respect to different parameters is discussed in
Section 5. Finally, the paper is concluded with com-
ments and discussion of future work.

2 System Modeling
2.1 Core Model
The microcantilevers considered in this paper are ca-
pacitively actuated plates, with one rigid plate at the
bottom and one more flexible plate at the top as shown
in Figure 1. The top plate is rigid in horizontal direc-
tion and can move in vertical direction only. The verti-
cal displacement of each microcantilever is controlled
by applying a voltage across the plates. The system
model consists of an infinite number of these can-
tilevers located in quite close proximity to each other
connected to a base. Therefore, despite each micro-
cantilever’s being actuated independently, its dynam-
ics are influenced by the presence of other microcan-
tilevers. This influence has two sources: First one is
the mechanical coupling because of microcantilevers’
being attached to the same base and the second one
is the electrical coupling due to the electromagnetic
forces applied by the neighboring micro-capacitors.
The system with the coupling effects are depicted in
Figure 2. Regarding these the equation of motion for
a single cantilever can be written as:

z̈i + bżi + kzi = Fa,i + Fmech,i + F⊥elec,i (1)

In this equation the subscripts i refer to which
cantilever the equation describes. For cantilever i, the
symbol zi is the vertical displacement of the cantilever
tip, b is the normalized damping coefficient and k is
the conceptual spring constant. The spring constant
can be rewritten as k = ω2 with ω being the natu-
ral resonant frequency of the ith cantilever. Fa,i is
the force of attraction between the tip of cantilever i
and the rigid plate below it. The cantilever’s and the
rigid plate’s acting as electrodes across which volt-
age is produced cause electrostatic attraction between
them having the following formula:

Fa,i =
ε0A

2md2
(1 +

2zi
d

)V 2
i (2)

Figure 1: A side view of a single cantilever and its respective plate. The
cantilever shows a range of vertical motion [12]

Figure 2: Layout of the infinite dimensional microcantilever array with
mechanical and electrostatic coupling [12]

where ε0 is the permittivity of vacuum, A is the area
of the cantilever (length by width), d is the gap be-
tween the cantilever and the rigid plate below, m is
the mass of the cantilever and Vi is the voltage across
the electrodes of cantilever i.

The mechanical coupling, Fmech, can be mod-
eled like a spring force between the bases of the can-
tilevers. Only the immediate neighbors have a signif-
icant mechanical influence on the cantilever and this
force is proportional to the difference between the po-
sition of the cantilever tip and that of its immediate
neighbor. The mechanical coupling can be modeled
as follows:

Fmech,i =
1

m

i+1∑
j=i−1,j 6=i

γi,j(zj − zi) (3)

where γ is the mechanical coupling coefficient.The in-
dex j refers to the neighboring cantilever.

Finally F⊥elec is the electrostatic coupling between
a cantilever and its neighbors. Unlike the mechani-
cal coupling, this coupling force is not only generated
by the immediate neighbors but by every cantilever in
the array. The coupling is determined as in [12] by
defining the capacitance ci of the ith cantilever as:

ci = ε0
A

d− zi
(4)
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using Coulomb’s law:

Felec =
ciVi
4πε0

∞∑
j=−∞,j 6=i

cjVj
r2i,j

(5)

and finally taking the approximation of the vertical
component:

F⊥elec ≈
ciVi
4πε0

∞∑
j=−∞,j 6=i

cjVj(zi − zj)
r3i,j

(6)

where ri,j is the horizontal distance between can-
tilevers i and j, as measured from the centroids.

2.2 Linearization
The states of the system are xi,1:=zi for the displace-
ment of the cantilever, xi,2:=żi for the velocity of the
cantilever, xi,3:=Vi for the applied voltage on the can-
tilever. The state equations are formed as follows:

ẋi,1 = xi,2

ẋi,2 = −bxi,2−ω2xi,1+Fa,i+Fmech,i+F
⊥
elec,i (7)

The nonlinear system of the microcantilever array is
linearized around its equilibrium point that is

xe1 =
ε0AV

2
e d

2(ω2md3 − ε0AV 2
e )

(8)

The mechanical coupling is already linear so it does
not need to be changed. The linearization of other
driving forces around the equilibrium point is:

F̃a,i = (
ε0dAVe + 2ε0Axe1Ve

md3
)Vi+

ε0AV
2
e

md3
xi,1 (9)

for the force of attraction,

F̃⊥elec,i = (1 +
x2e1
d2

+
2xe1
d

)

· ε0
A2V 2

e

4md2π

∞∑
j=−∞,j 6=i

(xi,1 − xj,1)
r3i,j

(10)

for the electrical coupling.
The current produced from the bending of the

cantilever beams can be defined as the system output
that is one of the inputs to the H∞ controller. It is
calculated as:

yi = d
ciVi
dt

=
Viε0A

d2
ẋi,1+

ε0A

d
V̇i+

ε0Axi,1
d2

V̇i (11)

This equation of output can be linearized as below:

yi =
Veε0A

d2
xi,2 + V̇i

(
ε0A

d
+
ε0Axe1
d2

)
(12)

