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Abstract: A cruise control system for autonomous electric vehicles (AEVs) is presented, based on fuzzy logic.
The proposed technique uses three fuzzy systems that act in parallel during three kinetic states of the vehicle:
acceleration, moving, and braking. Validation of the procedure used longitudinal simulations of a vehicle powered
by a permanent magnet direct current motor. The results indicated that the control system performed satisfactorily,
and could be used in AEV applications.
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1 Introduction

Research has shown that the performance achieved us-
ing intelligent controllers exceeds that of traditional
controllers. Control algorithms based on artificial
neural networks (ANNs) and/or fuzzy logic offer sub-
stantial gains over conventional techniques such as
the PID [1, 2], as a result of which there is increas-
ing interest in the development of intelligent control
systems. In particular, there is growing commercial
awareness of the possible application of these systems
in autonomous vehicles, where they could help to re-
duce accidents and improve the comfort of the occu-
pants [3, 4].

A further consideration relates to the capacity of
highways, since with reliable sensors and automa-
tion, improvements could be made over human reac-
tion times and safe distances between vehicles could
be shortened [5]. An important point is that intelli-
gent control systems for AEVs could be rapidly im-
plemented without requiring major investments in in-
frastructure [6–9].

Processes based on fuzzy logic are amongst the
most efficient intelligent control systems, enabling the
rapid development of controllers for temporally vari-
able nonlinear systems [10]. An important advantage
of fuzzy control is that there are many cases where bi-
nary values (true or false, connected or disconnected,
etc.) are unable to provide a good description of the
situation. These cases require a scale whereby the
variables can be assigned intermediate values [10].
This can be achieved using fuzzy logic in controllers
[1, 11–13].

Fuzzy controllers have already been used for

speed control of autonomous vehicles, and have been
shown to provide performance superior to that of con-
ventional PID techniques, especially concerning er-
rors, vibration, and robustness [14]. A fuzzy strategy
was found to offer advantages over a neuro-fuzzy ap-
proach or PI controllers applied to autonomous vehi-
cles [15]. Several studies have described the develop-
ment of autonomous vehicle speed controllers based
on fuzzy logic [16–19].

There are two main problems to be addressed
in the development of autonomous vehicles: (i) lane
keeping, and (ii) longitudinal headway [20]. The latter
has been the subject of research for at least 40 years,
and there are many theoretical studies reported in the
literature [21–24].

The objective of the present work was to design a
longitudinal cruise control system for AEVs, based on
fuzzy logic. Different to the work that has been pub-
lished previously, the proposed system uses three sets
of fuzzy rules that act in parallel for three kinetic states
of the vehicle: acceleration, moving, and braking. The
goal of the system was to be able to smoothly acceler-
ate the vehicle until it reached a predetermined cruis-
ing speed (the reference speed) within a set time (the
reference time), and then maintain this speed during
movement of the vehicle. The fuzzy controller should
also be able to reduce the speed of the vehicle without
any abrupt changes, so that the vehicle halts at a pre-
determined distance from the starting point. This type
of system could be used in autonomous vehicles for
transportation of products sensitive to abrupt move-
ments, where the route is known in advance, with pre-
vious programming of acceleration, cruise speed, and
braking.
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Details of the electric vehicle model used are pro-
vided in Section 2. A description of the control strat-
egy used in each stage of the vehicle kinetics is given
in Section 3. A description of the specific characteris-
tics of the simulation is given in Section 4, including
the route, the values selected for the different parame-
ters, and the results obtained. Finally, an evaluation of
the proposed scheme and its performance is provided
in Section 5.

2 Modeling of the AEV
The electric vehicle used in the simulations was repre-
sented by a longitudinal dynamics model with a per-
manent magnet direct current (PMDC) motor [25–27].
The objective of the controller was to adjust the volt-
age in order to maintain the speed of the vehicle within
the given specifications.

