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Abstract: - This paper is devoted to a particular case of H∞-optimization problem for LTI systems with scalar 
control, external disturbance and measurement noise. This problem can be numerically solved with the help of 
the well-known universal approaches based on Riccati equations, LMI or maximum entropy technique. 
Nevertheless, in our opinion there exists a possibility to implement a special form of spectral approach, using 
polynomial factorization for the mentioned particular situation. The correspondent technique is proposed with 
the aim to increase a computational efficiency of the synthesis and to present an optimal solution in a specific 
form, which is convenient for investigation. Some theoretical details are discussed and numerical algorithms 
are developed for practical implementation. Theirs applicability and effectiveness are illustrated by the 
examples of H∞-optimal synthesis. 
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1 Introduction 
One of the most important problems in a practice of 
controlled systems analytical design is an LTI 
synthesis problem of the optimal rejection of 
external disturbances and measurement noises using 
feedback connection. This problem has determined 
the vast area of investigations in control theory and 
signal processing from the beginning of 40-th years 
of the previous century. Starting directions of this 
area are known as optimal filtering and mean square 
synthesis and nowadays theirs multiple descendants 
are joined in the framework of the modern H-
optimization theory. 

The founders of the optimal filtering and 
synthesis theory are A.N. Kolmogorov and N. 
Wiener. This theory has received its development in 
numerous works of the given direction and in 
modern treatment optimal filtering and mean square 
synthesis are the partial cases of 2H -optimization 
ideology. Besides that, many questions of the 
mentioned direction can be considered with the help 
of ∞H -optimization methods. 

Within the framework of the H-optimization 
theory two computational approaches are widely 
used: first of them is based on a solution of the 
algebraic matrix Riccati equations ("2-Riccati" 
approach)  [1], [2], [3], and second – on a solution 
of linear matrix inequalities ("LMI" technique) [4]. 
Correspondent methods have successful 
implementation in MATLAB package. 

As for the stationary laboratory conditions, 

computational effectiveness of these methods is 
quite enough to provide control laws design and 
investigations. However, we cannot say the same 
with respect to theirs implementation in real-time 
regime of operating for control systems with 
adoptive changeover of control laws. Here the 
computational running time of synthesis is highly 
crucial issue, and commonly used universal 
algorithms can be not fully satisfactory for practical 
applications. We usually deal with the similar 
difficulties for various kinds of embedded systems 
or for onboard control systems of autonomous 
moving robots. 

Nevertheless, in our opinion there exists some 
possibility to improve computational effectiveness 
of ∞H -synthesis by means of using the certain 
alternative variant of optimization problem. Similar 
to the standard situation, this variant reflects our 
desire to suppress external disturbances with respect 
to output variables. However, it simplifies a 
considering of some analytical and computational 
issues for a practical implementation.  

Such a possibility can be realised for SISO H∞-
optimization problem, where controlled plant has 
scalar controlling and disturbing inputs. In this 
connection, the paper is devoted to the spectral 
approach to the synthesis on the base of polynomial 
methods ([5], [6]) presented in original spectral 
form. In particular, here the mentioned alternative 
variant of synthesis is used as an auxiliary 
instrument to obtain the upper estimates for the 
standard situation to reduce the computational 
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running time. In addition, the spectral approach 
allows to overcome the degenerate essence of a 
standard situation with no noise in measurements. 

The paper is organized as follows. In the next 
section, equations of a controlled plant are presented 
and the standard problem of H∞-optimal synthesis is 
posed. Section 3 is devoted to the statement of an 
alternative problem, which is used as the basis for 
investigations provided below. Here we focus 
special attention on the relationship between 
standard and alternative problems. In section 4, we 
develop special spectral approach to the synthesis of 
the H∞-optimal controller. As a particular result, 
easy calculated upper estimates for the standard 
problem are proposed. Section 5 is devoted to the 
issue of the optimal transfer function design. In 
Section 6, a degenerate variant of a standard 
situation with no noise in measurements is 
discussed. In section 7, the numerical examples of 
synthesis are presented on the base of the obtained 
results. Finally, Section 8 concludes this paper by 
discussing the overall results of the investigation. 
 
 
2 The Problem of H∞-Synthesis 
Let us consider LTI controlled plant with a 
mathematical model of the form 
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where nE∈x  is a state space vector, uy, , ξ , d  
and ψ  are scalar values: y  and ξ  are measured and 
controlled variables respectively, u  is a control, 

)(td  represents an external disturbance, )(tψ  is a 
measurement noise. All the components of the 
matrices A, b, p, c and parameter k  are given 
constants. Let suppose that the pairs { }bA,  and 
{ }cA,  are controllable and observable respectively. 