2.3 Matrix Formulation
The nonlinearities in the equations were linearized in
the previous section resulting in the following linear
system:

ẋi,1 = xi,2

ẋi,2 = −bxi,2 − xi,1
(
ω2 − ε0AV

2
e

md3

)
+

(
ε0dAVe + 2ε0Axe1Ve

md3

)
Vi

+
1

m

i+1∑
j=i−1,j 6=i

γi,j(δx1ji)

−
(

1 +
x2e1
d2

+
2xe1
d

)
ε0A

2V 2
e

4md2π

∞∑
j=−∞,j 6=i

δx1ji
r3i,j

ẋi,3 = ui (13)

with ui being the input to the ith cantilever and
δx1ji = xj,1 − xi,1. The states’ coefficients corre-
sponding to driving forces seem to be quite long and
complicated. However, they are actually constants so
the above linear model equations can be written as:

ẋi,2 = −bxi,2 − C1xi,1 + C2Vi

+
i+1∑

j=i−1,j 6=i
C3(δx1ji)

− C4

 ∞∑
j=−∞,j 6=i

δx1ji
r3i,j

 (14)

where C1, C2, C3, C4 are constants corresponding to
the coefficients in (13).

Figure 3: Block Diagram for the Feedforward Controller

The above equations can be written in terms of
matrices. For the linear system one obtains the clas-
sical state space equation ẋ = Ax + Bu. For an n-

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Berkem Mehmet, Hussam Sehwail, Petros G. Voulgaris

E-ISSN: 2224-2856 660 Volume 9, 2014



cantilever system the 3n×3n state matrix has the fol-
lowing form:

0 1 0
a21 −b a23
0 0 0

0 0 0
EC 0 0
0 0 0

· · ·
0 0 0

En−1 0 0
0 0 0

0 0 0
EC 0 0
0 0 0

0 1 0
a21 −b a23
0 0 0

· · ·
0 0 0

En−2 0 0
0 0 0

...
. . .

...
0 0 0

En−1 0 0
0 0 0

0 0 0
En−2 0 0

0 0 0
· · ·

0 1 0
a21 −b a23
0 0 0


where a21 = −C1 − 2C3 + Etotal, Etotal =

C4

(∑∞
j=−∞,j 6=i 1/r3i,j

)
, E|i−j| = −C4/r

3
i,j , EC =

E1 + C3 and a23 = C2. The 3 × 3 submatrices in
the diagonal represent the matrix for the ith cantilever
and the other submatrices are their neighbors. Simi-
larly the 3n× n input matrix has the form below:

B =


b̂ 03×1 · · · 03×1

03×1 b̂ · · · 03×1
...

. . .
...

03×1 03×1 · · · b̂

 (15)

where b̂ =
[
0 0 1

]′. The linear model is useful for
doing analysis about robustness, stability and sensitiv-
ity. Most of the simulations however are done with the
nonlinear model since it depicts the real system. The
nonlinear model is of the form:

ẋ = Ãx+Bu+ P (x) (16)

where P (x) contains the nonlinearities and couplings,
B is the same matrix as above and Ã is:

0 1 0
ã21 −b 0
0 0 0

· · ·
0 0 0
0 0 0
0 0 0

...
. . .

...
0 0 0
0 0 0
0 0 0

· · ·
0 1 0
ã21 −b 0
0 0 0


with ã21 = −ω2 − 2C3.

3 Controller Design
In the previous sections the development of the spa-
tially invariant, high-density microcantilever array
model was presented. The tracking of each can-
tilever is important for the scanning performance of

the AFM. In this paper the main control goal is there-
fore the cantilever’s good tracking of a given sinu-
soidal reference signal. Up to certain reference fre-
quencies this aim can be achieved with state feedback
controllers like a decentralized velocity-feedforward
controller, that consists of a PID controller with a neg-
ative feedback, supported by a positive feedforward
component from the derivative of the reference or LQ
optimal, localized control. A more complicated H∞
control designed based on robust control theory in
[12] is however necessary for higher, spatially vary-
ing frequencies.

3.1 Feedforward Controller
In this section a PID plus feedforward controller is
presented. Each cantilever has its own local con-
troller and each controller is fully decentralized, i.e.
it only uses the information from its own cantilever.
The gains of the PID controller and the feedforward
gain are adjusted for the best performance. The PID
control is the most common form of feedback con-
trol and is quite useful in setpoint tracking. In addi-
tion to this it is easy to implement. However, a sim-
ple PID controller may not provide enough tracking
performance especially if the reference is time vary-
ing. In this case a coupling from the input signal,
which can be the reference or a disturbance, is directly
added to the control variable. Requiring the knowl-
edge of system parameters and reference, this com-
bined feedforward-feedback control can significantly
improve tracking performance for time-varying refer-
ence with even high frequencies. As seen in Figure 3
the feedforward component comes from the reference
and the error is a vector of differences between the
displacement of the cantilevers and the reference vec-
tor. For a single cantilever the PID controller has the
following formula:

ui,P ID = kp · ei + kd · ėi + ki ·
∫
ei (17)

ei = ri − xi,1 (18)

with kp, kd, ki, ei being the proportional gain, deriva-
tive gain, integral gain and the tracking error for the
ith cantilever respectively.