The dynamics of the PMDC motor (Figure 1)
were modeled by an equation representing the electri-
cal aspects and another equation representing the me-
chanical aspects, as described previously [27]. The
differential equation used to model the electrical part
can be described by

va(t) = Raia(t) + La
dia(t)
dt

+ vi(t), (1)

where va(t), ia(t), Ra and La are the voltage in volts
(V), the current in amps (A), the resistance in ohms
(Ω), and the inductance in henrys (H), respectively,
in the armature of the PMDC motor, and vi(t) is the
voltage induced in the rotor terminals (V). The me-
chanical part was modeled using the expression

Jm
dωm(t)

dt
= τm(t) −Bmωm(t) − τc(t), (2)

where Jm is the moment of inertia of the rotor
(Kg.m2), Bm is the viscosity constant (N.m.s), ωm(t)
is the angular velocity of the rotor (rad/s), τm(t) is
the torque generated by the motor (also known as the
magnetic torque) (N.m), and τc(t) is the torque re-
quired to move the load (N.m).

In PMDC motors, the magnetic torque, τm(t), is
directly proportional to the current in the armature,
ia(t), so that

τm(t) = Kτ ia(t), (3)

and the angular velocity, ωm(t), is directly propor-
tional to the induced voltage, vi(t), as described by

vi(t) = Kωωm(t) (4)

where Kτ is the torque constant (N.m/A) and Kω is
the velocity constant (V/rad/s) of the PMDC motor
[27].

Ra La

ia(t)

va(t) vi(t)

τm(t)

τc(t)

Jm

τv(t)
ωm(t)

Figure 1: Electromechanical schematic of the PMDC
motor.

The longitudinal vehicle model, illustrated in Fig-
ure 2, can be described by the expression

M
dx(t)

dt
= ft(t) − fa(t), (5)

where M is the mass of the vehicle (Kg), x(t) is the
linear velocity of the vehicle (m/s), ft(t) is the trac-
tion force of the vehicle (N), and fa(t) is the friction
force (N).

θ(t)

fg(t)sin(θ(t))

fg(t)

fd(t)
fr(t)

ft(t)

M
x(t)

Figure 2: Schematic of the longitudinal vehicle
model.

According to [25], the friction force, fa(t), can be
expressed as

fa(t) = fd(t) + fr(t) + fg(t) sin(θ(t)), (6)

where fd(t) is the aerodynamic friction force (N),
fr(t) is the rolling resistance force (N), fg(t) is the
gravitational force (N), and θ(t) is the inclination an-
gle of the plane on which the vehicle is located.

The aerodynamic friction can be described by

fd(t) =
1

2
ρCdAfrx2(t), (7)

where ρ is the density of air, Cd is the aerodynamic
drag coefficient, and Afr is the frontal area of the ve-
hicle (m2). The rolling resistance force can be de-
scribed by

fr(t) = Mg
(
C0 + C1x2(t)

)
, (8)
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where C0 and C1 are the rolling coefficients and g is
the acceleration due to gravity (m/s2). Finally, the
gravitational force is given by

fg(t) = Mg. (9)

The coupling between the PMDC motor and the
vehicle was modeled by a simple system of gears po-
sitioned parallel to the rear axle of the vehicle, de-
scribed by

τa(t) = kτm(t), (10)

where k is the gear ratio, and

fa(t) =
τa(t)

r
(11)

where r is the radius of the wheel of the vehicle (m).

3 Control strategy
The proposed control strategy uses three fuzzy sys-
tems acting in parallel for three kinetic states of the
vehicle (acceleration, moving, and braking). This di-
vision increases the precision with which the speed
of the AEV can be controlled, enabling smoother re-
sponses during acceleration and braking as well as
a more stable speed during moving. The three sys-
tems are governed by a decision-making strategy that
employs two reference parameters: tref , which de-
termines the acceleration state time, and lref , which
establishes the distance to the final destination in or-
der to initiate the braking state. In addition to this
information, the control strategy uses two additional
parameters, namely the distance that the vehicle must
cover to the final destination, lend, and the reference
speed, xref , which is the speed that the vehicle should
reach at the end of the acceleration state and then
maintain during the moving state. A detailed block
diagram of the control strategy is provided in Figure
3.

