WSEAS TRANSACTIONS on SYSTEMS and CONTROL

Evgeny Veremey, Margarita Sotnikova

Spectral Approach to H,-Optimal SISO Synthesis Problem

EVGENY VEREMEY and MARGARITA SOTNIKOVA
Faculty of Applied Mathematics and Control Processes,
Saint Petersburg University,

Universitetskii prospect, Petergof, Saint Petersburg, 198504,
RUSSIAN FEDERATION
e _veremey@mail.ru http://www.apmath.spbu.ru

Abstract: - This paper is devoted to a particular case of H.-optimization problem for LTI systems with scalar
control, external disturbance and measurement noise. This problem can be numerically solved with the help of
the well-known universal approaches based on Riccati equations, LMI or maximum entropy technique.
Nevertheless, in our opinion there exists a possibility to implement a special form of spectral approach, using
polynomial factorization for the mentioned particular situation. The correspondent technique is proposed with
the aim to increase a computational efficiency of the synthesis and to present an optimal solution in a specific
form, which is convenient for investigation. Some theoretical details are discussed and numerical algorithms
are developed for practical implementation. Theirs applicability and effectiveness are illustrated by the

examples of H..-optimal synthesis.
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1 Introduction

One of the most important problems in a practice of
controlled systems anaytica design is an LTI
synthesis problem of the optimal reection of
externa disturbances and measurement noises using
feedback connection. This problem has determined
the vast area of investigations in control theory and
signal processing from the beginning of 40-th years
of the previous century. Starting directions of this
area are known as optimal filtering and mean sgquare
synthesis and nowadays theirs multiple descendants
are joined in the framework of the modern H-
optimization theory.

The founders of the optima filtering and
synthesis theory are A.N. Kolmogorov and N.
Wiener. This theory has received its development in
numerous works of the given direction and in
modern treatment optimal filtering and mean square
synthesis are the partial cases of H,-optimization

ideology. Besides that, many questions of the
mentioned direction can be considered with the help
of H_ -optimization methods.

Within the framework of the H-optimization
theory two computational approaches are widely
used: first of them is based on a solution of the
algebraic matrix Riccati equations ("2-Riccati"
approach) [1],[2], [3], and second — on a solution
of linear matrix inequalities ("LMI" technique) [4].
Correspondent methods have successful
implementation in MATLAB package.

As for the stationary laboratory conditions,
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computational effectiveness of these methods is
guite enough to provide control laws design and
investigations. However, we cannot say the same
with respect to theirs implementation in real-time
regime of operating for control systems with
adoptive changeover of control laws. Here the
computational running time of synthesis is highly
crucial issue, and commonly used universa
algorithms can be not fully satisfactory for practical
applications. We usualy dea with the similar
difficulties for various kinds of embedded systems
or for onboard control systems of autonomous
moving robots.

Nevertheless, in our opinion there exists some
possibility to improve computational effectiveness
of H_-synthesis by means of using the certain

alternative variant of optimization problem. Similar
to the standard situation, this variant reflects our
desire to suppress external disturbances with respect
to output variables. However, it smplifies a
considering of some analytical and computational
issues for a practical implementation.

Such a possibility can be realised for SISO H,.-
optimization problem, where controlled plant has
scalar controlling and disturbing inputs. In this
connection, the paper is devoted to the spectra
approach to the synthesis on the base of polynomial
methods ([5], [6]) presented in origina spectra
form. In particular, here the mentioned aternative
variant of synthesis is used as an auxiliary
instrument to obtain the upper estimates for the
standard situation to reduce the computational
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running time. In addition, the spectral approach
alows to overcome the degenerate essence of a
standard situation with no noise in measurements.
The paper is organized as follows. In the next
section, equations of a controlled plant are presented
and the standard problem of H,-optimal synthesisis
posed. Section 3 is devoted to the statement of an
aternative problem, which is used as the basis for
investigations provided below. Here we focus
special  attention on the relationship between
standard and alternative problems. In section 4, we
develop special spectral approach to the synthesis of
the H.-optimal controller. As a particular result,
easy calculated upper estimates for the standard
problem are proposed. Section 5 is devoted to the
issue of the optimal transfer function design. In
Section 6, a degenerate variant of a standard
situation with no noise in measurements is
discussed. In section 7, the numerical examples of
synthesis are presented on the base of the obtained
results. Finally, Section 8 concludes this paper by
discussing the overall results of the investigation.

