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Abstract: The paper presents an improved design method of an optimal control system of a linear object with
elastic coupling. The proposed method of the optimal control system design implies the selection of desired
stability degree instead of the penalty matrixes selection procedure for the quadratic functional. The main idea of
the method is the new state matrix utilization, which has its eigenvalues at the specified distance to the right from
the eigenvalues of the original state matrix. Thereupon the closed loop state feedback system matrix eigenvalues
can be assigned at that specified distance to the left from imaginary axis of the complex plane, in other words
the desired stability degree of the system can be achieved. The proposed method of the control algorithm design
is demonstrated on the control system of the electric drive with two-mass mechanism (plant). Discrete optimal
control system was synthesized. Plant’s characteristic was evaluated from bode plot obtained during identification
experiment. Unavailable or immeasurable plants state was estimated by reduced-order observer.

Key–Words: Optimal control system, discrete control system, reduced-order observer, two-mass mechanism, state
regulator, modal control, degree of stability

1 Introduction
Let us consider an electromechanical system includ-
ing a controlled voltage converter, an electrical drive
and a mechanism as a two-mass design scheme. This
system provides the reliable description of the posi-
tion control processes for both azimuthal and eleva-
tion axes of a ground telescope rotary support [1–5].

Normally such electromechanical system is de-
scribed with the system of ordinary differential equa-
tions 

Tinv
dΩ0

dt
= kinvu− Ω0

Te
dM

dt
= β(Ω0 − Ω1) −M

J1
dΩ1

dt
= M −M12

dM12

dt
= ks(Ω1 − Ω2)

J2
dΩ2

dt
= M12

dα1

dt
= Ω1

(1)

where Tinv – time constant of invertor, Ω0 – no load
speed, kinv – gain coefficient of the invertor, Te – elec-
tromagnetic time constant of motor, β – stiffness of

the speed-torque characteristic of electric drive, M –
motor torque, Ω1 - angular velocity of the first mass,
M12 - twist torque between the first and the second
mass, ks – stiffness coefficient of the two-mass mech-
anism, Ω2 - angular velocity of the second mass, α1 -
rotation angle of the first mass.

Time constants Tinv and Te are insignificant,
therefore the system can be simplified as follow

M = au− βΩ1

J1
dΩ1

dt
= M −M12

dM12

dt
= ks(Ω1 − Ω2)

J2
dΩ2

dt
= M12

dα1

dt
= Ω1

(2)

where a = kinvβ.
Block scheme of the plant simplified according to

system (2) presents on figure 1.
By using state-space approach, model of the plant

can be represented by system{
ẋ = Ax + Bu.

y = Cx
(3)
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where A, B and C are system, input and output ma-
trixes respectively and state-variables vector of the
considered system x =

[
Ω1 M12 Ω2 α1

]T
.
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Figure 1: Simplified block scheme of the plant

2 Forced motion robust control

Typical operation mode of a telescope rotary support
is reproduction of the targeting signal, which can be
approximated by piecewise linear function [6]. The
model of such signal is described as follows.{

ξ̇ = Gξ

g = Hξ
(4)

where

G =

[
0 1
0 0

]
H =

[
1 0

]
The control problem can be solved with forced

motion robust (isodromic) control implementation
[7]. Design principles of the mathematical model for
such system described in [8, 9]. The main idea is to
use the model of an external action as part of the reg-
ulator, as follows

ż = Gz + L(g − y) = Gz + Lε (5)

where g – target signal, ε = (g−y) – error signal, and
matrix L should be selected to provide complete state
controllability of matrixes pair (G,L). Thus model of
the combined object (CO) will take the form (6)

ẋ = Ax + Bu

ż = Gz + Lg − LCx

y = Cx

(6)

or {
ẋn = Anxn + Bnu+ Bgg

yn = Cnxn
(7)

where xn = [xT zT ]
T – state-space variables vector

of the CO including external action model [9] and

An =

[
A 0

−LC G

]
Bn =

[
B
0

]
Bg =

[
0
L

]
Cn =

[
C
0

]T
are state, input, reference signal input, output matrixes
of CO respectively.

The state-regulator was used (8). It provides sta-
bility of closed loop system and zero steady-state error
assuming disturbance absence [7].

u = −Kxn (8)

The block scheme of such contol system consid-
ering on figure 2a.

Order of the controller can be reduced by utiliza-
tion of the plant’s integrator with output signal α1.
Thus block scheme of the closed loop control system
is modified as presented of figure 2b.
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Figure 2: Block scheme of the close loop control
system

One can choose the state feedback matrix K to
make the set of closed loop eigenvalues equal the
specified set of eigenvalues. The equation of the char-
acteristic polynomial for An−BnK to the character-
istic polynomial having roots equal to the specified or
desired set of eigenvalues is the most common way to
obtain this matrix [10–12].