The fuzzy system responsible for the acceleration
state, FSd(·), can be described by

vd(t) = FSd (ex (t)) (12)

where vd(t) is the voltage (V) applied to the motor
during the acceleration state, and ex (t) is the error be-
tween the reference speed, xref , which is desired at
the end of the acceleration state, and the actual speed
of the vehicle, described by

ex(t) = xref − x(t). (13)

The fuzzy system associated with the moving state,
FSm(·), is characterized by

vm(t) = FSm (ex (t) , dex (t)) , (14)

where vm(t) is the voltage (V) applied to the motor
during the moving state, and dex (t) is the derivative
of the error ex (t). Finally, the fuzzy system used to
characterize the braking state, FSb(·), is described by

vb(t) = FSb (ex (t) , l (t)) , (15)

where vb(t) is the voltage (V) applied to the motor
during the braking state, and l(t) is the distance (m)
travelled by the vehicle to the final destination.

The decision strategy used to select one of the
three systems (FSd, FSm and FSb, described by Eq.
(12), Eq. (14), and Eq. (15), respectively) is charac-
terized by

va(t) =


vd(t) if t ≤ tref and l(t) < lend − lref
vm(t) if t > tref and l(t) < lend − lref
vb(t) if t > tref and l(t) ≥ lend − lref

.

(16)
The input and output membership functions and

the set of rules associated with each of the three fuzzy
systems are described in detail in Sections 3.1, 3.2 and
3.3. They are based on a subjective analysis of the
action of a human driver, with the aim of achieving
smooth acceleration and braking, as well as a stable
speed in a longitudinal route with random ascents and
descents.

The limits of the membership functions associ-
ated with the output variables vd(t), vm(t) and vb(t)
were selected for motors with a nominal armature
voltage, vnoma (t), of 220V. However, these limits
could be easily readjusted for motors with other val-
ues of vnoma (t).

3.1 Fuzzy system for acceleration
The fuzzy system for acceleration, FSd(·), can be de-
scribed by the membership functions shown in Fig-
ures 4 and 5. The input variable, ex (t), s represented
by a group of seven linguistic variables with triangular
and trapezoidal membership functions, as illustrated
in Figure 4. In the case of the output variable, vd(t),
only three linguistic variables with triangular mem-
bership functions are used (Figure 5). Table 1 details
the set of fuzzy rules used in the Mamdani inference
process in order to relate the input variable, ex (t),
with the output variable, vd(t) .

Since the objective of the FSd(·) system is to
achieve smooth acceleration, the membership func-
tions of the output variable, vd(t), are slightly above
the nominal average armature voltage of the vehicle,
vnoma (t), which in the present case is 220V. This strat-
egy enables the motor voltage during acceleration to
be limited to the range

vmind (t) ≤ vd(t) ≤ vmaxd (t) (17)
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Figure 3: Structure of the electric vehicle control strategy.
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Figure 4: Membership functions of ex (t) for the acceleration state.

where vmind (t) and vmaxd (t) are the lower and upper
limits, respectively, of the acceleration voltage. The
value of the upper limit must be smaller than the nom-
inal voltage of the motor (vmaxd (t) < vnoma (t)), tref
must be smaller than the stabilization time of the sys-
tem in open loop, test, (tref < test) e xref must be
smaller than the value of the response of the system,
x(t), in open loop, for an input step with a value of
vmind (t). These three restrictions ensure the success of
the acceleration state, avoiding any abrupt changes in
speed.

Figure 6 llustrates the relation between the input,
ex (t), and the output, vd(t), resulting from the rule
base (Table 1) of the membership functions presented
in Figures 4 and 5. This curve was obtained using
the minimum in the implication step, the maximum in
the aggregation step, and the centroid method in the
defuzzification step. It can be seen from Figure 6 that
vmind (t) = 124 V and that vmaxd (t) = 135 V.

3.2 Fuzzy system for moving
In the case of the moving state, the fuzzy system,
FSm(·), uses the membership functions shown in Fig-
ures 7, 8 and 9, together with the set of rules given in
Table 2.