2 The Problem of H,-Synthesis

Let us consder LTI controlled plant with a
mathematical model of the form

X =AXx+bu+pd(t),
y=cx+y(t), E=cx, .
e =g,

e, = ku,

@

where x e E" is a state space vector, y, u, &, d
and y arescaar values y and & are measured and

controlled variables respectively, u is a control,
d(t) represents an externa disturbance, y(t) is a

measurement noise. All the components of the
matrices A, b, p, ¢ and parameter k are given

constants. Let suppose that the pairs {A,b} and
{A,c} arecontrollable and observable respectively.

External inputs d and y we shall treated
bellow as the outputs of additional systems

d=Su(9)i, v=S,(9i, )
correspondently, where i, ,i, are the components of

the vector i = (i, iz)’of anew disturbances,
Su1(8) = Ny (9)/T4(8), S,a(s) =N, (9)/T, (9).

Here polynomias Ny, Ty, N,,, T, are Hurwitz. One
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can easy see that, if the inputs i,(t) and i,(t) are
Gaussian white noises, disturbances d and y can

be treated as random stationary processes with
rational spectral power densities

Si (@) = S41(9) Sy (=95 Sy (@) = S,1(8)S,1(-9)|
Let accept that controller to be designed has aform
u=W(s)y, ©)

where W=W,/W,, W,,W, are polynomials. The
transfer function W of the controller (3) should be
found as a solution of the anaytical synthesis
problem. If any, we obtain a closed-loop connection
(1) —(3) presented in Fig. 1 by its block-scheme

with the input i=(i, i,) and the output

s=jo

e=(e &), having mahematicd model of the
form e=H(s,W)i, where H isatransfer matrix of

the system.
i1 d €
—» Si(9 —>» — o >
Plant ———

u 3
Controller Y A Si(9 pL-E

Fig. 1. The closed-loop connection scheme.

Let us introduce auxiliary transfer functions of
the system (1) —(3) with respect to inner input
{d,y} and output {¢,u}:

Fi () =PI(A-BW), F(s)=BW/(A-BW),

Fa (S) = PW/(A-BW), F,(s)= AW/(A-BW),

where A(s) =det(Es—A),

B(s) = A(S)c(Es—A) b, P(s)= A(s)c(Es—A) 'p.
Using the introduced functions, we can represent

the transfer matrix H(s,W) asfollows:

Fe(s) Fye (s)) Sa® 03

kFay(s)  KF,u(s 0 Su9)

The matter of the standard problem of H.-
optimal synthesis is to find any solution of the
following optimization problem

=[H(sW)|? in,[H|,, =
o, W) = [H (S W), — min, [H],

H(sW)= (

sup o, (w),
e[0,0)

Q, ={W:H(SW)eRH,},

where Hardy space RH_ [1] consists of 2x2
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matrices with  proper fractionally rationa
components  with Hurwitz ~ denominators,
6 ,(0) =0,,(0,W) is the maximum singular value
of the matrix H(jo,W).

We shal suppose bellow that the plant (1)
satisfies all the requirements for the existence of the
optimal controller. This guaranties that using any
known approach (“2-Riccati”, LMI or maximum
entropy [5], [7]) we can find the transfer function
W =W, of the optimal controller.

Numerical solution of the problem with all
mentioned methods uses a standard iteration
technique to determine the optima value of the
functional J_ . Starting with high and low estimates

of the optimum, a bisection algorithm allows to find
this one as a minimum value J.,, for which the
relationship J,_ (W)<J,, can be satisfied by
any WeQ_ . It is evident that the overall running
time of calculations essentially depends on the
choice of the mentioned estimates. the less is the
relative difference between them, the less running
timeis.

A particular purpose of this paper is to obtain
upper J_, and lower J_, estimatesfor the minimal
value J ,=J,(W,,) of the functiona J,6 for
considered partia situation. These estimates should
reduce the number of iterations in a bisection
agorithm for the solution of a standard H.-
optimization problem, using mentioned techniques.

To begin with, let us consider another H,-
optimization problem with respect to the same plant
(1), inputs (2), and controller (3), aimed to the
maximum suppression of the disturbance i action to
the output e.

3 Alternative H,-Optimization

First, let us introduce the generalized transfer

function H,,(s,W), satisfying the identity
Hy (JoW)* =[|Fy (jo)f + K°IFg, (j0)*] Sy (@) +
+[|Foe () + K7[F, 0 (j0) ]S, (o).