In many cases the feedforward component F (s)
is chosen to be the inverse of the plant transfer func-
tion G(s). This makes the reference to state transfer
function (G · F + G · PID)/(I + G · PID) equal
to 1, meaning perfect tracking. This choice for F (s)
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(a) (b)

Figure 4: (a,b) Feedforward Control design: (a) Tracking error of 3 cantilevers in a system of 21 cantilevers control, (b) Reference input and tracked output
for two sample cantilevers. In all the above cases the excitation frequency and amplitude are 3000rad/sec and 10nm respectively

is however not always feasible because of the non-
minimum phase behavior of the plant. In addition
to this, the cantilever model presented in this paper
has nonlinearities and coupling effects from its neigh-
bors which makes it harder to have an inverted trans-
fer function of the single cantilever. Therefore, for
the nonlinear cantilever array system velocity feedfor-
ward control is used with the feedforward component
being the derivative of the reference scaled with a con-
stant gain:

ui,F = kf · ṙi (19)

So the overall controller can be written as:

u = (kp · ei +kd · ėi +ki ·
∫
ei +kf · ṙi) ·V1 (20)

with V1 being the n × 1 vector consisting of only
1’s, where n is the number of cantilevers. The over-
all controller can be designed in such way since the
individual controllers do not use any neighbor infor-
mation. By choosing appropriate values for the con-
troller gains one can achieve quite satisfactory results
as shown in Figure 4.

Simulations are done with a 21 cantilever-
nonlinear system having the decentralized feedfor-
ward control. The reference input has a frequency of
3000 rad/sec with an amplitude of 10 nm for each can-
tilever. The tracking errors of cantilevers at the edges
and in the middle are shown in Figure 4(a). The can-
tilevers have all tracking errors less than 1 nm.

Using standard tuning techniques control effort
has to be kept below certain limits. The control effort
in this design was always within the allowable limit of
±7.5V [10].

3.2 Optimal State Feedback Control
In this section the controller introduced in [5] is im-
plemented in the cantilever system. The optimal state
feedback control is obtained in such a way that both
the cost function, which is the tracking error in this
case, and the neighbor information are minimized si-
multaneously. The minimizer of this constrained op-
timal control problem is sought using the augmented
Lagrangian method. Let a linear time-invariant sys-
tem be given by its state space representation

ẋ = Ax+B1d+B2u

z =

[
Q1/2

0

]
x+

[
0

R1/2

]
u (21)

where x is the state vector, d is the disturbance, u
is the control input and z is the performance output.
Q1/2 and R1/2 denote the square roots of the state
and control performance weights. The structured state
feedback design problem is considered

u = −Fx (22)

where matrix F has to satisfy some structural con-
straints. Let the subspace S symbolize these struc-
tural constraints and let us assume that there exists
a non-empty set of stabilizing F that belongs to S.
The objective is to design a control F ∈ S that min-
imizes H2 norm of the transfer function from d to z.
This structured optimal control problem can be for-
mulated as an LQR type cost function J(F ) subject
to the constraint that F ∈ S. S in this work represents
the set of matrices with having nonzero elements in
the main diagonal and the immediate neighbors of the
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(a) (b)

Figure 5: (a,b) LQR Control design: (a) Tracking error of 3 cantilevers in a system of 5 cantilevers, (b) Reference input and tracked output for two sample
cantilevers. In all the above cases the excitation frequency and amplitude are 1000rad/sec and 10nm respectively

main diagonal only and thus having minimum possi-
ble number of nonzero elements. Hence the objective
is minimizing the cost function (the H2 norm of the
reference to error transfer function) and diagonalizing
F by minimizing the number of nonzero elements si-
multaneously, as indicated below:

minimize J(F ) + γcard(F ) (23)

The cardinality function card(F ) represents the num-
ber of nonzero elements of F . Mathematically this
corresponds to a function having the value 0 for
|Fij | = 0 and a nonzero constant value (for instance
1) otherwise. γ is a non-negative number indicating
the importance of sparsity of F . At γ = 0 the stan-
dard LQR problem is obtained with a centralized F
as a solution. The higher the value of γ the more de-
centralized the controller becomes. (23) represents a
strike balance between the sparsity of F and the vari-
ance amplification from d to z and this is depicted by
two functions J and g. In order to decouple these
functions the problem is defined in the following way:

minimize J(F ) + γg(F̂ )

subject to F − F̂ = 0 (24)

For the two parameters F and F̂ a Lagrangian equa-
tion is introduced which is minimized iteratively first
with respect to F then with respect to F̂ , and cal-
culating a new Lagrange multiplier and increasing γ
in each step. This iterative algorithm is called al-
ternating direction method of multipliers (ADMM)
as explained in detail in [5] and [6]. After achiev-
ing the desired level of sparsity the structured H2

problem is solved [5] and the final controller is ob-
tained, having a distributed structure communicat-
ing with the immediate neighbors only. For the
above calculations the following software is used:
www.ece.umn.edu/users/mihailo/software/lqrsp/