External inputs d  and ψ  we shall treated 
bellow as the outputs of additional systems 

 11 )( isSd d= ,  21 )( isSψ=ψ  (2) 

correspondently, where 1i , 2i  are the components of 

the vector ( )′= 21 iii of a new disturbances, 

)()()(1 sTsNsS ddd = ,  )()()(1 sTsNsS ψψψ = .  

Here polynomials ψψ TNTN dd ,,,  are Hurwitz. One 

can easy see that, if the inputs )(1 ti  and )(2 ti  are 
Gaussian white noises, disturbances d  and ψ  can 
be treated as random stationary processes with 
rational spectral power densities 

ω=−=ω jsddd sSsSS )()()( 11 ,
ω=ψψψ −=ω

js
sSsSS )()()( 11 . 

Let accept that controller to be designed has a form   

 ysWu )(= , (3) 

where 21 /WWW = , 21,WW  are polynomials. The 
transfer function W  of the controller (3) should be 
found as a solution of the analytical synthesis 
problem. If any, we obtain a closed-loop connection 
(1) – (3) presented in Fig. 1 by its block-scheme 
with the input ( )′= 21 iii  and the output 

( )′= 21 eee , having mathematical model of the 
form iHe ),( Ws= , where H  is a transfer matrix of 
the system. 

  i1                    d                                          e1                           
                                                      e2      
                                                       
                  u                                     ξ  
                                               y           ψ                 i2  
 

Plant 

Controller Sψ(s) 

Sd(s) 

 
Fig. 1. The closed-loop connection scheme. 

 
Let us introduce auxiliary transfer functions of 

the system (1) – (3) with respect to inner input 
{ }ψ,d  and output { }u,ξ : 

)/()( BWAPsFd −=ξ , )/()( BWABWsF −=ψξ ,  

)/()( BWAPWsFdu −= , )/()( BWAAWsF u −=ψ ,  

where )det()( A−= EssA , 

bAc 1)()()( −−= EssAsB , pAc 1)()()( −−= EssAsP . 

Using the introduced functions, we can represent 
the transfer matrix ),( WsH  as follows: 
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The matter of the standard problem of H∞-
optimal synthesis is to find any solution of the 
following optimization problem 

{ },),(:

,)(sup,min),()(
)[0,

2

∞∞

∞∈ω
∞

Ω∈∞∞

∈=Ω

ωσ=→=
∞

RHH

HH

WsW

WsWJ mW (5) 

where Hardy space ∞RH  [1] consists of 22 ×  
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matrices with proper fractionally rational 
components with Hurwitz denominators, 

),()( Wmm ωσ=ωσ  is the maximum singular value 
of the matrix ),( WjωH . 

We shall suppose bellow that the plant (1) 
satisfies all the requirements for the existence of the 
optimal controller. This guaranties that using any 
known approach (“2-Riccati”, LMI or maximum 
entropy [5], [7]) we can find the transfer function 

0∞= WW  of the optimal controller.  
Numerical solution of the problem with all 

mentioned methods uses a standard iteration 
technique to determine the optimal value of the 
functional ∞J . Starting with high and low estimates 
of the optimum, a bisection algorithm allows to find 
this one as a minimum value mJ , for which the 
relationship mJWJ ≤∞ )(  can be satisfied by 
any ∞Ω∈W . It is evident that the overall running 
time of calculations essentially depends on the 
choice of the mentioned estimates: the less is the 
relative difference between them, the less running 
time is. 

A particular purpose of this paper is to obtain 
upper uJ∞  and lower  wJ∞  estimates for the minimal 
value )( 00 ∞∞∞ = WJJ  of the functional ∞J  for 
considered partial situation. These estimates should 
reduce the number of iterations in a bisection 
algorithm for the solution of a standard H∞-
optimization problem, using mentioned techniques. 

To begin with, let us consider another H∞-
optimization problem with respect to the same plant 
(1), inputs (2), and controller (3), aimed to the 
maximum suppression of the disturbance i action to 
the output e. 

 
 

3 Alternative H∞-Optimization 
First, let us introduce the generalized transfer 
function ),( WsH w , satisfying the identity 

 [ ]
[ ] ).()()(

)()()(),(
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u
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Second, let us pose the following optimization 
problem: 
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where the set ∞RH  consists of proper rational 

fractions with Hurwitz denominators.  
One can see that the functional )(WJ  similar to 

the functional )(WJ∞  represents a measure of a 
disturbances suppression by the closed-loop 
connection. Therefore, the problems (5) and (7) 
have the same practical essence, but different 
mathematical formalization. Additionally note that 
for the both problems parameter k  plays the role of 
a weight multiplier, governing the relationship 
between the intensity of control action and the 
achieved accuracy of suppression. 