Second, let us pose the following optimization
problem:

(6)

— 2 i
IW) =[Hy(SWEZ - min,
IHul, = P [H(jo). ™

Q={W:H,(sW)eRH_},

where the set RH_ consists of proper rational
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fractions with Hurwitz denominators.
One can see that the functional J(W) similar to

the functional J_ (W) represents a measure of a

disturbances suppresson by the closed-loop
connection. Therefore, the problems (5) and (7)
have the same practica essence, but different
mathematical formalization. Additionally note that
for the both problems parameter k plays the role of
a weight multiplier, governing the relationship
between the intensity of control action and the
achieved accuracy of suppression.

The following statement assigns a connection
between the both optimization problems:
Lemma 1: For any controller (3) with the transfer
function WeQ and for any frequency o e[0,)

the following relationship holds:
om(©W) <[H, (joW)*. ®

Proof: In accordance with the definition of the
singular vaue, we have o2 (o,W)=21,,(o,W); here
real number A, >0 isthe maximum eigenvalue of
the Hermitian matrix H(jo,W)H'(-jo,W). Next,
omitting an explicit dependency from variables jo,
W, and using notation p=p(s)=p(-s) for any
rational fraction p(s), on the base of (4) obtain

HH' :(a“ alzj yOlyg = ngEdgsd +Fye E\vés\v . (9)

Qo Oy
Oy = deg'EduSd + kaélz\uuS\y’OLZl =
0pp = K2Fg,FauSy + K2F i FyuS, -

Characteristic polynomial of this matrix is quadratic
trinomial A, (s) =s?-d;s+d,, where

dy =04y +0y,, Ay =040, — 05,0,

with the discriminant D =d?/4—d, >0. It follows

from this relationship that VD =d,/2-5 , where &
isreal number such that d,/2>5>0.

As a result, we obtain the following expression
for the maximum root of the polynomial A, (s):

o2 (0,W) =L, (o,W)=d,/2+vD =d, -5,
i.e. in accordance with (6) and (9) we have
Om(@W) < d; =y +ag =[Hy (jo W),

and the lemmais proven. m
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Theorem 1: The solution J,=JW,) of the
optimization problem (7) can be used as an upper
bound estimate for the solution J_,=J,(W,,) of
theinitial optimization problem (5), i.e. we have

'JooO = ‘]oo(WooO) < ‘]O = ‘](VVO) .

Proof: In accordance with Lemma 1 on the base of
(8 we can clam that VYW eQ the following

relationships hold:

(10)

J. (W) =[H(sW)|2 = sup o7 (e,W)<

e[0,00)

< sup [Hy,(jo,W)P =[H,(sW)2 = W),

oe[0,0)

(11)

Because of J ,=J, (W, )<J (W), YWeQ, it
follows from (11) that J,, <J(W), YW eQ, and in
particular the same is vaid for W=W,, i.e

Jo SIW)=Jy. m

Thus, as a preliminary result it is possible to
claim that in the sense of the relationship (10) we
can consider the problem (7) instead of the problem
(5) to obtain desirable estimates. This transition
dlows us to apply polynomia technique that
essentialy reduces a running time of calculations
for thelow order systems(n<5).

However, we have some difficulty in the
accepted way, because of a direct solution of the
problem (7) is appreciably obstructed by the
nonlinear dependency of the functional J from the
adjustable function W. To avoid this difficulty, it
seems suitable to employ any parameterization
technique for the stabilizing controllers set. The
most popular approach is based on the results
discussed in Youla [8]. However, here we shall use
other method, firstly described in 1971, with
modern interpretation presented in Aliev and Larin
[6].

In accordance with this method, let introduce the
adjustabl e function-parameter ® as

o+ W

oW = "oy

AD —a

=>W=L, (D)= Boip

12)
where o and B are any polynomials such that the
polynomial

Q(s) = A(s)B(s) + B(s)a(s)

is Hurwitz. Formulae (12) alow us to express
transfer functions of the closed system as

(13)

Fi. =P(BO+P)/Q, F. =B(AD-a)/Q,  (14)
Fau=P(A®-0)/Q, F,, = AAD - a)/Q.
E-ISSN: 2224-2856
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It is easy to see that optimization problem (7) is
equivalent to the following problem:

