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Abstract: The stability of the trivial equilibrium position of certain classes of mechanical systems with time-va-
rying delay is studied. The considered systems are described by the second order differential equations in the
Lagrange form. It is assumed that velocity forces are linear, whereas for positional forces both linear case and
essentially nonlinear one are investigated. On the basis of the decomposition method, sufficient conditions of the
asymptotic stability of the equilibrium position are found. It is shown that the proposed approach can be used for
the stability analysis of hybrid mechanical systems with switched positional forces. Three examples are presented
to demonstrate the effectiveness of the obtained results.
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1 Introduction
The stability analysis of mechanical systems is a fun-
damental research problem [1, 11, 27, 33]. In numer-
ous applications, motions of mechanical systems are
described by multivariate differential equations of the
second order, and this essentially complicates the in-
vestigation of their dynamics [1, 17, 35].

A general and efficient approach to stability anal-
ysis for multidimensional systems (for large-scale or
complex systems) is the decomposition method [1,
35]. It has been effectively applied to wide classes of
mechanical systems, see, for example, [1, 2, 8, 14, 17,
21, 35, 38] and the references cited therein. Neverthe-
less, the problem of further development of decompo-
sition method remains an actual one. Its importance is
caused by the fact that stability conditions of complex
systems obtained by the application of the method de-
pend on the precision of estimation of a Lyapunov
function derivative with respect to the considered sys-
tem. Therefore, by means of appropriate choice of
aggregation form, one can define more exactly the do-
main of system parameter values guaranteeing the sta-
bility of a programmed motion.

Furthermore, it is worth mentioning that realistic
models of numerous mechanical systems must incor-
porate aftereffect phenomena in their dynamics [19,
20, 29, 30]. For this aim delay differential equations
can be used. In particular, feedback control mechani-
cal systems unavoidably involve delay because a cer-
tain time is needed for the system reaction on the input

signal.
It is well known that the presence of time delay

could cause instability, see [18, 29]. In some appli-
cations, it is not possible to assure that delay is suffi-
ciently small, and even known. Therefore, it is impor-
tant to obtain restrictions for delay values under which
stability for the considered systems can be guaranteed
[4, 10, 12, 18, 20, 26, 32]. This problem is especially
difficult for systems with time-varying delay [18].

In the present paper, the stability of the trivial
equilibrium position of certain classes of mechani-
cal systems with time-varying delay is studied. The
considered systems are described by the second order
differential equations in the Lagrange form. It is as-
sumed that velocity forces are linear, whereas for posi-
tional forces both linear case and essentially nonlinear
one are investigated. On the basis of the decomposi-
tion method, sufficient conditions of the asymptotic
stability of the equilibrium position are found. It is
shown that the proposed approach can be used for the
stability analysis of hybrid mechanical systems with
switched positional forces. Three examples are pre-
sented to demonstrate the effectiveness of the obtained
results.

2 Statement of the Problem
In the sequel,R denotes the field of real numbers, and
Rn then-dimensional Euclidean space.

Let motions of a mechanical system are described
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by the Lagrange equations of the form

d

dt

∂T

∂q̇
−∂T

∂q
= −hBq̇(t)

−C1q(t)− C2q(t− τ(t)).
(1)

Hereq(t) andq̇(t) aren-dimensional vectors of gener-
alized coordinates and generalized velocities respec-
tively; the kinetic energyT = T (q, q̇) of the system
is of the formT (q, q̇) = 1

2 q̇T A(q)q̇, whereA(q) is a
symmetric and continuously differentiable forq ∈ Rn

matrix; B, C1, C2 are constant matrices;h is a large
positive parameter; the delayτ(t) is a continuous non-
negative and bounded fort ∈ [0,+∞) function. We
assume that the matrixB is nonsingular.

Systems of the form (1) are widely used for the
modelling of gyroscopic systems [1, 38]. The term
−C2q(t − τ(t)) can be treated as a control vector,
whereas the presence of delayτ(t) might be caused by
a time lag between the moments of measuring of the
state and the application of the corresponding control
force.