The following statement assigns a connection 
between the both optimization problems: 
Lemma 1: For any controller (3) with the transfer 
function Ω∈W  and for any frequency ),0[ ∞∈ω  
the following relationship holds: 

 22 ),(),( WjHW wm ω≤ωσ . (8) 

Proof:  In accordance with the definition of the 
singular value, we have ),(),(2 WW mm ωλ=ωσ ; here 
real number 0>λm  is the maximum eigenvalue of 
the Hermitian matrix ),(),( WjWj ω−′ω HH . Next, 
omitting an explicit dependency from variables ωj , 
W , and using notation )()( ss −ρ=ρ=ρ  for any 
rational fraction )(sρ , on the base of (4) obtain 

 







αα
αα

=′
2221

1211HH , ψψξψξξξ +=α SFFSFF ddd11 , (9)  

 
,

, 2112

ψψψξξ

ψψψξξ

+=

=α+=α

SFFkSFFk

SFkFSFkF

uddud

uddud   

 ψψψ+=α SFFkSFFk uuddudu
22

22 . 

Characteristic polynomial of this matrix is quadratic 
trinomial 01

2)( dsdssH +−=∆ , where 

 22111 α+α=d , 211222110 αα−αα=d  

with the discriminant 04 0
2
1 ≥−= ddD . It follows 

from this relationship that δ−= 21dD , where δ  
is real number such that 021 >δ≥d . 

As a result, we obtain the following expression 
for the maximum root of the polynomial )(sH∆ : 

 δ−=+=ωλ=ωσ 11
2 2),(),( dDdWW mm ,  

i.e. in accordance with (6) and (9) we have 

 2
22111

2 ),(),( WjHdW wm ω=α+α=≤ωσ ,  

and the lemma is proven. ■ 
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Theorem 1: The solution )( 00 WJJ =  of the 
optimization problem (7) can be used as an upper 
bound estimate for the solution )( 00 ∞∞∞ = WJJ  of 
the initial optimization problem (5), i.e. we have 

 )()( 0000 WJJWJJ =≤= ∞∞∞ . (10)  

Proof: In accordance with Lemma 1 on the base of 
(8) we can claim that Ω∈∀W the following 
relationships hold: 

 
),(),(),(sup

),(sup),()(

22
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==ω≤

≤ωσ==

∞
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∞∈ω
∞∞ H

 (11)  

Because of )()( 00 WJWJJ ∞∞∞∞ ≤= , Ω∈∀W , it 
follows from (11) that Ω∈∀≤∞ WWJJ ),(0 , and in 
particular the same is valid for 0WW = , i.e. 

000 )( JWJJ =≤∞ . ■ 
Thus, as a preliminary result it is possible to 

claim that in the sense of the relationship (10) we 
can consider the problem (7) instead of the problem 
(5) to obtain desirable estimates. This transition 
allows us to apply polynomial technique that 
essentially reduces a running time of calculations 
for the low order systems )5( ≤n . 

However, we have some difficulty in the 
accepted way, because of a direct solution of the 
problem (7) is appreciably obstructed by the 
nonlinear dependency of the functional J  from the 
adjustable function W . To avoid this difficulty, it 
seems suitable to employ any parameterization 
technique for the stabilizing controllers set. The 
most popular approach is based on the results 
discussed in Youla [8]. However, here we shall use 
other method, firstly described in 1971, with 
modern interpretation presented in Aliev and Larin 
[6].  

In accordance with this method, let introduce the 
adjustable function-parameter Φ  as 

BWA
WWL

−
β+α

==Φ −
Φ )(1  ⇒

β+Φ
α−Φ

=Φ= Φ B
ALW )( , (12) 

where α  and β  are any polynomials such that the 
polynomial 

 )()()()()( ssBssAsQ α+β=  (13) 

is Hurwitz. Formulae (12) allow us to express 
transfer functions of the closed system as 

QBPFd /)( β+Φ=ξ , QABF /)( α−Φ=ψξ , (14)  

QAPFdu /)( α−Φ= , QAAF u /)( α−Φ=ψ .  

It is easy to see that optimization problem (7) is 
equivalent to the following problem:  

 
ΦΩ∈Φ∞ →Φ=Φ min),()( 2sHI , (15) 

where admissible set )(1 Ω=Ω −
ΦΦ L  includes rational 

fractions Φ  with Hurwitz denominators. The 
function ))(,(),( Φ=Φ ΦLsHsH w  in accordance 
with (5) satisfies the identity 
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( ) .