1(®) =[H (s ®)|, - min, (15)

where admissible set Q,, = L, (Q) includes rational
fractions ® with Hurwitz denominators. The
function H(s,®)=H,,(s,L,(P)) in accordance
with (5) satisfies the identity

H(jo,®)? E(ngEdaJr kdeuEdu)Sd +
_
+(FyeFype + K uFuu)S, -

yE y

(16)

Lemma 2: Theidentity (16) can be converted to the
following form:

H(®)H (@) = (T, - T,0)(T, - T,®) +T;, (17)

where the rational fraction T,(s) with Hurwitz
denominator and functions T,(s)e RL, T;(s)e RL
are determined by the formulae

T, =(k*aA-BB)D/(GQ) +S,AB/(GD),

- (18)
T,=GD/Q,

T,=k’DD /(GG )+ S, (BB - k*AA) /(GG )- (9
~SZAABB/(GGDD).

Here the Hurwitz polynomia G(s) and the fraction
D(s)=N(s)/T(s) with Hurwitz polynomials N,
T aretheresults of the following factorizations:

k’AA+BB=GG, S,AA+S,PP=DD. (20)

Proof: A possibility of the mentioned representation
directly follows from the subgtitution of the
formulae (16), (18) — (20) to the right part of (17). m

4 Spectral Approach to the Synthesis

Let us now consider the problems (7) and (15),
which also can be transformed to an equivaent
form. Redlly, in accordance with Lemma 2 we have

1(@) =[H (s, D) = sup [H(jo) =
, we[0,00) | (21)
= Sup [|T1—T2CD|$J-Q, +Ty(@)] > min,
e[ 0,00) DeQ,

where the rational fraction T,(s) with Hurwitz
denominator and functions T,(s)e RL, T;(s)eRL

are determined by the formulas (18) and (19).
Using a technique proposed in [2], let instead the
problem (21) consider the choice of the function
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® e Q? such that the following relation holds:

|(@)<p® p®=J,+¢, (22)
where ¢ isnonnegative rea value,
J, = max T;(o) . (23)

we[0,0)

It is evident that the minimum of the functional
| (®) in (21) is equal to the smallest value p; of a

number p® for which a solution of the problem (22)
exists:
lo(®@) = min 1 (®) =min{p?:30 e Q,,:
(OIS QP (24)
Vo e[0,0) [T, -T,d +T, < p}.
To provide further discussion let address to the
well known Nevanlinna-Pick interpolation problem

(NP-prablem) [2], [3]. The matter of this problem is
to search a function H(s)e RH_ such that the

following conditions hold:

IH[. <1, H(&) =, Re&, >0, i=1p,
where ¢ and ¢ are given complex numbers.

Naturally, it is necessary that |;|<1,i=1pu,
however this is not sufficient for the existence of a
solution. The famous Pick's theorem [2] presents the
necessary and sufficient conditions of NP-problem
solvability.

On the base of the mentioned theorem, we arrive
at the following statement.
Theorem 2. The problem (24) is solvable if and
only if the value p is such that Hermitian matrix

Ln(p%) =1{I;; (p®)} is non-negative, where

ly = (0-GiC)/E +E)),
g,ifi<n

! :{v if n<i<n+p;
d,ifi<n

i :{cl_n,if n<i<n+np.

i—n»

Here g; (i=1n) and v; (i=1p) (p=degN(-s))
are the roots of polynomias G(-s) and N(-9)
correspondently (recall that for simplicity we
assume that the complex points g,,9,,..., On»

V1,Va,.. v, aredistinet),

d = -BSPPTTH - 4 o, (25)
ART, |,
E-ISSN: 2224-2856
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o Ny N, ABT,T, |

RT,

Proof: In accordance with (22) it is necessary and

sufficient that there exists a function ® € Q, such

that for any we[0,00) the following relationship
holds:

i=1 p. (26)

s=v

M(jo)-T(jo)@(jo) <p® -Ty(@). (27)

Because of p°>J,, it follows from (22) and

a’
(23) that p° —T,(w) >0 Y e[0,0), moreover there
exists a rationa fraction L(s) with Hurwitz
numerator and denominator satisfying the identity

L(SL(-9) =p? ~Ty(9). (28)

Redly, it is easy to transform the expression (19)
taking into account formulae (2) and (20) that give
us the function T,(s) of theform

_ N NgPP(k*NN + N, N, BBT,T,)