Figures 7 and 8 illustrate the membership func-

tions utilized for fuzzification of the input vari-
ables ex (t) and dex (t), respectively. For both input
variables, seven membership functions were created
(trapezoidal in the extremes and triangular in the re-
mainder). For the output variable, vm(t), seven mem-
bership functions were created that were also trape-
zoidal in the extremes and triangular in the remainder,
as shown in Figure 9.

It is important to note that the output variable,
vm(t), does not have negative values, hence avoiding
any abrupt acceleration (in routes with descents) or
deceleration (in routes with ascents) due to changes in
the direction of the motor.

Table 2 gives the set of fuzzy rules used in the
Mamdani inference process in order to relate the in-
put variables, ex (t) and dex (t), to the output variable,
vm(t).

Figure 10 shows the relation between the inputs,
ex (t) and dex (t), and the output, vd(t), resulting from
the rule base (Table 2) for the membership functions
shown in Figures 7, 8 and 9. This curve was obtained
using the minimum in the implication step, the maxi-
mum in the aggregation step, and the centroid method
in the defuzzification step.
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Figure 5: Membership functions of vd(t) for the acceleration state of a 220V PMDC motor.

Table 1: Set of fuzzy system rules for the acceleration state, FSd(·).
ex (t) GN MN PN Z PP MP GP

PM PM PM PM PM M MM

3.3 Fuzzy system for braking
The fuzzy system for braking, FSb(·), consists of the
membership functions shown in Figures 11, 12 and
13, together with the set of rules given in Table 3.

The input variable, ex(t), uses the same scheme
described for the other fuzzy systems (FSd and FSm),
with seven trapezoidal membership functions in the
extremes and triangular functions in the remainder.
The input variable, l(t), (Figure 12) is composed of
only two trapezoidal membership functions, repre-
senting the conditions near and far. Prior to the fuzzifi-
cation process, the values of l(t) are normalized using
the expression

lN (t) =
l(t) − lend + lref

lref
, (18)

where lN (t) is the normalized value of l(t) ranging be-
tween 0 and 1. The output variable, vb(t), consists of
thirteen trapezoidal and triangular membership func-
tions, as shown in Figure 13. In this case, the intention
is to provide greater granularity in the braking process
and ensure smooth deceleration.

Table 3 provides details of the set of fuzzy rules
utilized in the Mamdani inference process in order to
relate the input variables, ex(t) and lN (t), with the
output variable, vb(t).

Figure 14 illustrates the relation between the in-
puts, ex(t) and lN (t), and the output, vb(t), resulting
from the rule base (Table 3) for the membership func-
tions shown in Figures 11, 12 and 13. This curve was
obtained using the minimum in the implication step,
the maximum in the aggregation step, and the centroid
method in the defuzzification step.

4 Simulations and results
Validation of the proposed system employed simula-
tions using the motor/gearing/vehicle model (accord-
ing to the equations presented in Section 2). The val-
ues of the parameters of the PMDC motor and the ve-
hicle are given in Tables 4 and 5, respectively. These
values are based on previous field tests of electric ve-
hicles powered by PMDC motors [26, 28].

Table 4: Parameters of the PMDC motor.
Parameter Value
Armature resistance (Ra) 0.1 Ω

Coil inductance (La) 10−3 H
Nominal armature voltage
(vnoma (t))

220 V

Moment of inertia (Jm) 0.7 Kg.m2

Coefficient of viscosity (Bm) 0.08 N.m.s
Torque constant (Kτ ) 1.06 N.m/A
Rate constant (Kω) 1.06 V/rad/s
Initial rotation 100 rpm

The simulations performed using the parameters
listed in Tables 4 and 5 showed that the stabilization
time of the system in open loop, test, was around 19 s,
and that the response of the system for an input level
of vmind (t) = 124 V was approximately 51.6 Km/h.
Hence, given the restrictions presented in Section 3.1,
xref was less than 51.6 Km/h and tref was less than
19 s. Table 6 lists the values of the control strategy
parameters used in the simulation.