The minimization process starts with an opti-
mal unstructured feedback gain F that is calculated
through linear quadratic regulation. Because of the
objective of having a good tracking performance
rather than a mere regulation the system dynamics are
augmented by an additional state q

q(t) = q(0) +

∫ t

0
(r − x̂1)dt (25)

with r being the reference to track and x1 being the
position state. So the system dynamics are rewritten
in the following way:[

˙̂x
q̇

]
=

[
Â 0
−C1 0

]
︸ ︷︷ ︸

A

[
x̂
q

]
+

[
0
1

]
︸︷︷︸
B1

r +

[
B
0

]
︸︷︷︸
B2

u

x̂1 = C1x̂

u = −F
[
x̂
q

]
=
[
−Fx −Fq

] [x̂
q

]
(26)

The initial controller F is calculated as a solution to
the linear quadratic regulation for the above problem.

The simulation results with a sample array of 5
cantilevers are shown in Figure 5. The reference sig-
nal had a frequency of 1000 rad/sec and an amplitude
of 10 nm. The absolute tracking error is well below
the limit of 2 nm as seen in Figure 5(b). The compari-
son of the tracked output of 2 sample cantilevers with
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the reference input can be seen in Figure 5(a). Further
simulations indicate that the control effort is around
5.5 V, similar to the feedforward control, well below
the limit of 7.5 V.

3.3 H∞-Controller
The previously presented controllers require state in-
formation which may not always be available. Fur-
thermore, although yielding satisfactory results and
being easy to implement, the feedforward controller
does not guarantee good tracking or even stability
for frequencies higher than 4000 rad/sec, especially
when there is a phase lag, while the LQR control al-
ready has a high tracking error at a frequency of 3000
rad/sec. The H∞ controller is another alternative for
the cantilever array and is designed in such a way that
it only uses the output information, meaning the cur-
rent and the voltage from the cantilever. The advan-
tage of this controller is its taking the coupling effects
into consideration and its being built in a more sys-
tematic way than the feedforward control. The linear
fractional transformation (LFT) setup for this control
design is shown in Figure 6 with P and K represent-
ing the plant and the controller respectively. û is the
vector of integrals of control inputs u for each can-
tilever. zu is the weighted rate of change of the in-
put voltage, zû is the weighted input voltage, ze is the
weighted tracking error, r is the reference command,
x1 is the vector consisting of the microcantilever po-
sitions and finally ŵ and d̂ are the vectors of external
disturbance. Wu and Wû are design weights guaran-
teeing that the control effort doesn’t exceed the allow-
able limit of ±7.5V [10]. We,Ww,Wd are chosen to

Figure 6: LFT Formulation for H∞ Control Design [7]

control the device bandwidth, attenuate the effect of
any external disturbance entering the system at the in-

put channel and attenuate the effect of high frequency
measurement noise on the system output respectively
[12]. The controller is designed using an infinite Lin-
ear Spatial Time Invariant (LSTI) abstraction of the
dynamics of one cantilever and the coupling from its
neighbors, augmented with the above defined weights.
Using the methods in [1] the spatial shift operator can
be defined as S = ejθ over the interval [0 2π]. Defin-
ing Abig, Bbig, Cbig and Dbig as the state, input, out-
put and feedthrough matrices of the augmented single
cantilever, and assuming that the information of only 2
neighbors on each side is considerable the augmented
state matrix with the shift operator can be written as

Abig(S) = Abig−2S
−2 +Abig−1S

−1 +Abig

+Abig1S
1 +Abig2S

2 (27)

with Sk = ekjθ. The gridding is then done over the
Fourier frequencies θ in order to get the infinite model
for the controller design. By splitting Cbig and Dbig

into Cbig1 and Dbig1 for the output to be minimized z̃
,and Cbig2 and Dbig2 for the output to be controlled ỹ
the following state equations for the infinite approxi-
mation of the augmented cantilever dynamics are ob-
tained

˙̂x = Abig(S) · x̂+Bbig ·
[
ŵ d̂ r u

]′
z̃ = Cbig1 · x̂+Dbig1 ·

[
ŵ d̂ r u

]′
ỹ = Cbig2 · x̂+Dbig2 ·

[
ŵ d̂ r u

]′
(28)

From here one can obtain the state equations of the
H∞ controller:

ẋk = Ak(S)xk +Bk(S)y

u = Ck(S)xk +Dk(S)y

Each of the matrices of the above equation of the con-
troller can be written in the same manner as in (27).
As an example the state matrix Ak(S) with 2 neigh-
bors on each side is presented

Ak(S) = Ak−2S
−2 +Ak−1S

−1 +Ak0 (29)

+Ak1S
1 +Ak2S

2 (30)

The coefficient matrices Aki can be determined us-
ing Least Square Estimation (LSE). Let n denote the
dimension of the matrix Ak(S) and Ak(i) the value
of the operator Ak(S) at the ith gridding point of the
Fourier frequency θ

Ak(i) = Ine
−2jθ, Ine

−jθ, In, Ine
jθ, Ine

2jθ)

× (Ak−2, Ak−1, Ak0, Ak1, Ak2)
∗ (31)