— v (29)
GGNNT,T,

3

This transformation alows presenting a function
L(s) satisfying the identity (28) as follows

L(s) = R,(9)/[GEON(ST4 (9],

where the polynomial R, (s) is a Hurwitz result of
the factorization

(30)

R R, =p’GGNNT,T, -

L, _ _ _. (3
—NgNgPP(k*NN + N, N, BBT,T,)
Next, let introduce an inverse function
L(s)=L(9) =G(IN()T4(9)/R,(5),  (32)

and on the base of (28) convert the praoblem (27) to
the form

[T(jo) - T(jo)@(jo)L(jo)* <1 Yoe[0,%),
that is equivalent to the problem
N(-jo)f _

[T (jo)-T,(jo)P(jo)]L(jo) NGo) | =T (3

Vo e[0,x),

because of |N(-jo)/N(jo)’=1.
Now let us introduce arational fraction
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N(=s) _
N(s)
Q N
_ GGN CD} N
Q IRT,
It is a matter of simple calculation to verify that the
following equalities hold:

Z(8) =[Ty(8) ~ T2 () @(s)IL(S)

(34)

Z(gi):difizﬁ; Z(vi)zo,,izl_p,

where the complex values d, and ¢, are determined
by the formulas (25) and (26).

As a result, the initial problem (27) can be
treated as the following NP-problem

(35

1z, <1, Z(g)=d, i=Ln;  (36)

Z(v)=¢,i=1p

with respect to a function Z(s). However, in

accordance with Pick's theorem, the NP-problem is
solvable if and only if the Pick matrix

Lo(p) ={l;(p)} is non-negative that proves this
theorem. m

Theorem 3: The mentioned smallest value p;, for
which a solution of the problem (24) exists, belongs
to the segment [J,, J, +¢ |, where

* - 2
e = mn T -To| . (37)
Proof: Let us address to the problem (21) and
consider the evident relationships

2
| (D)= sup |[T1—T2®|$jm+T3(m)J£
we[0,0) , (38)
< sup [T -T,O  + max Ty(w),
»e[0,0) J ®e[0,0)

which is valid for any function-parameter ® € Q,,, .
In particular, we can accept @ = @, where

* . 2
@ =arg min T -To| (39)
and from (38) we obtain
* * 2
(@)= s.[ép )ﬂTl—Tan |S:jw+T3(m)]s (40)
*2
< sup [T-To® | +J,,
we[0,0) s=lo
E-ISSN: 2224-2856
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taking into account (23). Because of the function
@ is not a solution of the problem (21), we have
po=1(Dy) <1(D),i.e

po<d, +e (41)

in accordance with (40) and (37). m

Corollary 1: The value p2 =J,+¢ is an upper
estimate of the minimal value J_, of the functional
J_ (W) for initial optimization problem (5).

Proof: This claim directly follows from Theorem 1
and Theorem 3. m

Remark 1: One can easy see that the optimization
issue (39), on which the proof of Theorem 3 is
based on, can be treated as well known Nehari
problem[1].

This problem has effective solution presented by
numerical algorithm in [2]. To use this agorithm
directly, it is convenient to make the following
transformation

2

N
[T -T, 0| = (Tl—Tch)K

o0

similar to the proof of Theorem 2 that yields to the
Nehari problem

* ' ' 2 :

' (@) =T)-T,0[] > oT}{l , (42)
where T/=T,N/N, T,=T,N/N. The initid data
for the mentioned a gorithm of its solution consist of
al the zeros of the function T, which are g;,
(i=1n) and v,, (i =1 p) . Besides, these data aso
include the following values:

. BN, ,N,PPT. o —
di :Tl'(gi):_M ,i=1n; (43)
GAT,N |
. N N ABT, J—
¢ =T(v)=—t"t—2 |i=lp. (49
T,NG

s=v,

Note that al the values (43) and (44) do not depend
on the auxiliary polynomials a(s), B(s), and Q(S).

Remark 2: If the estimate p?2 seems to be too
pessimistic, one can find the more redistic
estimate pf,, using bisectional algorithm for the

segment [Ja,pi] with checkout of the matrix
Lo(p®)=1{l;(p?)} non-negative definiteness in
accordance with Theorem 2.
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5 Optimal Transfer Function

Note that the Theorem 2 gives not only the

conditions of solvability, but aso specifies direct

way to find an optimal transfer function W (s) .
Remark that if there exists a solution of the NP-

problem for given value p such that |Z(s)|, =1,

then this solution has the form
Z(s)=Z(s,p) =m(=s,p)/ m(s,p) ,
where m(s,p) isHurwitz polynomial [2].