Let τ0 = supt≥0 τ(t). We assume that ini-
tial functions for solutions of (1) belong to the space
C1([−τ0, 0], Rn) of continuously differentiable func-
tionsϕ(θ) : [−τ0, 0] → Rn with the norm

‖ϕ‖τ0 = max
θ∈[−τ0,0]

(‖ϕ(θ)‖+ ‖ϕ̇(θ)‖) ,

and‖ · ‖ denotes the Euclidean norm of a vector.
Moreover, assume that for the kinetic energy the

estimates

k1 ‖q̇‖2 ≤ T (q, q̇) ≤ k2 ‖q̇‖2 ,∥∥∥∥∂T (q, q̇)
∂q̇

∥∥∥∥ ≤ k3 ‖q̇‖ ,

∥∥∥∥∂T (q, q̇)
∂q

∥∥∥∥ ≤ k4 ‖q̇‖2

hold for all q, q̇ ∈ Rn, wherek1, k2, k3, k4 are posi-
tive constants.

System (1) admits the equilibrium positionq =
q̇ = 0. Let us investigate the stability of the equilib-
rium position.

Consider the auxiliary delay free subsystems

Bẏ(t) + (C1 + C2)y(t) = 0, (2)

A(0)ż(t) + Bz(t) = 0. (3)

We look for conditions under which the asymptotic
stability of subsystems (2) and (3) implies that for the
equilibrium positionq = q̇ = 0 of system (1).

In the case whenτ(t) ≡ 0, such conditions
have been obtained in [38]. In [22], results of [38]
were extended to system (1) with a constant delay.
However, it is worth mentioning that approaches pro-
posed in [38] and [22] are based on the Lyapunov

first method, and they are inapplicable to systems with
time-varying delay.

Another approach to stability analysis of system
(1) without delay has been proposed in [21]. It is
based on the Lyapunov direct method. Let us note
that, unlike the results of [38], this approach permits
to obtain stability conditions for some types of time-
varying systems. In particular, in [5], it was used for
the stability investigation of hybrid linear mechanical
systems with switched positional forces.

In this paper, we will show that the Kosov ap-
proach is applicable to system (1) with time-varying
delay.

Furthermore, we will study asymptotic stability
conditions for the essentially nonlinear system of the
form

d

dt

∂T

∂q̇
−∂T

∂q
= −Bq̇(t)

−Q1(q(t))−Q2(q(t− τ(t))),
(4)

where components of the vectorsQ1(q) andQ2(q) are
continuously differentiable forq ∈ Rn homogeneous
functions of the orderµ > 1, and the rest notation is
the same as in (1).

Finally, we shall consider systems of the forms
(1) and (4) with switched positional forces. Based on
the developed approaches, the conditions guarantee-
ing the asymptotic stability of the trivial equilibrium
position for an arbitrary admissible switching signal
will be obtained.

3 Decomposition of Systems with
Linear Positional Forces

Let the time-delay system (1) be given.

Theorem 1 Assume that the isolated subsystems(2)
and (3) are asymptotically stable. Then, for any con-
tinuous nonnegative and bounded fort ∈ [0,+∞)
delay τ(t), there exists a numberh0 > 0 such that
the equilibrium positionq = q̇ = 0 of system(1) is
asymptotically stable for allh ≥ h0.

Proof: According to the approach suggested in [21],
let us define new variables by the formulae

q̇ = z,
∂T (q, q̇)

∂q̇
+ hBq = hBy. (5)

With the aid of the Implicit Function Theorem, we ob-
tain that there exists a numberδ0 > 0 such that

q = y − 1
h

B−1A(0)z + Ψ(h, y, z)
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for ‖y‖+ ‖z‖ < δ0, and, for anyh > 0, the condition
‖Ψ(h, y, z)‖/(‖y‖ + ‖z‖) → 0 as‖y‖ + ‖z‖ → 0
holds.