:=ψi × Ω
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In the above equation ψi can be easily calculated and
Ak(S) = is known. So for all the gridding points i the
following equation can be written

Ak(1)
Ak(2)

...
Ak(m)

 =


ψ1

ψ2
...
ψm

Ω

or (32)

Ak = Φ× Ω

where m is the number of the gridding points of
Fourier frequencies θ. Using LSE theorem in [7], one
of the best coefficient matrix estimates is given by

Ω = [(ReΦ)′(ReΦ) + (ImΦ)′(ImΦ)]−1

·
[
ReΦ
ImΦ

]′ [
ReAk
ImAk

]
(33)

with Re being the real part and Im being the imagi-
nary part. The same calculations are done for Bk(S),
Ck(S) andDk(S) and one obtains the distributedH∞
controller

ẋk = Akxk +Bkyk

uk = Ckxk +Dkyk (34)

with the structure

ẋk = [Ak−2S
−2 + . . .+Ak0 + . . .+Ak2S

2]xk

+ [Bk−2S
−2 + . . .+Bk0 + . . .+Bk2S

2]yk

uk = [Ck−2S
−2 + . . .+ Ck0 + . . .+ Ck2S

2]xk

+ [Dk−2S
−2 + . . .+Dk0 + . . .+Dk2S

2]yk
(35)

or in matrix form

Ak =


ak0 ak1 0 · · · 0
ak1 ak0 ak1 · · · 0

...
. . . 0

0 · · · 0 ak1 ak0

 (36)

where ak0, ak1 are submatrices of the controller ob-
tained from the above mentioned controller design.
The Figure 7 shows the results of the simulations per-
formed with a sample array of 5 cantilevers and the
reference signal having a frequency of 3000 rad/sec
and an amplitude of 10 nm. The comparison be-
tween the reference input and the tracked output of
2 cantilevers is presented in Figure 7(b). The absolute

tracking error for each cantilever, shown in Figure 7(a)
is below 2 nm that is the acceptable limit. Because of
the lack of the state information the results are slightly
worse than that of the feedforward controller in Fig-
ure 4 where the absolute error is always below 1nm.
With a value below 3.5 V the control effort required
for the H∞ controller however is lower than the one
for the state feedback controllers.

4 Multimodal Modeling

The performance and robustness analysis with various
controllers was done so far with a simplified model of
the cantilever array where each cantilever was viewed
as one dynamical unit having only 3 states, namely its
position, velocity and the voltage applied on it. How-
ever in reality the cantilever is not a point mass but has
a more complicated structure instead. Therefore in or-
der to have a more accurate analysis on the control
performance the further complexities of the cantilever
system have to be taken into account. Multimodal
modeling, or finite element method particularly, cuts
the structure into several elements, creates dynamical
equations for each element and describes the equa-
tions of a single cantilever by combining them. As
shown in Figure 8 each cantilever is assumed to con-
sist of n beam elements, resulting in n + 1 position
points. Each position point has a vertical displacement
and also a rotation of the beam at the point associated
with it. Thus each cantilever has 2 · (n+ 1) states:

z̄i =



xi,v,1
xi,θ,1
xi,v,2
xi,θ,2

...
xi,v,n+1

xi,θ,n+1


(37)

with v representing the vertical and θ the rotational
displacement. z̄i is the displacement vector of the ith
cantilever.

The FEM model uses a base matrix for each beam
element with

K1 =
EI

h3
·


12 6h −12 6h
6h 4h2 −6h 2h2

−12 −6h 12 −6h
6h 2h2 −6h 4h2

 (38)
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(a) (b)

Figure 7: (a,b) H∞ control design: (a) Tracking error of 3 cantilevers in a system of 5 cantilevers, (b) Reference input and tracked output for two sample
cantilevers. In all the above cases the excitation frequency and amplitude are 3000rad/sec and 10nm respectively

as the base stiffness matrix and

M1 =
ρArh

420
·


156 22h 54 −13h
22h 4h2 13h −3h2

54 13h 156 −22h
−13h −3h2 −22h 4h2

 (39)

as the base mass matrix [13]. These matrices are de-
rived from the principal of virtual work by assuming
a cubic interpolation function for the displacements.
E signifies the Young’s modulus, I the area moment
of inertia about the z-axis, h the element length ρ the
density and Ar the cross-section area. The matrices
in (38) and (39) are used to produce the beam mass
matrix M and beam stiffness matrix K for each can-
tilever. These are created in a pattern where the base
submatrix is placed in the top left corner and the next
submatrix is placed diagonal to the previous location,
shifted two down and two across. The M and K ma-
trices are used in the basic characteristic equation of
the form:

Mẍ = −Kx (40)

The mass matrix can be moved to the other side to
give us the solution to cantilever system

ẍ = −M−1Kx = (M K)x (41)

where M K is a (2n + 2) × (2n + 2) single mass-
stiffness matrix for one cantilever. To make sure the
attached end of the cantilever is rigid the first and sec-
ond rows and columns are zeroed, meaning that the
cantilever position at the attached end cannot change.
The obtained M K matrix is used in the modified
characteristic equation of the cantilever system.