Theorem 4: Let we know the minimal value p = p,
for which the problem (36) has a unique solution

Zy() = Z(s,po) = M(-s)/m(s),m(s) = m(s,p,) (46)
with the polynomial R =R ,(s) (31) such that
Rpoﬁpo = PSGgNNTdfd -

- NyN,PP(k?NN + N, N, BBT,T, ).

(45)

Then there exists a unique optimal controller (3)
with respect to the H_-problem (7), having the

transfer function
[A(S)M (s) - N(5)B(-)my(5)]/ G
[B9M (5) + KN() A(-9)my(9)|/G

where an auxiliary polynomial M (s) is determined
asfollows

M (S) = [my()N,, ()N, (=) A(-5) B(~5)

x Ty (9)Ty (=5) — My (=) R,o ()T, (S)]/N (-9).
Here divisions to the polynomias G(-s) and
N(-s) areredlized totally (without areminder).
Proof: First, let substitute the known value p,,
polynomia R (s), and function Z,(s) to the

identity (34) that yields the following equation with
respect to the variable @ :

Q

W, (s) =

. (47)

(49)

BT,T,

Z | >

(49)

_GGN CD] N
Q RpOT\u

A solution of this equation gives us an expression
for the optimal parameter ® = ®(s):

Oy =~ (k2A-pB +

E-ISSN: 2224-2856
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+NWNWABTde ZoR T, QJ (50)
NN

Observe that using formulae (26) it is easy to

verify that the expression N, N, ABTdTd ZyRoT,
is equa to zero in the complex
points s=v, (i =1, p) . Thisimpliesthat
N, N, ABT T, — ZoR(T, _M
NN Nm

where M is polynomial given by the formula (48)
because of a divison to N(-s) here is realized

totally, and we obtain

D, = ! (kzaA BB+—Q] (51)
GG

Nm
Besides, one can check that the whole expression
in the brackets for the parameter @, in (50) and

(51 is equa to zero in the complex
points s=g; (i =1n): this follows from the
formulae (25). Therefore, we can conclude that the
rational fraction Dy(9) has Hurwitz
denominator N(s)G(s)m(s). Because of we have

| (Do) =p5 <o, it means that ®,Q,,, and we
can find a correspondent optimal transfer function
with the help of the formulae (12), (51):

AD, -0 _ QGNm(AM - BNm)/G
BO,+p  QGNm(BM +k*ANm)/G

i.e. the equaity (47) holds. Observe that the
function W, does not depend on the auxiliary

polynomials a. and 3, i.e. the result is determined

by only the initial data. m

Remark 3: Despite the fact that the formula (47)
seems to be not very complicated, detailed analysis
shows certain disadvantage of the obtained optimal
solution, because an order of the controller is greater
than for the solution of standard H_, -problem (5).

Nevertheless, proposed controller with the
optimal transfer function (47) could be also useful
for practica applications if there is any reason for
direct using of the optimization problem (7) instead
of the standard one (5). To overcome its drawback,
it is not difficult to compute a reduced order
approximation of the H_-optimal controller,
excluding close roots of humerator and denominator
for the transfer function (47).

Specially note that the presentation (47) is very

W (s) =
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convenient for various investigations of the optimal
solution features such as a structure of the transfer
function, its limit behaviour with respect to k —0
and k — o, robust peculiarities of the controller,
situations with non-fractional representation of the
disturbances spectrums, transport delays, etc.

Let us summarise the above discussion
introducing the following computational algorithm
for the solution of the H_-optimal synthesis
problem (7).

Algorithm 1:

1. Execute the factorizations (20) and construct
the polynomial T(s) =T, (s)T,(s) -

2. Construct the function T;(w) (29) and find its

maximum value J, = max T;(o) .
e[ 0,0)

3. Decide Nehari problem &* = min [T~ T,0|
DeQ,, ©
with the help of algorithm (based on two Lyapunov

eguations), presented in [1], [2], using the initia
data (43), (44). Determine the upper estimate

p2,=J,+¢ for the minimal value p; of the
functional J(W).

4. Consider the segment p®e[J,, p3] and using
bisectional agorithm determine the minimal
value p® = p3 guarantying non-negative
definiteness of the matrix L, (p”)={l; (p*)} with
initial data (25), (26). Here R (s) is a Hurwitz
result of the factorization (31).

