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Abstract: The synthesis of controller algorithm for reversible electromechanical scanner of the telescope 
scanning axis is discussed. Digital control system is built without intermediate stage of synthesis of analog 
control law. The modified procedure for the synthesis of discrete optimal control law is introduced. 
Elasticity influence on static and dynamic characteristics of electromechanical scanner of the telescope 
scanning axis is discussed. It is shown, that the controller algorithm, which provides specified scanner 
behavior, could be synthesized in spite of elasticity of mechanical part of scanner. 

The article provides an overview of modern optical position sensors, which are used in precision drive.  
The results obtained are recommended for use in high-precision electric drives of precision observations 

complexes. The article may be helpful for developers of precision electric drives of telescopes and 
electromechanical scanners. 
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1 Introduction 

Nowadays terrestrial optical-electronic tools 
(according to tradition they are often called optical 
telescopes) play a major role in the detection and 
monitoring of space objects, especially at large 
distances. Undoubted and unique advantages of 
optical telescopes are the following: 
• the ability to detect distant objects by the sun or 

laser illumination in the night or twilight sky, 
• the ability to detect objects in the infrared 

wavelength range of their own thermal 
radiation, 

• high precision determination of the angular 
coordinates of objects, 

• possibility of obtaining optical images of space 
objects and high-precision photometric and 
spectrophotometric measurements of their 
optical brightness. 

Telescope works at infrared wavelength range 
and is designed to scan space object. It is set to the 
mount to control the angular position of the optical 
axis in the space. As usually, a mount has three axes 
of rotation: azimuth, elevation and scanning. 
Scanning axis is often made in the form of 
electromechanical scanner. Development of these 
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mounts and control systems for near space 
observation is one of the most difficult problems of 
modern precision instrument making. The fact is 
that the mount and electromechanical control 
systems, solving the problem of scanning an object 
observed, should provide unique high quality 
targeting. All the elements of the design concept and 
its mount play an important role for such problems. 
Usually, mount is represented as a two-mass 
mechanism in the process of modeling and design of 
electric drives. The angular resonance frequency of 
the mechanism caused by the torsional deformation 
determines frequency bandwidth of the control 
system, and as a result, its performance [1-5]. 

The synthesis of the control algorithms 
usually neglects elasticity links between the motor 
and the load in scanning electromechanical devices, 
when precision and speed of scanning is not 
required. If electromechanical scanner is a part of 
telescope axis, it is necessary to get high accuracy 
and good dynamics of scanning process. Disregard 
the elasticity links may be the cause of inability to 
provide the required system characteristics [1] - [3]. 

It is necessary to get a mathematical model of 
the electromechanical scanner with a magnetic 
spring as an actuator, taking into account the elastic 
connection between the motor and load. 
 
2 Position sensors 

Modern optical position sensors that are used 
in precision electric drives have very high 
resolution. If the number of bits of position sensor is 
more than 25 bits, then minimum measured value is 
the angle of  

525 1007.1)2/(360 −⋅=° degrees, 
that is 0.039 arcseconds. This high precision allows 
the monitoring of space objects, such as satellites 
and space garbage, moving at a very low rate 
relative to the Earth. 

Optical position sensors can be divided into 
two large groups – relative sensors and absolute 
sensors. Relative sensors have one zero reference 
mark against which to the current position of the 
axis of the telescope or electromechanical scanner is 
determined. Before you start it is necessary to go 
through the zero reference mark, otherwise the data 
will be unreliable and erroneous. This is an 
important drawback of this type of sensors. The 
advantage is the widely spread communication 
interface, which is implemented in a variety of 
microcontroller for motor control. [7]-[9] 

Absolute encoders have a more complex 
scheme, as each mark is unique and has its own 
identification code. There are also quasi-absolute 

encoders that have few reference marks. To obtain 
reliable data from such a sensor, you must first pass 
through the closest to the current position mark. 
Absolute encoders have a more complex 
communication interface, if compare it with the 
relative sensors interface. Therefore it is often 
necessary to use an intermediate matching device 
between the sensor and microcontroller. [10], [11] 

Current level of development of optical 
sensors ensures high precision characteristics of 
precision electromechanical scanners and 
telescopes. 
 
3 Mathematical model  

As it is known, the torque of the DC motor 
with a limited angle of rotation is equal to 

1αKiKM αi −=     (1) 
In (1) i is anchor current, α1 is rotor angle (rotation 
angle of first mass), Ki is stiffness of speed-load 
curve or current sensitivity, Kα is stiffness of speed-
load curve or current sensitivity or stiffness of 
magnetic spring. Opposing torque for first mass is 

1
1

11 cuop Mc
dt

dJM ++= δω    (2) 

In (2)  J1 is reduced moment of inertia of the first 
mass, ω1 is rotor velocity, cu is coefficient of 
flexibility between rotor and load, α1 - α2 = δ is twist 
angle, Mc1 is external resistance moment, e.g. 
friction torque. If assemble (1) and (2), one can get 
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The differential equation for the twist angle is 

21 ωωδ
−=

dt
d ,     (4) 

where ω2 is angular velocity. 
The equation of motor wingding is 

u
LL

Ki
L
R

dt
di e 1

+−−= ω    (5) 

In (5) R is winding resistance, L is leakage 
inductance of the control winding, Ke is coefficient 
of back EMF [4] - [6]. 