),(
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22

ψψψψξψξ
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++≡Φω
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SFFkFFjH
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ddududd  (16) 

Lemma 2: The identity (16) can be converted to the 
following form: 

 32121 ))(()()( TTTTTHH +Φ−Φ−≡ΦΦ , (17) 

where the rational fraction )(2 sT  with Hurwitz 
denominator and functions RLsT ∈)(1 , RLsT ∈)(3  
are determined by the formulae   

( ) ( ) ( )
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QDGT
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ψ
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Here the Hurwitz polynomial )(sG  and the fraction 
)()()( sTsNsD ≡  with Hurwitz polynomials N , 

T  are the results of the following factorizations: 

 GGBBAAk ≡+2 ,  DDPPSAAS d ≡+ψ . (20) 

Proof: A possibility of the mentioned representation 
directly follows from the substitution of the 
formulae (16), (18) – (20) to the right part of (17). ■ 
 
 
4 Spectral Approach to the Synthesis  
Let us now consider the problems (7) and (15), 
which also can be transformed to an equivalent 
form. Really, in accordance with Lemma 2 we have 

 
[ ] ,min)(sup

)(sup),()(

3
2

21
),0[

2

),0[

2

ΦΩ∈Φω=
∞∈ω

∞∈ω
∞
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=ω=Φ=Φ

TTT
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js

 (21) 

where the rational fraction )(2 sT  with Hurwitz 
denominator and functions RLsT ∈)(1 , RLsT ∈)(3  
are determined by the formulas (18) and (19). 

Using a technique proposed in [2], let instead the 
problem (21) consider the choice of the function 
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Φ
∞Ω∈Φ  such that the following relation holds: 

 ,,)( 22 ε+=ρρ≤Φ aJI  (22) 

where ε  is nonnegative real value, 

 )(max 3),0[
ω=

∞∈ω
TJa . (23) 

It is evident that the minimum of the functional 
)(ΦI  in (21) is equal to the smallest value 2

0ρ  of a 
number 2ρ  for which a solution of the problem (22) 
exists: 

 
{

}.),0[:

::min)(min)(

2
3

2
21

2
0

ρ≤+Φ−∞∈ω∀

Ω∈Φ∃ρ=Φ=Φ Φ
Ω∈Φ Φ

TTT

II
 (24) 

To provide further discussion let address to the 
well known Nevanlinna-Pick interpolation problem 
(NP-problem) [2], [3]. The matter of this problem is 
to search a function ∞∈ RHsH )(  such that the 
following conditions hold:  

 1≤∞H , iiH ζ=ξ )( , 0Re >ξi , µ= ,1i ,  

where iξ  and iζ  are given complex numbers. 

Naturally, it is necessary that 1≤ζ i , µ= ,1i , 
however this is not sufficient for the existence of a 
solution. The famous Pick's theorem [2] presents the 
necessary and sufficient conditions of NP-problem 
solvability.  

On the base of the mentioned theorem, we arrive 
at the following statement.  
Theorem 2: The problem (24) is solvable if and 
only if the value ρ  is such that Hermitian matrix 

{ })()( 22 ρ=ρ ijh lL  is non-negative, where 
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Here ),1( nigi =  and ))(deg(),1( sNppii −==ν   
are the roots of polynomials )( sG −  and )( sN −  
correspondently (recall that for simplicity we 
assume that the complex points ,,,, 21 nggg   

pννν ,,, 21   are distinct), 

 ;,1, ni
TAR

TTPPSBd
igs

d
i =−=

=ψρ

 (25) 

 .,1, pi
TR

TTBANN
c

is

dd
i ==

ν=ψρ

ψψ  (26) 

Proof: In accordance with (22) it is necessary and 
sufficient that there exists a function ΦΩ∈Φ  such 
that for any ),0[ ∞∈ω  the following relationship 
holds: 

 )()()()( 3
22

21 ω−ρ≤ωΦω−ω TjjTjT . (27) 

Because of aJ≥ρ2 , it follows from (22) and 

(23) that ),0[0)(3
2 ∞∈ω∀>ω−ρ T , moreover there 

exists a rational fraction )(~ sL  with Hurwitz 
numerator and denominator satisfying the identity 

 )()(
~

)(
~

3
2 sTsLsL −ρ≡− . (28) 

Really, it is easy to transform the expression (19) 
taking into account formulae (2) and (20) that give 
us the function )(3 sT  of the form 

 
( )

dd

dddd

TTNNGG
TTBBNNNNkPPNN

T ψψ+
=

2

3 . (29) 

This transformation allows presenting a function 
)(~ sL  satisfying the identity (28) as follows 

 [ ])()()()()(
~

sTsNsGsRsL dρ= , (30) 

where the polynomial )(sRρ  is a Hurwitz result of 
the factorization 

 
( )dddd

dd

TTBBNNNNkPPNN

TTNNGGRR

ψψ

ρρ

+−

−ρ≡
2

2

. (31) 

Next, let introduce an inverse function 

 )()()()()(
~

)( 1 sRsTsNsGsLsL d ρ
− == , (32) 

and on the base of (28) convert the problem (27) to 
the form   

 [ ] ),0[1)()()()( 2
21 ∞∈ω∀≤ωωΦω−ω jLjjTjT ,  

that is equivalent to the problem 

 
[ ]

),,0[

,1
)(
)()()()()(

2

21

∞∈ω∀

≤
ω
ω−

ωωΦω−ω
jN
jNjLjjTjT

 (33) 

because of  1)()( 2 ≡ωω− jNjN . 
Now let us introduce a rational fraction  
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It is a matter of simple calculation to verify that the 
following equalities hold: 

 ,,1,)(;,1,)( picZnidgZ iiii ==ν==  (35)  

where the complex values id  and ic  are determined 
by the formulas (25) and (26).  