Substitution (5) transforms system (1) to the form

Bẏ(t) = − 1
h (C1 + C2) y(t)

− 1
hC2(y(t− τ(t))− y(t))

+ 1
h2 C2B

−1A(0)z(t− τ(t))

+ 1
h2 C1B

−1A(0)z(t)

+L1(h, y(t), z(t), y(t− τ(t)), z(t− τ(t)),

A(0)ż(t) = −hBz(t)− C1y(t)

−C2y(t− τ(t)) + 1
hC1B

−1A(0)z(t)

+ 1
hC2B

−1A(0)z(t− τ(t))

+L2(h, y(t), z(t), y(t− τ(t)), z(t− τ(t)),

(6)

where the vector functions L1(h, y, z, u, v)
and L2(h, y, z, u, v) satisfy the conditions
‖Li(h, y, z, u, v)‖/(‖y‖+ ‖z‖+ ‖u‖+ ‖v‖) → 0 as
‖y‖+ ‖z‖+ ‖u‖+ ‖v‖ → 0, i = 1, 2.

It is known, see [33, 37], that from the asymptotic
stability of isolated subsystems (2) and (3), it follows
the existence of quadratic formsV1(y) andV2(z) such
that the inequalities

a11‖y‖2 ≤ V1(y) ≤ a12‖y‖2,

a21‖z‖2 ≤ V2(z) ≤ a22‖z‖2,∥∥∥∥∂V1

∂y

∥∥∥∥ ≤ a13‖y‖,
∥∥∥∥∂V2

∂z

∥∥∥∥ ≤ a23‖z‖,

V̇1|(2)≤ −a14‖y‖2, V̇2|(3)≤ −a24‖z‖2

are valid for ally, z ∈ Rn. Hereaij are positive con-
stants,i = 1, 2, j = 1, 2, 3, 4.

Choose a Lyapunov function for system (6) in the
form

V (y, z) = εh2V1(y) + V2(z), (7)

where ε is a positive parameter. Differentiating
V (y, z) with respect to system (6), we obtain

V̇ |(6)≤ −a14εh‖y(t)‖2 − ha24‖z(t)‖2+

+εb1‖y(t)‖
(
h‖y(t−τ(t))− y(t)‖+ ‖z(t)‖

+‖z(t− τ(t))‖+ h2‖L1‖
)

+b2‖z(t)‖
(
‖y(t− τ(t))‖+ ‖y(t)‖

+
1
h
‖z(t)‖+

1
h
‖z(t− τ(t))‖+ ‖L2‖

)
.

Hereb1 = const > 0, b2 = const > 0.
Let us prove that, for sufficiently large values of

h, the Lyapunov function (7) satisfies all the condi-
tions of Theorem 4.2 from [19].

Choose a numberδ ∈ (0, δ0). Assume that,

for a solution
(
yT (t), zT (t)

)T
of (6), the inequality

‖y(ξ)‖ + ‖z(ξ)‖ < δ, and the Razumikhin condi-
tion V (y(ξ), z(ξ)) ≤ 2V (y(t), z(t)) are fulfilled for
ξ ∈ [t − 2τ0, t]. Then there exist positive numbersc1

andc2 such that the esimates

‖y(ξ)‖ ≤ c1

(
‖y(t)‖+

1
h
√

ε
‖z(t)‖

)
,

‖z(ξ)‖ ≤ c2
(
h
√

ε ‖y(t)‖+ ‖z(t)‖
)

hold for ξ ∈ [t− 2τ0, t].
With the aid of these estimates and the Mean

Value Theorem, we obtain

‖y(t− τ(t))− y(t)‖ ≤ τ0c3

h

(
‖y(t)‖+

1
h
√

ε
‖z(t)‖

+
√

ε ‖y(t)‖+
1
h
‖z(t)‖+ η1(ε, h, y(t), z(t))

)
,

wherec3 = const > 0, andη1(ε, h, y, z)/(‖y‖ +
‖z‖) → 0 as‖y‖+ ‖z‖ → 0.

Thus, we arrive at the inequality

V̇ (y(t), z(t)) ≤ −a14εh‖y(t)‖2 − ha24‖z(t)‖2

+εb̃1‖y(t)‖
(
(τ0 + τ0

√
ε + h

√
ε)‖y(t)‖

+
(

1 +
τ0

h
+

τ0

h
√

ε

)
‖z(t)‖

)
+b̃2‖z(t)‖

(
(1 +

√
ε)‖y(t)‖

+
(

1
h

+
1

h
√

ε

)
‖z(t)‖

)
+ η2(ε, h, y(t), z(t)).