5. If the problem (7) is used only as an auxiliary
instrument for the solution of the standard problem

(5), accept the values J, and J, = pj; as the lower

and upper estimates correspondently for the
minimum value J_, of the functional J_(W). Then

use any standard algorithm to solve the problem (5)
with accepted estimates. Recall that it is possible to

employ more pessimistic upper estimate p2: this
allows omitting step 4.

6. Execute factorization (31) accepting p® = pj,
find the values (25), (26) and solve NP-problem

IHI, <1, H(E) =&, i=Ln+p,

with respect to the Hurwitz polynomial m(s):
H (s) = my(—s)/my(s) . This action can be executed

with the help of the same algorithm as for step 3.
7. Construct the auxiliary polynomial M (s) (48)

and obtain the numerator
Wi, () = [A(SIM (8) - N(9)B(-5)my (9) [/ G(~9)
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and the denominator

Wi (9) = [B(M (9) + k2N() A-9)my(9) /()

of the optimal transfer function.

6 Irregular Situation

Remark that spectral form (47) plays a distinct role
for the particular case of H_ -optimization problem
with no measurement noise in the plant model ().
For this non-standard case [9] we have y(t) =0, i.e.

N, (=0, T, () =1.

From the practical point of view, this irregular
situation is not sensdless. However, the standard
problem (5) is directly unsolvable by «2-Riccati»
approach for this case due to the degeneration
essence of the statement. Of course, there exist
many ways to overcome this difficulty (one of them
is realized in MATLAB package), but these ways
actually give us only the minimizing sequences of
regular controllers with no accurate low bound.

As for the dternative variant (7), one can easy
see that the mentioned situation is not irregular here,
and can be treated as the usual particular case with
theinitial data N\v =0, T“, =1.

Let us address to this situation separately. One
can easy make correspondent modification in the
statement of the problem (7), changing (6) by the
following identity:

Mo W) =| [Fe o) + KR () | Sy(@).

It is a matter of simple calculation to make
correspondent transformation of all the formulas
presented above. As a result, we arrive at the
following algorithm of synthesis.
Algorithm 2:

1. Execute the following factorizations:

k?A(s) A(-S) + B(S)B(-s) = G(S)G(-9),
P(s)P(-s) = R(S)R(-9),

where G and P, are Hurwitz polynomials.
2. Construct the function

Ty(@) = KNy (j0)P(jo)/Ty (jo)G(jo)
and find its maximum value J, = rrggx)T3(m) .
3. Decide Nehari problem ¢" = [min Im-T0|,

where T, = GN4P,/QT, , using initial data
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d; =T,(g;) =- BNy N, Pl/GATdL:g‘ ,i=1n.

Determine the upper estimate p2 =J, +¢ for
the minimal value pg of the functiona J(W).

4. Consider the segment p®e[J,, p3] and using
bisectional agorithm determine the minimal
value p®=p5 providing non-negative definiteness
of the matrix L, (p%) = {I; ()}, where

I z(l_diaj)/(gi +9;),1,] =1n;

d =—BN,N, Pl/ARPL:gi Ji=Ln. (52

Here R,(s) isaHurwitz result of the factorization

R R, =p*GGT,T, —k’NyN,. (53)

5. Execute factorization (53) accepting p® = pj,
find complex values (52) and solve NP-problem

IHll, <1, H(g;)=d;, i =1n,
with respect to the Hurwitz polynomia m(s):
H (s) = my(=s)/my(s) .
6. Construct the polynomials
W (s) = (AmoRpo +BmyN, Pl)/g ’
Wo(S) = (BmoRpo - kzz‘moNd Pl)/g

and form the transfer function W, =W,,/W,, of the

optimal controller (3).
The aternative numerical agorithm of irregular
synthesisis also presented in [10].

7 Synthesis Examples
Example 1: Let us consider a control plant (1) with
given matrices

0 0 0200 -2.00 2
A=/0250 0 029%|b=| 0 |p=|0],

0 0500 -115 0.250 0
c=(0 0 4)

and the value k=1 of a weight parameter. As for
external disturbances, let supposethat S, =S, =1.