The moving moment of force for second mass 
is twist moment, and opposing torque is moment of 
inertial forces and external load torque, from which 
equation of motion of the second mass could be 
obtained 

2
22

2 1
c

u M
JJ

c
dt

d
−= δ

ω     (6) 

In (6) J2 is reduced moment of inertia of the second 
mass. 
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Equations (3) - (6) give the standard state-
space model of electromechanical scanner with 
elasticity: 

xCy
MBuBxAx

r
cvrrr

=
++=

     (7) 

In some systems position sensor could be 
placed on the first mass, or on the second mass. 
Consider these two cases separately. When position 
sensor is on the first mass, then state vector if model 
(7) is equal to x = [i  ω1  δ  ω2  α1], and state-space 
matrices are 
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When position sensor is on the second mass, 
then state vector if model (7) is equal to 
x = [i  ω1  δ  ω2  α2], matrix Ar is changed 
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matrices Br, Bvr and vector Mc stay same.  
If position sensor is placed on the first mass, 

then transfer function 
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If position sensor is placed on the second 

mass, then transfer function 
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The fundamental difference between these 
two cases is that if position sensor is installed on the 
first mass, then mathematical model of the control 
object contains zeros. The presence of zeros of the 
dynamical system can be the cause of the 
degeneration of the system. To assess degeneration 
degree of the system it is proposed to use the 
completeness matrix of the system. It is equal to the 
product of the matrices of observability and 
controllability: 

ctrbobsvful PPP = . 
This matrix is positive and semi determined. 

The closer the value of determinant of completeness 
matrix to zero, the closer the dynamical system to 
degeneration. Control of objects that are close to 
degenerate, causing some problems. In view of the 
foregoing in the studied case, you must give 
preference to installing the position sensor on the 
second mass. Calculations show that when sensor is 
installed on the first mass, than the determinant of 
matrix of completeness is always less than the 
determinant of the same matrix, when the sensor is 
installed on the second mass. 

Anchor current and angle of rotation are 
measured independently from position sensor 
placement, therefore, measurement vector is 
y = [i  αp]T, 21∨=p . Measurement matrix in both 
cases is  





= 10000

00001
rC . 

For this reason, the order of controller 
synthesis does not depend on the location of the the 
position sensor. 

Focusing on digital implementation of the 
controller, it is necessary to make the transition 
from a continuous state model (7) to the discrete 
model of the object 

mdm

mdmdm

xCy
uDxAx

=
+=+1     (8) 

In (8) TrA
d eA = , τττ dueB

T TrA
d )(

0

)(
∫= − , 

rd CC = . T is controller discretization interval. 
This transition can be made according to the 

following program of MATLAB: 
Sc = ss(Ar, Br, Cr, 0); 
Sd = c2d(Sc, T);                                                                                             
Ad = Sd.a; 
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Bd = Sd.b; 
Cd = Sd.c; 
Next is the synthesis of the optimal discrete 

controller that minimizes the functional: 

∑ +=
∞

=0
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T
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T
m uRuQxxJ . 

Discrete optimal control for a quadratic 
criterion provides the location of the eigenvalues of 
the closed-loop system within a circle of unit radius 
centered at the origin for any choice of positive 
definite matrices of penalty for state and control. In 
addition, optimal control provides large enough 
values of the radius of stability margins, which 
ensures smooth transients. 

However, it is well known that there are no 
rules of informed choice matrices fine. It is often 
driven by brute force. Propose the following method 
to overcome this difficulty. Suppose we want to get 
transients of continuous object (7), which are 
defined by the degree of stability η. Then the roots 
of the characteristic equation of a discrete system 
consisting of a discrete controller and the object (7), 
must lie within a circle centered at the origin of 
radius Ter η−= . 

In order to satisfy this requirement for a 
discrete object (8) the auxiliary matrices are formed: 

r
A

A dg
n = , 

r
B

B dg
n = .    (9) 

We choose some penalty matrix of the 
quadratic functional of appropriate dimension, for 
example Q = 0, R1 = 1. Then the matrix of feedback 
obtained from the solution of the discrete Riccati 
equation,  

K = dlqr(An, Bn, Qs, Rs); 
ensures the location of the eigenvalues of the matrix 
(10) within a circle of unit radius. 