As a result, the initial problem (27) can be 
treated as the following NP-problem 

 1)( ≤∞sZ , ii dgZ =)( , ni ,1= ; (36) 

 ii cZ =ν )( , pi ,1=   

with respect to a function )(sZ . However, in 
accordance with Pick's theorem, the NP-problem is 
solvable if and only if the Pick matrix 

{ })()( ρ=ρ ijh lL  is non-negative that proves this 
theorem. ■ 
Theorem 3: The mentioned smallest value 2

0ρ , for 
which a solution of the problem (24) exists, belongs 
to the segment ],[ *ε+aa JJ , where 

 2
21

* min
∞Ω∈Φ

Φ−=ε
Φ

TT . (37) 

Proof: Let us address to the problem (21) and 
consider the evident relationships 

 
[ ]

),(maxsup

)(sup)(

3
),0[

2
21

),0[

3
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∞∈ω
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 (38) 

which is valid for any function-parameter ΦΩ∈Φ . 
In particular, we can accept *Φ=Φ , where 

 2
21

* minarg
∞Ω∈Φ

Φ−=Φ
Φ

TT , (39) 

and from (38) we obtain 

 [ ]≤ω+Φ−=Φ
ω=

∞∈ω
)(sup)( 3

2*
21

),0[

* TTTI
js

 (40)  

 ,sup
2*

21
),0[

ajs
JTT +Φ−≤

ω=
∞∈ω

   

taking into account (23). Because of the function 
*Φ  is not a solution of the problem (21), we have 

)()( *
0

2
0 Φ≤Φ=ρ II , i.e.  

 *2
0 ε+≤ρ aJ  (41) 

in accordance with (40) and (37). ■ 
Corollary 1: The value *2 ε+=ρ am J  is an upper 
estimate of the minimal value 0∞J  of the functional 

)(WJ∞  for initial optimization problem (5). 
Proof: This claim directly follows from Theorem 1 
and Theorem 3. ■ 
Remark 1: One can easy see that the optimization 
issue (39), on which the proof of Theorem 3 is 
based on, can be treated as well known Nehari 
problem [1].  

 This problem has effective solution presented by 
numerical algorithm in [2]. To use this algorithm 
directly, it is convenient to make the following 
transformation 

 ( )
2

21
2

21
∞

∞
Φ−≡Φ−

N

NTTTT   

similar to the proof of Theorem 2 that yields to the 
Nehari problem 

 
ΦΩ∈Φ∞

→Φ′−′=Φ min)( 2
21

* TTI , (42) 

where NNTT 11 =′ , NNTT 22 =′ . The initial data 
for the mentioned algorithm of its solution consist of 
all the zeros of the function 2T ′  which are ig , 

),1( ni =  and iν , ),1( pi = . Besides, these data also 
include the following values:  

 ;,1,)(1
* ni

NGAT

TPPNNB
gTd

igsd

dd
ii =−=′=

=

ψ  (43) 

 .,1,)(1
* pi

NGT

TBANN
Tc

is

d
ii ==ν′=

ν=ψ

ψψ  (44) 

Note that all the values (43) and (44) do not depend 
on the auxiliary polynomials )(sα , )(sβ , and )(sQ . 
Remark 2: If the estimate 2

mρ  seems to be too 
pessimistic, one can find the more realistic 
estimate 2

0ρ , using bisectional algorithm for the 
segment ],[ 2

maJ ρ  with checkout of the matrix 
{ })()( 22 ρ=ρ ijh lL  non-negative definiteness in 

accordance with Theorem 2.   
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5 Optimal Transfer Function 
Note that the Theorem 2 gives not only the 
conditions of solvability, but also specifies direct 
way to find an optimal transfer function )(0 sW . 

Remark that if there exists a solution of the NP-
problem for given value ρ  such that 1)( =∞sZ , 
then this solution has the form  

 ),(/),(),()( ρρ−≡ρ= smsmsZsZ , (45) 

where ),( ρsm  is Hurwitz polynomial [2]. 
Theorem 4: Let we know the minimal value 0ρ=ρ  
for which the problem (36) has a unique solution 

),()(,)()(),()( 000 ρ≡−=ρ= smsmsmsmsZsZ  (46) 

with the polynomial )(0 sRR ρρ =  (31) such that 

( ) .2

2
000

dddd

dd

TTBBNNNNkPPNN

TTNNGGRR

ψψ

ρρ

+−

−ρ≡
  

Then there exists a unique optimal controller (3) 
with respect to the ∞H -problem (7), having the 
transfer function 

[ ]
[ ] GsmsAsNksMsB

GsmsBsNsMsAsW
)()()()()(

)()()()()()(
0

2
0

0
−+

−−
= ,  (47) 

where an auxiliary polynomial )(sM  is determined 
as follows 

[
] .)()()()()()(

)()()()()()(

00

0

sNsTsRsmsTsT
sBsAsNsNsmsM

dd −−−−×

×−−−=

ψρ

ψψ  (48) 

Here divisions to the polynomials )( sG −  and 
)( sN −  are realized totally (without a reminder).  