Here we have the initial polynomials
A(s) = s> +1.155% —0.145s—-0.0250; B(s)=s*—1;

P(s)=1; T4(s)=T,(5)=1; Ny(s)=N,(s)=1.
Consequently obtain the following polynomials
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in accordance with Algorithm 1:
G(-s) = —S° +2.865° — 2.79s+1
with theroots g,, =0.770+£0.403] , g, =1.32;

N(-s) = -5 +2.475* - 2.245+1;
with the roots v,,=0.552+0.655], v;=1.36.

Then we determine a lower estimate for the
vaue p; J, = wrggé) T;(o) = 2.00, and upper bound
p2 =26.78. Executing step 4 of the agorithm 1,
obtain p3 = 25.778. Correspondently we have the
polynomial
R o(s) =5.075° + 27.0s" + 61.0s" + 77.0s° +
+57.65% + 24.85+ 4.88

and the following initial datafor NP-problem (36):
0,=132, g,;=0.770+£0.403j ; v, =1.36,
v,3=0552+0.654] ; d, =-0.285-10"°,
d,;=—(4.15+£1.22j)-10;

¢, =-0.272-107, ¢, = (5.40+10.4j)-10°°.

As asolution of this problem obtain polynomial

my(S) = —0.458s° — 2.26s* — 4.61s° —
—5s% - 2.945-0.739.

Then we can calculate an auxiliary polynomial

M (s) = 2.33s° + 6.16s" —1.41s° — 20.1s° —

—23.85" —4.245% +13.45? +12.1s+ 3.58

and, a last, to form a transfer function

W, =W, /W, of H_-optimal controller, where

W, (s) = 2.33s° +16.0s” + 48.0s® + 83.1s° + 91.4s* +
+65.65% + 29.85% + 7.73s + 0.828,

W, (S) = 0.458s° + 6.50s’ +30.8s° + 75.25° +110s" +
+104s® + 62.25% + 22.0s + 3.57.

Controller  u=W, (p)y provides the value

Jo=J(W,,) = pi = 25.778 of the functional J(W).

Remark that we can reduce an order of the optimal
controller using MATLAB function balred :

5.08s% +11.7s% + 7.755+1.38
s®+9063s? +14.65+59

Controller (3) with obtained transfer function gives

W, () =
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practically the same value of performance index

JOW.,) ~ I(W,,) = 25.779 .

As for the solution of the standard problem (5),
with the help of MATLAB function hinfsyn obtain
the optimal transfer function

2380s” + 3630s+ 846
%+ 4725% + 4165+ 3650

providing minimal value J_,=25716 of the
functional J_ (W) . Remark that the average running
time of synthess for the default initial segment
J.0€[0,88.9] is equal to 0.08 s. By using the
estimates obtained above, we can shrink initial
segment, for example J_,<€[0.95J,, J,], that
reduces the running time more then twice.

Example 2: Consider the same control plant (1) as
for the proceeding example and address to the
irregular problem (7) with no noise. Using
Algorithm 2, we consequently obtain J, = 0.9994,

p2,=2.288, p2 =1.669,

Whoo (S) =

s° + 4.61s" + 8.55s° + 8.06s° + 3.88s+ 0.764
s* +3.46s° + 4.495° + 2.66s+0.593

These data can be used for standard synthesis (5) to
reduce a running time of calculations.

WOOO (S) =

8 Conclusion

The main goa of the paper is to propose and to
discuss a specia spectra approach in frequency
domain to partial case of H_ -optimization problem

for LTI controlled plants. Proposed approach is
based on a polynomial representation of initial and
temporary data and on a specia parameterization of
stabilizing controllers set. Instead of the Riccati
eguation (or linear matrix inequalities) solutions,
here polynomia factorizations are used, that
substantialy simplifies agorithms of synthesis.
Proposed spectral approach is implemented to
the H_ -problem statement, which is some differed

from the commonly used standard variant. The
mentioned difference alows using the aternative
problem and the agorithm of its solving as an
auxiliary instrument with respect to the standard
situation. First, this instrument gives the initia
estimates for the standard H_ -norm minimum that

can essentially reduce the running time of synthess.

Second, the spectral approach is quite suitable to
solve the irregular problem with no measurement
noise. This situation is directly unsolvable by «2-
Riccati» method, however the spectral approach
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alows to overcome this difficulty additionaly
reducing the running time of synthesis.
Third, the spectral representation is convenient
for various investigations of the system features.
Some disadvantage of proposed approach is an
evident structure imperfection that can be overcome
by reducing an order of the controller.
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