Figure 8: Multimodal model of the cantilever beam

Because xi,1 of the ith cantilever is measured at
the tip the vertical displacement of the last beam ele-
ment and the corresponding velocity are used for cou-
pling calculations and the calculation of the current:
xi,1 = xi,v,n+1 = z̄i(2n + 1) and xi,2 = ẋi,v,n+1 =
˙̄zi(2n + 1). Assuming the equilibrium values of z̄i,
˙̄zi and Vi given by z̄e, 0, Ve respectively the follow-
ing definitions are made: x̄1i = z̄i − z̄e, x̄2i = ˙̄zi,
x̄3i = Vi−V e. The modified state space equations of
the multimodal cantilever can now be written:

˙̄x1i = x̄2i
˙̄x2i = (M K)x̄1i − bx̄2i + Ftotal,iP (42)
˙̄x3i = u

where P is a (2n+ 2)× 1 vector with P (2n+ 1) = 1
and the other elements of the vector being 0. Ftotal,i is
the sum of all the forces acting on the i′th cantilever:

Ftotal,i = Fa,i + Fmech,i + F⊥elec,i (43)
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Figure 9: (a,b,c) Control design with FEM Model: (a) Tracking error of 5 cantilevers with Feedforward Control, (b) Tracking error of 5 cantilevers with
LQR Control, (c) Tracking error of 5 cantilevers with H∞ Control. In all the above cases the excitation frequency and amplitude are 1000rad/sec and 10nm
respectively

Figure 9 compares the absolute tracking errors
of 5 cantilevers with the feedforward control in Fig-
ure 9(a), LQR control in Figure 9(b) and H∞ con-
trol in Figure 9(c). The simulations are done with 5
cantilevers, the reference input having a frequency of
1000 rad/sec and an amplitude of 10 nm, and the re-
sults are similar to that for the simple model. Accord-
ing to Figure 9(a) the absolute tracking error remains
below 1 nm if the feedforward controller is used and
it is below 2 nm for the LQR control. Similarly in
the H∞ control the absolute tracking error is below 2
nm for all but the edge cantilevers, as shown in Fig-
ure 9(b). From the operational point of view the edge
cantilevers can be neglected; meaning that the output
feedbackH∞ controller attains the performance of the
state feedback controller, even for the FEM model.
However the satisfactory tracking performances for
the FEM model are achieved at the expense of high
control effort; nearly 20 V for the feedforward con-
trol, 18 V for the LQR control and nearly 15 V for the
H∞ control

5 Stability and Robustness
The previous sections show that the presented con-
trollers yield satisfactory results with tracking errors
within acceptable limits, up to a reference frequency
of 3000 rad/sec. The sensitivity analysis is an im-
portant tool to further determine performance and ro-
bustness characteristics of the design. The bandwidth
of the Bode plot of reference to error transfer func-
tion is a good indicator for this. In order to have the
full information of the cantilever system the singular
value plots are drawn for the feedforward, the LQR
and the H∞ controllers in Figure 10 in an array of 5
cantilevers. The LQR controller has clearly a lower

bandwidth of between 12000-14000 rad/sec, similar
to the feedforward controller, whereas the bandwidth
for the H∞ control is around 30000 rad/sec.

A similar analysis can be done with the LSTI in-
finite abstraction that is introduced in Section 3. The
A matrix of a single cantilever in an array of infinitely
many cantilevers can be written as:

A = ...+A−2S
−2 +A−1S

−1 +A0

+A1S
1 +A2S

2... (44)

with S as the spatial shift operator associated with
coupling from neighbors. A good LSTI model can
be obtained by using only a 2 neighbor interaction. In
this case the A matrix in a spatial Fourier transform
representation would be:

A(θ) = A−2e
−2jθ +A−1e

−jθ +A0

+A1e
jθ +A2e

2jθ (45)

with θ being the spatial frequency. The same LSTI
infinite abstraction was also applied to the H∞ con-
troller. Figure 11 shows the resulting reference to er-
ror Bode plot for the feedforward controller, Figure 12
the one for the LQR and finally Figure 13 shows the
one for the H∞ controller, using various values of the
spatial frequency θ. All of them yield very similar re-
sults to the singular value plots of Figure 10. So a
finite system with a high number of cantilevers is not
expected to lead to any different analysis.

The above analysis shows that the H∞ controller
should be working significantly better at high refer-
ence frequencies. The numerical experiments show
that at a frequency of 4500 rad/sec the maximum ab-
solute tracking error is 2 nm for the H∞ controller
and the feedforward controller, the one of the LQR
controller is however already above 3 nm. At higher
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frequencies all controllers perform worse with the per-
formance of the LQR and feedforward controllers de-
teriorating faster. The feedforward control may even
become unstable for frequencies higher than 5000
rad/sec. Although the LQR controller yields higher
absolute tracking errors both the LQR and the H∞
controllers remain stable even at frequencies as high
as 50000 rad/sec.