Proof: First, let substitute the known value 0ρ , 
polynomial )(0 sRρ , and function )(0 sZ  to the 
identity (34) that yields the following equation with 
respect to the variable Φ : 

 

.

)()(

0

2

0

ψρ

ψψ






Φ−






+

β−α
≡

TR

N

Q

NGG

N

TTBANN

Q

NBAksZ dd

 (49) 

A solution of this equation gives us an expression 
for the optimal parameter )(0 sΦ=Φ : 

 ( +β−α=Φ BAk
GG

2
0

1   

 .00




−
+ ψρψψ Q

NN

TRZTTBANN dd  (50) 

 
Observe that using formulae (26) it is easy to 

verify that the expression ψρψψ − TRZTTBANN dd 00  
is equal to zero in the complex 
points ),1( pis i =ν= . This implies that 

 
Nm

M

NN

TRZTTBANN dd ≡
− ψρψψ 00 ,  

where M  is polynomial given by the formula (48) 
because of a division to )( sN −  here is realized 
totally, and we obtain 

 .1 2
0 








+β−α=Φ Q

Nm

MBAk
GG

 (51) 

Besides, one can check that the whole expression 
in the brackets for the parameter 0Φ  in (50) and 
(51) is equal to zero in the complex 
points ),1( nigs i == : this follows from the 
formulae (25). Therefore, we can conclude that the 
rational fraction )(0 sΦ  has Hurwitz 
denominator )()()( smsGsN . Because of we have 

∞<ρ=Φ∞
2
00 )(I , it means that ΦΩ∈Φ0 , and we 

can find a correspondent optimal transfer function 
with the help of the formulae (12), (51): 

 ( )
( ) GNmAkBMQGNm

GNmBAMQGNm

B

AsW
/

/)(
2

0

0
0

+

−
=

β+Φ

α−Φ
=   

i.e. the equality (47) holds. Observe that the 
function 0W  does not depend on the auxiliary 
polynomials α  and β , i.e. the result is determined 
by only the initial data. ■  

Remark 3: Despite the fact that the formula (47) 
seems to be not very complicated, detailed analysis 
shows certain disadvantage of the obtained optimal 
solution, because an order of the controller is greater 
than for the solution of standard ∞H -problem (5).  

Nevertheless, proposed controller with the 
optimal transfer function (47) could be also useful 
for practical applications if there is any reason for 
direct using of the optimization problem (7) instead  
of the standard one (5). To overcome its drawback, 
it is not difficult to compute a reduced order 
approximation of the ∞H -optimal controller, 
excluding close roots of numerator and denominator 
for the transfer function (47). 

Specially note that the presentation (47) is very 
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convenient for various investigations of the optimal 
solution features such as a structure of the transfer 
function, its limit behaviour with respect to 0→k  
and ∞→k , robust peculiarities of the controller, 
situations with non-fractional representation of the 
disturbances spectrums, transport delays, etc. 

Let us summarise the above discussion 
introducing the following computational algorithm 
for the solution of the ∞H -optimal synthesis 
problem (7).  
Algorithm 1:  

1. Execute the factorizations (20) and construct 
the polynomial )()()( sTsTsT d ψ= . 

2. Construct the function )(3 ωT (29) and find its 
maximum value )(max 3),0[

ω=
∞∈ω

TJa . 

3. Decide Nehari problem 2
21

* min
∞Ω∈Φ

Φ′−′=ε
Φ

TT  

with the help of algorithm (based on two Lyapunov 
equations), presented in [1], [2], using the initial 
data (43), (44). Determine the upper estimate 

*2 ε+=ρ am J for the minimal value 2
0ρ  of the 

functional )(WJ .  

4. Consider the segment ],[ 22
maJ ρ∈ρ  and using 

bisectional algorithm determine the minimal 
value 2

0
2 ρ=ρ  guarantying non-negative 

definiteness of the matrix { })()( 22 ρ=ρ ijh lL  with 
initial data (25), (26). Here )(sRρ  is a Hurwitz 
result of the factorization (31). 