For the acceleration step, the values of tref and
xref were selected to give a longitudinal acceleration

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Italo A. Souza-De-Assis, Renan 
Oliveira, Marcelo A. C. Fernandes

E-ISSN: 2224-2856 644 Volume 9, 2014



-50 -40 -30 -20 -10 0 10 20 30 40 50
122

124

126

128

130

132

134

136

e

x

(t)

v

d

(

t

)
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Figure 7: Membership function of the ex (t) variable during the moving state.

Table 5: Parameters of the vehicle.
Parameter Value
Mass of the vehicle (M ) 1500 Kg
Air density (ρ) 1.18

Coefficient of aerodynamic drag
(Cd)

0.51

Frontal area (Afr) 2.4 m2

Rolling resistance coefficient
(C0)

0.015

Rolling resistance coefficient
(C1)

0

Acceleration of gravity (g) 9.81 m/s2

Wheel radius (r) 0.26 m

of around 2 m/s2, which is considered to be comfort-
able [29, 30]. In order to analyze the performance of
the control strategy under adverse conditions, the sim-
ulation involved a longitudinal 10 Km route with sev-
eral changes in gradient (Figure 15). The vehicle en-
countered two positive inclines of 10 and 15 degrees,
initiated at 1 and 2.5 Km, respectively, one negative

Table 6: Control strategy parameters used in the sim-
ulation.

Parameter Value
Time in accelerating state (tref ) 7 s
Reference speed (xref ) 50 Km/h
Travel distance (lend) 10 Km
Distance to the final destination,
to start the braking state (lref )

25 m

incline of 10 degrees, initiated at 5 Km, and four flat
regions. The braking state was configured to begin at
25 m from the final arrival point, at 9.975 Km. The
control strategy was implemented in a discrete man-
ner, with a sampling rate of 10 ms, and the derivative
of the error, dex (t), was estimated by difference. The
simulation results obtained using the selected param-
eter values are shown in Figures 16, 17 and 18.

Figure 16 shows the speed of the vehicle during
the acceleration state, which proceeded smoothly up
to the reference speed (xref = 50 Km/h) in the refer-
ence time (tref = 7 s).
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Figure 8: Membership function of the dex (t) variable during the moving state.
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Figure 9: Membership function of the vm(t) variable during the moving state for 220V PMDC motors.

Figure 17 shows the speed of the vehicle dur-
ing the moving state. It can be seen that the speed
remained close to the reference speed (xref ), even
during changes in gradient. The error was approxi-
mately 1.2% (x(t) = 50.61 km/h) for the flat regions,
2.2% (x(t) = 51.11 km/h) for the 10 degrees nega-
tive incline, and 1.4% (x(t) = 49.31 km/h) and 2.7%
(x(t) = 48.64 km/h) for the 10 and 15 degrees posi-
tive inclines, respectively. The control strategy there-
fore functioned effectively during the moving state,
with very small changes in speed throughout the route.

Finally, Figure 18 shows the simulation results
obtained for the speed of the vehicle during the brak-
ing state. The vehicle decelerated smoothly until it
reached a complete halt. The braking time was around
8 s, and the average deceleration was approximately
1.74 m/s2, which is a safe and comfortable value for
passengers and fragile items [29, 30].

5 Conclusions
A cruise control strategy for autonomous electric ve-
hicles was developed based on three fuzzy systems
acting in parallel for three kinetic states of the vehicle
(acceleration, moving, and braking). The technique
offers greater precision than other systems described
in the literature, and can be customized for different

kinetic states, hence offering a way of improving the
levels of comfort and safety for occupants and fragile
objects within the vehicle.

The strategy was validated by simulation of a lon-
gitudinal vehicle powered by a permanent magnet DC
motor. The results confirmed that the system com-
plied with the configured reference criteria, enabling
efficient speed control and smooth acceleration and
braking. This control technique therefore has poten-
tial for use in practical applications.
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Figure 15: Route used in the simulation.
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Figure 16: Simulation results for the acceleration state.
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Figure 17: Simulation results for the moving state.
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Figure 18: Simulation results for the braking state.
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