As a rule the specified set of eigenvalues is pre-
sented by standard polynomials. In that case the diffi-
cult is to give preference to one or another polynomial
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type, despite the desirable response speed is provided
by anyway. It should be noted that the synthesis of
the state feedback matrix based on the modal control
is followed by changing of all the eigenvalues of the
state matrix, including those ones which determines
rapidly damped components of the transient. So far as
these components have lack of influence on the gen-
eral transient shape, one can say that superfluous co-
ercing influences are implemented to the plant.

3 Synthesis of the optimal control
system with guaranteed degree of
stability

Another method of evaluation is by means of mini-
mization of quadratic or cost functional [12–14]

J =

∞∫
0

(xTnQxn + uTRu)dt (9)

In this case large absolute eigenvalues of the plant
state matrix are changing insufficiently in a closed
loop system; therefore it can be said that control is
carried out with less coercing influence.

Implementation of a quadratic optimal control
was restricted by two reasons. The first one was the
difficulty of the Riccati equation algebraic evaluation,
which is now eliminated by contemporary mathemat-
ical software [15]. The second one is the indetermi-
nacy of state penalty matrix R and input penalty ma-
trix Q selection. In case of ever positive semi definite
matrix Q and positive definite matrix R the quadratic
optimal control provides stability of the closed loop
system [10, 12]. However, quality factors of the opti-
mal system are strongly depended of a specific selec-
tion of these matrixes. The selection method is time-
consuming. To avoid this, the following approach is
proposed.

Its known [16], that if the quadratic matrixes are
linked by some function M = f(N) eigenvalues of
these matrixes are linked by the same function

sMi = f(sNi ) i = 1 . . . n. (10)

Considering this, during the synthesis of the opti-
mal control for the system (7) it is proposed to replace
the matrix An by (11)

Ans = An + ηI (11)

where I – identity matrix, η is the desired stability
degree of matrix Fn = An −BnK.

For the case of unconditioned positive definite
matrixes of penalty, Q and R, which can be identity

matrixes for example, the Riccati equation (12) should
be solved

PBnR
−1BT

nP−Q−AT
nsP−PAns = 0. (12)

Then the state feedback matrix can be found as
follows

K = R−1BT
nP. (13)

The procedure for solving the Riccati equation
(12) in MATLAB as follows

K = lqr(Ans,Bn,Q,R)

And the closed loop state feedback system matrix
can be evaluated as

Fns = Ans −BnK. (14)

All its eigenvalues will be disposed to the left
from imaginary axis of the complex plane.

According to (11) the state feedback system ma-
trix (14) can be rewritten as

Fns = An + ηI−BnK = Fn + ηI. (15)

and
Fn = Fns − ηI. (16)

Matrix (15) eigenvalues are disposed to the left
from imaginary axis of the complex plane, therefore
matrix (16) eigenvalues will be displaced to the left
from image axis at the interval not less than η.

As a result, indeterminate method of penalty ma-
trixes selection for the optimal control is replaced by
selection of the optimal system stability degree, which
has obvious physical sense: it defines response speed
of the optimal system.

In real devices control algorithm is executed in
the microcontroller program. Hence, state, input and
output matrixes transforms as shown below [17]

And = eAnTd , Bnd =

Td∫
0

eAnσBndσ, Cnd = Cd

where Td - sample time of the discrete system.
MATLAB function to convert model from contin-

uous to discrete time is

Sysd = c2d(Sysc,Td)

here Sysd, Sysc – discrete and continuous state-space
systems respectively.

In the case of the discrete system equation (11)
transforms as follows (17)

Ansd =
And

e−ηTd
=

And

r
(17)
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where r - desired degree of stability of the discrete
system Fnd = And −BndKd.

In MATLAB the state feedback matrix Kd for
discrete system is calculated as follows

Kd = dlqr(Ansd,Bnd,Q,R)

4 Control system with observer

In case of immeasurable states of the plant (3) a
reduced-order observer is usually used and the opti-
mal control (8) transforms as follows [9]

u = −Kxn = N1y + N2w̃ (18)

here y = Cmxn - vector of measured state variables,
w̃ = Txn - vector of observed state variables, N1 =[
n11 n12

]
- vector of coefficients of measured state

variables, N2 – vector of coefficients of observed state
variables.

State-space representation of the observer has the
following form{

˙̃w = Aow̃ + Bou+ Roy

u = N1y + N2w̃
(19)

Here state matrix Ao of the observer is selected ran-
domly with only requirement that all its eigenvalues
must be negative and Bo = TBn.

Vectors N1 and N2 can be found from

[
N1 N2

]
= −K

[
Cm

T

]−1
(20)

where Cm =

[
0 0 0 1 0
0 0 0 0 1

]
and matrix T is a

solution of the Lyapunov equation

AoT−TAn + RoCm = 0. (21)
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Figure 3: Block diagram of control system

Form (22) of observer can be obtained by substi-
tution the second equation into the first.