5. If the problem (7) is used only as an auxiliary 
instrument for the solution of the standard problem 
(5), accept the values aJ  and 2

00 ρ=J  as the lower 
and upper estimates correspondently for the 
minimum value 0∞J  of the functional )(WJ∞ . Then 
use any standard algorithm to solve the problem (5) 
with accepted estimates. Recall that it is possible to 
employ more pessimistic upper estimate 2

mρ : this 
allows omitting step 4. 

6. Execute factorization (31) accepting 2
0

2 ρ=ρ , 
find the values (25), (26) and solve NP-problem   

 1≤∞H , iiH ζ=ξ )( , pni += ,1 ,   

with respect to the Hurwitz polynomial )(sm : 
)()()( 00 smsmsH −≡ . This action can be executed 

with the help of the same algorithm as for step 3. 
7. Construct the auxiliary polynomial )(sM  (48) 

and obtain the numerator 

 [ ] )()()()()()()( 010 sGsmsBsNsMsAsW −−−=   

and the denominator 

 [ ] )()()()()()()( 0
2

20 sGsmsAsNksMsBsW −−+=  

of the optimal transfer function. 
 
 
6 Irregular Situation 
Remark that spectral form (47) plays a distinct role 
for the particular case of ∞H -optimization problem 
with no measurement noise in the plant model (1). 
For this non-standard case [9] we have 0)( ≡ψ t , i.e. 

0)( ≡ψ sN , 1)( ≡ψ sT . 
From the practical point of view, this irregular 

situation is not senseless. However, the standard 
problem (5) is directly unsolvable by «2-Riccati» 
approach for this case due to the degeneration 
essence of the statement. Of course, there exist 
many ways to overcome this difficulty (one of them 
is realized in MATLAB package), but these ways 
actually give us only the minimizing sequences of 
regular controllers with no accurate low bound. 

As for the alternative variant (7), one can easy 
see that the mentioned situation is not irregular here, 
and can be treated as the usual particular case with 
the initial data 0≡ψN , 1≡ψT . 

Let us address to this situation separately. One 
can easy make correspondent modification in the 
statement of the problem (7), changing (6) by the 
following identity: 

 )()()(),( 2222 ω



 ω+ω≡ω ξ ddudw SjFkjFWjH . 

It is a matter of simple calculation to make 
correspondent transformation of all the formulas 
presented above. As a result, we arrive at the 
following algorithm of synthesis.  
Algorithm 2:  

1. Execute the following factorizations: 

 
),()()()(

),()()()()()(

11

2

sPsPsPsP
sGsGsBsBsAsAk

−≡−
−≡−+−   

where G  and 1P  are Hurwitz polynomials. 
2. Construct the function 

  22
3 )()()()()( ωωωω=ω jGjTjPjNkT dd  

and find its maximum value )(max 3),0[
ω=

∞∈ω
TJa . 

3. Decide Nehari problem 2
21

* min
∞Ω∈Φ

Φ−=ε
Φ

TT , 

where dd QTPNGT 12 = , using initial data 
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 niGATPNNBgTd
igsdddii ,1,)( 11

* =−==
=

.  

Determine the upper estimate *2 ε+=ρ am J for 
the minimal value 2

0ρ  of the functional )(WJ .  

4. Consider the segment ],[ 22
maJ ρ∈ρ  and using 

bisectional algorithm determine the minimal 
value 2

0
2 ρ=ρ  providing non-negative definiteness 

of the matrix { })()( 22 ρ=ρ ijh lL , where 

 ;,1,),/()1( njiggddl jijiij =+−=  

 niARPNNBd
igsddi ,1,1 =−=

=ρ . (52) 

Here )(sRρ  is a Hurwitz result of the factorization 

 dddd NNkTTGGRR 22 −ρ≡ρρ . (53) 

5. Execute factorization (53) accepting 2
0

2 ρ=ρ , 
find complex values (52) and solve NP-problem   

 1≤∞H , ii dgH =)( , ni ,1= ,   

with respect to the Hurwitz polynomial )(sm : 
)()()( 00 smsmsH −≡ .  

6. Construct the polynomials 

 ( ) GPNmBRmAsW d 100010 )( += ρ ,  

 ( ) GPNmAkRmBsW d 10
2

0020 )( −= ρ  

and form the transfer function 20100 WWW =  of the 
optimal controller (3). 

The alternative numerical algorithm of irregular 
synthesis is also presented in [10]. 
 
 
7 Synthesis Examples 
Example 1: Let us consider a control plant (1) with 
given matrices 

( ),400

,
0
0
2

,
250.0
0

00.2
,

15.1500.00
290.00250.0
200.000

=
















=















−
=

















−
=

c

pbA
 

and the value 1=k  of a weight parameter. As for 
external disturbances, let suppose that 1≡≡ ψSSd . 