A traditional way of analyzing the stability ro-
bustness of a system is calculating its phase and gain
margins. Phase margin is the amount of additional
phase lag at the gain crossover frequency required to
make the system unstable and gain margin is the ad-
ditional loop gain causing instability. For a stabil-
ity analysis both of them have to be calculated. The
LQR control system’s open loop transfer function has
a phase margin of 60 degrees and its gain margin is
7.35 dB. The closed loop system is stable since both
of the values are positive and desirable. Similarly the
H∞ control has open loop phase and gain margins of
60.4 degrees and 11.1 dB respectively. These results
imply that phase shifts or change of some parame-
ters do not bring the system in the verge of instabil-
ity, which is also verified by simulations. The feed-
forward controller on the other hand has phase and
gain margins of 9.53 degrees and 7.25 dB. While the
gain margin has an acceptable value the relatively low
phase margin indicates that the closed loop system is
more sensitive to phase shifts, as verified by simula-
tions. Note that these results are also compatible with
the much higher peak value of the reference to error
Bode plot of the feedforward control than the LQR
and H∞ controllers in Figure 10 since the high H∞
norm of the sensitivity function would indicate poor
robustness of the system.

The results of the FEM model are also analyzed in
the frequency domain. The reference to displacement
plots of the simple and FEM models with the feed-
forward controller can be seen in Figure 14. Match-
ing to the complementary sensitivity plot of the sim-
ple model for low frequencies and having peaks only
at higher frequencies, the complementary sensitivity
plot of the FEM model shows that the feedforward
control is applicable on the FEM model and would
yield results similar to the ones of the simple model
for frequencies until 6000 rad/sec.

Figure 15 shows the reference to displacement
bode plots of both the simple and the FEM model, us-
ing the LQR controller. The bandwidth of the FEM
model has a value of around 6000 rad/sec however

there are no extra peaks; meaning the LQR controller
developed from the simple model can be implemented
on the FEM model without having a significant per-
formance degradation in terms of tracking, stability or
robustness.

Figure 10: Singular value plots of reference to error transfer function for
an array of 5 cantilevers using Feedforward Control, LQR Control and
H∞ Control (magnitude in dB, frequency in 103rad/sec)

Figure 11: LSTI infinite abstraction bode magnitude plot of reference to
error transfer function for one cantilever using Feedforward Control (red
for θ = 0, black for θ = 2π, magnitude in dB, frequency in 103rad/sec)

The reference to displacement bode plot of the
simple and FEM models using the distributed H∞
control can be seen in Figure 16. Both plots match
at frequencies up until 6000 rad/sec, however the one
for the FEM model starts to deteriorate at higher fre-
quencies with having high peaks. This means that the
implementation of the H∞ controller from the simple
model on the FEM model would not yield a setback in
terms of tracking, stability or robustness for frequen-
cies lower than 6000 rad/sec, a degradation however
may occur for higher frequencies.
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Figure 12: LSTI infinite abstraction bode magnitude plot of reference to
error transfer function for one cantilever using LQR Control (red for θ =
0, black for θ = 2π, magnitude in dB, frequency in 103rad/sec)

Figure 13: LSTI infinite abstraction Bode magnitude plot of reference to
error transfer function for one cantilever using H∞ Control

Figure 14: Reference to displacement singular value plot of the closed
loop systems of simple model and FEM. Feedforward controller is used.

6 Conclusion
In this paper alternative controllers to the H∞ con-
trol were presented for two different models of an
infinite array of electrostatically actuated microcan-
tilevers. The cantilevers have weak mechanical and
electrostatic couplings where only 3-4 neighbors on
each side make any significant contribution. Further-

Figure 15: Reference to displacement singular value plot of the closed
loop systems of simple model and FEM. LQR controller is used.

Figure 16: Reference to displacement singular value plot of the closed
loop systems of simple model and FEM. H∞ controller is used.

more the dynamics of the cantilevers do not change
along a spatial axis, meaning that the system is spa-
tially invariant.

The modeling of the cantilever was performed in
2 different ways. The first one was a simple nonlinear
model where each cantilever was considered as a point
mass with its displacement, velocity and voltage being
the only states, whereas the second one was a multi-
modal model that considers each cantilever as a more
complex structure consisting of smaller segments each
of which has rotational and vertical displacements and
velocities as their states. For the successful actuation
of the cantilevers 2 types of controllers were devel-
oped and implemented, the first type being the state
feedback and the second type being the output feed-
back. All of the controllers were designed from the
linearization of the simple nonlinear model.

The first state feedback controller is a PID con-
troller having additionally a velocity feedforward
component from the reference. It is a fully decentral-
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ized controller and designed by adjusting the weights
for the best performance. Although it yields a res-
olution of less than 1 nm at frequencies as high as
3000 nm for the simple nonlinear model, given that
the same excitation frequency is used across the ar-
ray, the tracking error may increase up to 10 nm if the
excitation frequency is changed. Frequency analysis
and simulations furthermore indicate that the track-
ing performance may deteriorate at higher frequen-
cies. Because of these downsides of the feedforward
controller an optimal state feedback controller from
[5] was introduced next. The LQR type controller,
that was designed by simultaneous localization and
optimization, has a distributed structure where each
controller communicates with the immediate neigh-
bors only. This controller is robust in comparison to
the feedforward controller and yields acceptable re-
sults at excitation frequencies up to 2000 rad/sec ac-
cording to the simulations with the simple nonlinear
model, even if the frequency is varied across the ar-
ray. However it does not provide enough resolution at
higher frequencies without excessive control.