KBAF nnn −=     (10) 
If expression (9) is substituted in (10), the 

following expression is obtained:  

F
r

KBA
r

K
r

B
r

A
F dgdg

dgdg
n

1)(1
=−=−= . 

And so, F = rFn. 
It is known that if matrices are associated by 

functional relation, the same is ratio of their 
eigenvalues. Hence the eigenvalues of F lie inside 
the circle of radius r. As a result of given admission, 
problem of choosing penalty matrix of the quadratic 
functional is replaced by the problem of choosing a 
number η, which has clear physical meaning and 

determines the system performance, 
nt
3

=η , where 

tn is desired step response time. 

Found feedback matrix is used in the control 
law, 

mm Kxu −= ,     (11) 
which provides a specified time of the transition 
process in the control of the object (7). 

This control (11) cannot be realized in the 
pure form for the reason that only two of five state 
variables are measured. Missing information could 
be obtained using a reduced discrete observer of the 
third order. In this case, the (11) takes the form (12). 

mmm yNwNu 12 +=     (12) 
In (12) mnm xCw =  is not measured 

coordinates of the state of control object. Control 
laws (11) and (12) are equivalent in case 
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Unmeasured coordinates are estimated by 
controller by solving the real-time difference 
equation  
wm+1 = Anwm + Bnum + Rnym.   (14) 

In (14) An is arbitrary Hurwitz matrix, e.g. 
matrix An = diag([0.1r  0.2r  0.3r]), dnn BCB =  
matrix Rn is chosen to provide controllability of pair 
(An, Rn), e.g., 



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It is also required matrix to satisfy the 
Sylvester equation: 

dnnndn CRCAAC =− . 
The sequence of synthesis of controller 

algorithm based on the above will be as follows:  
1. Inputs: parameters of control object, the 

transition process time in the projected system, 
controller discretization interval.  

2. Achieving mathematical model of the object 
(7).  

3. The transition to the discrete model (8).  
4. Calculation of the auxiliary matrices (9).  
5. Computation of feedback matrix K by solving 

the Riccati equation. 
6. Selection of observer matrices An, Bn. 
7. Calculation of the matrix Cn by solving 

Sylvester equation ),,( dndnn CRAAlyapC −= .  
8. Calculation of the input observer matrix by 

control dnn BCB = .  
9. Calculation of the matrix N1, N2 according to 

(13). 
Finally, the algorithm of the controller, after 

substituting (12) into (14), will have the form 
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yNwNu

yRNBwNBAw
12

121 )()(
+=

+++=+  

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Valentin Drozdov, Valentin Tomasov, Sergey Tushev

E-ISSN: 2224-2856 626 Volume 9, 2014



4 Modeling of system 
In accordance with the above procedure of 

synthesis calculations of the algorithm parameters of 
the controller to a specific object with the location 
of the angle sensor as a first mass and a second mass 
were performed. This system consists of a digital 
drive signal generator, a discrete controller (9) and 
continuous object (7) in the case of the position 
sensor is located on the first mass [12] - [14]. 

 
Figure 1. Position error of the second mass. Sensor 
is on the first mass. 

 
Figure 1 shows a graph of position error of the 

second mass (actuator) when position sensor is 
installed on the first mass. The graph shows that the 
position error of the second mass in the work area 
does not exceed 0.0068 that is 1.2% of the 
maximum of position reference signal. There are 
oscillations with the amplitude of the second mass 
0.00038 and period T, equal to the sampling period 
of the controller. 

 
Figure 2. Speed error of the second mass. Sensor is 
on the first mass. 

 
Figure 2 shows a graph of the speed error of 

the second mass (actuator) when position sensor is 
installed on the first mass. The graph shows that 
after the transient process is finished, speed error in 
the work area does not exceed 0.01 8/sec, which is 
1% of the speed reference in the work area. It is 
clear from Figure 2, that process of is very long and 
speeding up of it can’t be implemented due to 
saturation of the engine control unit. 

When position sensor is installed on the 
second mass the higher level of quality of scanning 
system could be achieved. As an example, Fig. 3 
shows a graph of the speed error of the second mass, 

when position sensor is installed on the second 
mass.  

 
Figure 3. Speed error of the second mass. Sensor is 
on the second mass. 

 
As can be seen from the graph, the transient 

process is significantly accelerated in this case [15], 
[16]. 
 
5 Conclusion 

It could be said, that elasticity links are not 
critical for electromechanical scanner. It is only 
necessary to carry out the synthesis of controller 
algorithm using an object model that takes into 
account the elastic link. 

The best results could be achieved when 
position sensor is installed on the second mass, 
directly on the actuator. This recommendation 
should always be used when design of 
electromechanical scanner allows the installation of 
the position sensor on the second mass. However, if 
it is not available, it is also possible to construct a 
working system, with only a few worse properties. 
The results obtained are recommended for use in 
high-precision electric drives of precision 
observations complexes. 
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