Here b̃1 and b̃2 are positive constants, whereas
the function η2(ε, h, y, z) possesses the property
η2(ε, h, y, z)/(‖y‖2 + ‖z‖2) → 0 as‖y‖+ ‖z‖ → 0.

Let the parameterε satisfy the condition4b̃1
√

ε <
a14. Then, for chosenε, and for sufficiently large val-
ues ofh and sufficiently small values ofδ, the inequal-
ity

V̇ (y(t), z(t)) ≤ −1
2

(
a14εh‖y(t)‖2 + ha24‖z(t)‖2

)
holds. Hence [19], the zero solution of system (6) is
asymptotically stable, and this implies the asymptotic
stability of the equilibrium positionq = q̇ = 0 of the
original system (1). ut
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Remark 2 The proof of Theorem 1 contains a con-
structive procedure for the finding of the estimate of
the set of large parameter values for which the asymp-
totic stability can be guaranteed.

Remark 3 Theorem 1 remains valid for the case
whenτ0 is a function ofh; and it can be even un-
bounded forh ∈ (0,+∞). The only restriction on it
is the conditionτ0(h)/h → 0 ash → +∞.

Example 1:Let the linear control system

q̈(t) + h

(
b −g
g b

)
q̇(t)− c q(t) = u (8)

be given. Hereq(t), q̇(t) ∈ R2; b, g, c are positive
constants;u = (u1, u2)T is a control vector;h is a
positive parameter.

It is known [33], that, in the case whenu = 0,
system (8) is unstable. Consider the problem of stabi-
lization of this system under the following restrictions
on the control law:

(i) control forces should be nonconservative;
(ii) there exists a delay in the control scheme.
We assume that delay might be unknown and

time-varying, and only an upper boundτ0 > 0 for
delay values is given.

Define the control vector by the formula

u =

(
0 p

−p 0

)
q(t− τ(t)),

wherep = const > 0. For this control law, the
closed-loop system takes the form

q̈(t) + h

(
b −g
g b

)
q̇(t)− c q(t)

+

(
0 −p
p 0

)
q(t− τ(t)) = 0.

(9)

Consider subsystems (2) and (3) corresponding to
system (9). We obtain

ẏ(t) = ω

(
bc− gp bp + gc

−bp− gc bc− gp

)
y(t), (10)

ż(t) =

(
−b g
−g −b

)
z(t). (11)

Hereω = 1/(b2 + g2).
Subsystem (11) is asymptotically stable, and for

the asymptotic stability of subsystem (10) it is neces-
sary and sufficient the fulfilment of the inequality

p >
bc

g
. (12)

Applying Theorem 1, we obtain that, under the con-
dition (12), for an arbitrary given numberτ0 > 0,
there existsh0 > 0 such that the closed-loop system
(9) is asymptotically stable for allh ≥ h0 and for
any continuous delayτ(t) satisfying the inequalities
0 ≤ τ(t) ≤ τ0.

The results of numerical simulation are repre-
sented in Figs. 1 and 2, where the dependence of the
coordinateq1 on time is shown. It was assumed that
τ = const > 0, and the following values of parame-
ters of the system and initial conditions were chosen:
b = 2, c = 1, g = 1, p = 5, t0 = 0, andq1(θ) = 0.2,
q2(θ) = −0.3, q̇1(θ) = 0, q̇2(θ) = 0 for θ ∈ [−τ, 0].

Fig. 1 corresponds to the case of stable system.
Hereh = 7, τ = 1.
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Figure 1. The case of stable system

On the other hand, Fig. 2 shows that the increas-
ing of the value of delay and decreasing of the value
of h might cause the instability. In this case,h = 2.9
andτ = 2.
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Figure 2. The case of unstable system

4 Decomposition of Systems with
Nonlinear Positional Forces

Next, we turn to the case of system (4). The system
admits the equilibrium positionq = q̇ = 0 as well.
We look for conditions of asymptotic stability for this
equilibrium position.

Sinceµ > 1, equations (4) are essentially nonlin-
ear. Hence, stability analysis can not be carried out on
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the basis of linear approximation system. To solve the
stated problem, let us apply again the decomposition
approach.