The analysis with the FEM model also verified the
above results. The state feedback controllers hence
may be a vital alternative in cases where the excita-
tion frequencies are not too high or they do not vary
significantly across the array and when the state infor-
mation is available. In more general cases, however,
the output feedback H∞ controller is more suitable
for the high density microcantilever array system, as
demonstrated in this paper. The distributed controller,
localized for each cantilever and communicating only
with immediate neighbors, can attain a quite desired
performance with a tracking error less than 2 nm up
to excitation frequencies of 3000 rad/sec, low track-
ing errors at varying frequencies and higher frequency
bandwidths than the state feedback controllers. This
result can also be observed in the analysis with the
FEM model, where except for the edge cantilevers,
which can be neglected from an operational point
of view, the tracking error remains below 2 nm for
the distributed controller at a frequency up to 1000
rad/sec; however at the expense of higher control ef-
fort and lower bandwidth of the sensitivity function.

In conclusion, the state feedback controllers with
the feedforward or LQR structures may be significant
alternatives for the high density cantilever array. Their
implementation is not complicated, require less calcu-
lation time and provide satisfactory results. However
the distributed H∞ controller is the most appropriate

one for spatially and temporally invariant array sys-
tems especially when the states are not measurable.
Future work can be directed towards more compre-
hensive robustness analysis, experiments with the ex-
isting controllers and further investigation of the LQR
control from [5].

Acknowledgements: This work has been supported
by a Fellowship from the National Center of Super-
computing Applications at the University of Illinois
and by the National Science Foundation [Grant NSF
ECCS 10-27437].

References:

[1] B. Bamieh, F. Paganini and M. Dahleh, Dis-
tributed Control of spatially invariant systems.
IEEE Transactions on Automatic Control 47,
2002, pp. 1091–1107.

[2] M. Despont, J. Brugger, U. Drechsler, et al.,
VLSI-NEMS chip for parallel AFM data stor-
age. Sensors and Actuators A: Physical 80,
2000, pp. 100–107.

[3] R. Garcia and R. Perez, Dynamic Atomic Force
Microscopy Methods. Surface Science Reports
47, 2002, pp. 197–301.

[4] F. Giessibl, Advances in Atomic Force Mi-
croscopy. Rev. of Modern Physics 75, 2003,
pp. 950–983.

[5] F. Lin, M. Fardad and M. Jovanovic, Design of
optimal sparse feedback gains via the alternating
direction method of multipliers. IEEE Transac-
tions on Automatic Control, 58, 2011, pp. 2426–
2431.

[6] F. Lin, M. Fardad and M. Jovanovic, Sparse
feedback synthesis via the alternating direction
method of multipliers. Proceedings of the 2012
American Control Conference, 2012, pp. 4765–
4770.

[7] L. Ljung, System Identification: Theory for the
User. Englewood Cliffs, Prentice Hall, Inc, New
Jersey, 1987.

[8] B. Mehmet, Modeling and Control of High Den-
sity Microcantilever Systems. MS Thesis, Uni-
versity of Illinois at Urbana Champaign, Urbana,
Illinois, 2012.

[9] A. Moulin, S. O’Shea and M. Welland,
Microcantilever-based biosensors. Ultrami-
croscopy 82, 2000, pp. 23–31.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Berkem Mehmet, Hussam Sehwail, Petros G. Voulgaris

E-ISSN: 2224-2856 670 Volume 9, 2014



[10] M. Napoli, B. Bamieh and K. Turner, A capac-
itive microcantilever: Modeling, validaton and
estimation using current measurements. ASME
Journal of Dynamical Systems Measurement and
Control 126, 2004, pp. 319–326.

[11] A. Sarwar, Modelling and Control of Electro-
statically Actuated Microcantilever Array. MS
Thesis, University of Illinois at Urbana Cham-
paign, Urbana, Illinois, 2006.

[12] A. Sarwar, P. Voulgaris and S. Salapaka, On the
control design and robustness analysis for high-
density microcantilever arrays. Journal of Vibra-
tion and Control 17, 2011, pp. 1195–1210.

[13] G. Sauer and M. Wolf, A Modified Beam El-
ement Mass Matrix. Zeitschrift für angewandte
Mathematik und Mechanik 68, 1988, pp. 483–
490.

[14] E. Wachter, T. Thunat, P. Oden, et al., Remote
optical detection using microcantilevers. Review
of Scientific Instruments 67, 1996 pp. 3434–
3439.

[15] W. Zhou, A. Khaliq, Y. Tang, et al., Sim-
ulation and design of piezoelectric microcan-
tilever chemical sensors. Sensors and Actuators
A: Physical 125, 2005, pp. 69–75.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Berkem Mehmet, Hussam Sehwail, Petros G. Voulgaris

E-ISSN: 2224-2856 671 Volume 9, 2014