{
˙̃w = Aonw̃ + Rony

u = N1y + N2w̃
(22)

where Aon = (Ao + BoN2), Ron = (Ro + BoN1).
Thus observer has only one input vector – y.
Block scheme of the closed-loop control system

is presented on figure 3.

5 Experiment

Testing of the proposed synthesis method of the opti-
mal control was carried out on a laboratory bench with
a two-mass motor drive mechanism. General view
and schematic diagram of the electromechanical lab-
oratory bench are shown in figure 4.

On figure 4 b) two shafts are fixed in two sup-
ports – 5 using bearing assemblies 4. The first shaft
– 1 contains three-phase motor produced by Ruchser-
vomotor and incremental optical encoders from Ren-
ishaw. The payload prototype mounted on the second
shaft – 3 formed as a stack of rings that allows chang-
ing its inertia.

Both shafts are connected by a special coupling
which can modify the torsional rigidity of the com-
pound. It should be noted that the position encoder is
located only on the first mass. Moreover, the coulomb
friction unequally distributed along the shaft.

(a) general view of the electromechanical
laboratory bench

(b) schematic diagram of the
electromechanical laboratory bench

Figure 4: Laboratory bench
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Since the absence of plants actual parameters, at
the synthesis stage we will use mathematical model
obtained from experimental frequency response. Fre-
quency response of the electric drive with two-mass
mechanism illustrated on figure 5, where curve 1 rep-
resents the frequency response of the plant with first
mass angular velocity as an output signal.
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Figure 5: Frequency response of the electric drive
with two-mass mechanism

Approximating the frequency response by lines
with slopes multiples of 20dB/dec, we obtain the
model of the object in transfer function form (5)

W (s) =
Ω1(s)

u(s)
=

k(τ2s2 + 2ζτs+ 1)

(T1s+ 1)(T 2
2 s

2 + 2ξT2s+ 1)(T3s+ 1)
(23)

where k = 22.4, τ = 0.014s, ζ = 0.078, ξ =
0.206, T1 = 0.038s, T2 = 0.004s, T3 = 0.004s.

Frequency response of the model represented by
curve 2 on figure 5. One can see that frequency re-
sponse of the plant and the model coincide sufficiently
which mean adequate approximation of the experi-
mental characteristics. By using MATLAB function[

A B C
]

= ss(W(s))

and expanding the state variables vector by the angle
of the first mass, we obtain the plant’s model in matrix
form

x =
[
x1 x2 x3 x4 α1

]T

A =


−379 −182 −131 −47.5 0
512 0 0 0 0
0 256 0 0 0
0 0 64 0 0
0 51.2 2.26 16.6 0


B =

[
64 0 0 0 0

]T
C =

[
0 0 0 0 1

]
.

In considered case the state feedback matrix K in
equation (8) was evaluated at the degree of stability
value η = 19s−1.

Eigenvalues of the closed loop system (16) are
equal to

sFn =



−38
−45.7 + 8.8i
−45.7 − 8.8i
−91 + 2.6i
−91 − 2.6
−267



T

. (24)

The closest to the imaginary axes real eigenvalue
which is equal to −38 determine the stability degree
of the system. The stability degree is not less than the
specified.

In considered case only one state variable was
measured – α1. Moreover a controller can use the
output signal of the integrator z1 added to the error
channel [9].

Vectors of measured and observed states variables
in the control law (18) take the form

y =
[
α1 z1

]T
, w̃ =

[
w̃1 w̃2 w̃3 w̃4

]T
.

Figure 6 a) presents the tracking error transient
of the system with the optimal state regulator and re-
duced order observer in the course of reproducing of
input signal increasing linearly with the speed of 1◦/s
, where curve 1 represent the transient process of the
model, curve 2 represent the transient process of the
system with the real control object.

Figure 6: Results of experiment
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Faster transition process in the system is caused
by disregard of dry friction.

Figure 6 b) depicts the steady-state tracking error
chart in case of the same input signal. Maximal er-
ror value is equal to 3.2′′, root-means-square error is
equal to 1.4′′.

6 Conclusion

The disadvantage of the standard optimal control syn-
thesis is the indetermination of the penalty matrixes
selection in the quadratic functional. The positive de-
fined penalty matrix provides only stability of the sys-
tem. To provide the desirable response speed it is nec-
essary to iterate over a significant amount of penalty
matrixes.

The proposed modification of the quadratic opti-
mal control allows limiting oneself to the selection of
only one value which determines the stability degree
in the closed loop system.

Experimental verification of the proposed proce-
dure on the control system of the electric drive with
two-mass mechanism showed good results in practi-
cal terms.
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