Here we have the initial polynomials 

0250.0145.015.1)( 23 −−+= ssssA ; 1)( 2 −= ssB ; 

 1)( =sP ; 1)()( == ψ sTsTd ;  1)()( == ψ sNsNd . 
Consequently obtain the following polynomials 

in accordance with Algorithm 1: 

 179.286.2)( 23 +−+−=− ssssG  

with the roots jg 403.0770.02,1 ±= , 32.13 =g ; 

 124.247.2)( 23 +−+−=− ssssN ;  

with the roots j655.0552.02,1 ±=ν , 36.13 =ν . 
Then we determine a lower estimate for the 
value 2

0ρ  00.2)(max 3),0[
=ω=

∞∈ω
TJa , and upper bound 

78.262 =ρm . Executing step 4 of the algorithm 1, 
obtain 778.252

0 =ρ . Correspondently we have the 
polynomial 

 
88.48.246.57

0.770.610.2707.5)(
2

3456
0

+++

++++=ρ

ss

sssssR
 

and the following initial data for NP-problem (36): 

32.11 =g , jg 403.0770.03,2 ±= ; 36.11 =ν ,  

j654.0552.03,2 ±=ν ; 3
1 10285.0 −⋅−=d , 

3
3,2 10)22.115.4( −⋅±−= jd ; 

3
1 10272.0 −⋅−=c , 3

3,2 10)4.1040.5( −⋅±= jc . 

As a solution of this problem obtain polynomial 

 
.739.094.25

61.426.2458.0)(
2

345
0

−−−

−−−−=

ss

ssssm
 

Then we can calculate an auxiliary polynomial 

58.31.124.1324.48.23

1.2041.116.633.2)(
234

5678

+++−−

−−−+=

ssss

sssssM  

and, at last, to form a transfer function 
∞∞∞ = 210 WWW   of ∞H -optimal controller, where 

,828.073.78.296.65

4.911.830.480.1633.2)(
23

45678
1

++++

+++++=∞

sss

ssssssW
  

.57.30.222.62104

1102.758.3050.6458.0)(
23

45678
2

++++

+++++=∞

sss

ssssssW
  

Controller ypWu )(0∞=  provides the value 
778.25)( 2

000 =ρ== ∞WJJ  of the functional )(WJ . 
Remark that we can reduce an order of the optimal 
controller using MATLAB function balred :  

 
96.56.1463.9

38.175.77.1108.5)( 23

23

*
+++

+++
=∞ sss

ssssW .   

Controller (3) with obtained transfer function gives 
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practically the same value of performance index 
779.25)()( 0* =≈ ∞∞ WJWJ . 

As for the solution of the standard problem (5), 
with the help of MATLAB function hinfsyn obtain 
the optimal transfer function 

 
3650416472
84636302380)( 23

2

+++
++

=∞ sss
sssWh ,  

providing minimal value 716.250 =∞J  of the 
functional )(WJ∞ . Remark that the average running 
time of synthesis for the default initial segment 

]9.88,0[0 ∈∞J  is equal to 0.08 s. By using the 
estimates obtained above, we can shrink initial 
segment, for example ],95.0[ 000 JJJ ∈∞ , that 
reduces the running time more then twice. 
Example 2: Consider the same control plant (1) as 
for the proceeding example and address to the 
irregular problem (7) with no noise. Using 
Algorithm 2, we consequently obtain 9994.0=aJ , 

288.22 =ρm , 669.12
0 =ρ , 

 .
593.066.249.446.3

764.088.306.855.861.4)( 234

2345

0
++++

+++++
=∞ ssss

ssssssW  

 These data can be used for standard synthesis (5) to 
reduce a running time of calculations. 
 
 
8 Conclusion 
The main goal of the paper is to propose and to 
discuss a special spectral approach in frequency 
domain to partial case of ∞H -optimization problem 
for LTI controlled plants. Proposed approach is 
based on a polynomial representation of initial and 
temporary data and on a special parameterization of 
stabilizing controllers set. Instead of the Riccati 
equation (or linear matrix inequalities) solutions, 
here polynomial factorizations are used, that 
substantially simplifies algorithms of synthesis. 

Proposed spectral approach is implemented to 
the ∞H -problem statement, which is some differed 
from the commonly used standard variant. The 
mentioned difference allows using the alternative 
problem and the algorithm of its solving as an 
auxiliary instrument with respect to the standard 
situation. First, this instrument gives the initial 
estimates for the standard ∞H -norm minimum that 
can essentially reduce the running time of synthesis.  

Second, the spectral approach is quite suitable to 
solve the irregular problem with no measurement 
noise. This situation is directly unsolvable by «2-
Riccati» method, however the spectral approach 

allows to overcome this difficulty additionally 
reducing the running time of synthesis. 

Third, the spectral representation is convenient 
for various investigations of the system features. 

Some disadvantage of proposed approach is an 
evident structure imperfection that can be overcome 
by reducing an order of the controller. 
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