Construct the isolated subsystems

Bẏ(t) = −Q1(y(t))−Q2(y(t)), (13)

A(0)ż(t) = −Bz(t). (14)

Thus, instead of time-delay system (4) consisting ofn
nonlinear second order differential equations, we will
consider two auxiliary first order delay free subsys-
tems (13) and (14). Notice that subsystem (14) is lin-
ear, whereas (13) is a nonlinear system with homoge-
neous right-hand sides.

Theorem 4 Let the zero solutions of isolated subsys-
tems(13) and(14) be asymptotically stable. Then the
equilibrium positionq = q̇ = 0 of (4) is asymp-
totically stable for any continuous nonnegative and
bounded fort ∈ [0,+∞) delayτ(t).

Proof: By the usage of the substitution

q̇(t) = z(t),
∂T (q, q̇)

∂q̇
+ Bq(t) = By(t),

we transform (4) to the system

Bẏ(t) = −Q1(y(t))−Q2(y(t))

+L1(y(t), z(t), y(t− τ(t)), z(t− τ(t))),

A(0)ż(t) = −Bz(t)

+L2(y(t), z(t), y(t− τ(t)), z(t− τ(t))).

(15)

Here vector functionsL1(y, z, u, v) andL2(y, z, u, v)
are continuous in the domain‖y‖+‖z‖+‖u‖+‖v‖ <
δ0 and satisfy the inequalities

‖L1(y, z, u, v)‖ ≤ d1

(
‖z‖

(
‖y‖µ−1 + ‖z‖µ−1

)
+‖y − u‖

(
‖y‖µ−1 + ‖u‖µ−1

)
+ ‖z‖2

+‖v‖
(
‖u‖µ−1 + ‖v‖µ−1

))
,

‖L2(y, z, u, v)‖ ≤ d2

(
‖y‖µ + η(y, z)‖z‖

+‖u‖µ + ‖v‖µ
)
,

whereδ0, d1, d2 are positive constants, andη(y, z) →
0 as‖y‖+ ‖z‖ → 0.

The equilibrium positionq = q̇ = 0 of the orig-
inal system (4) is asymptotically stable if and only if
the zero solution of (15) is asymptotically stable.

It is known, see [37], that from the asymptotic
stability of the zero solutions of subsystems (13) and
(14) it follows the existence of continuously differen-
tiable for y ∈ Rn andz ∈ Rn homogeneous of or-
dersγ1 andγ2 respectively Lyapunov functionsV1(y)
andV2(z) satisfying the assumptions of the Lyapunov
asymptotic stability theorem. It is worth mentioning
that, in the computation of these functions, one can
take forγ1 andγ2 arbitrary numbers greater than1.

Consider the function

V (y, z) = V1(y) + V2(z). (16)

For this function and its derivative with respect to sys-
tem (15) the following estimates are valid

a1 (‖y‖γ1 + ‖z‖γ2) ≤ V ≤ a2 (‖y‖γ1 + ‖z‖γ2) ,

V̇ |(15)≤ −a3

(
‖y(t)‖γ1+µ−1 + ‖z(t)‖γ2

)
+a4‖y(t)‖γ1−1

(
‖z(t)‖

(
‖y(t)‖µ−1 + ‖z(t)‖µ−1

)
+‖y(t)− y(t− τ(t))‖

(
‖y(t− τ(t))‖µ−1

+‖y(t)‖µ−1
)

+ ‖z(t− τ(t))‖
(
‖y(t− τ(t))‖µ−1

+‖z(t− τ(t))‖µ−1
)

+ ‖z(t)‖2
)

+a5‖z(t)‖γ2−1
(
‖y(t)‖µ + η(y(t), z(t))‖z(t)‖

+‖y(t− τ(t))‖µ + ‖z(t− τ(t))‖µ
)
,

wherea1, . . . , a5 are positive constants.
We will show that if for the orders of homogeneity

γ1 andγ2 the inequalities

max
{

γ2;
µγ2

2
− µ + 1

}
< γ1 < µγ2−µ+1 (17)

hold, then the Lyapunov function (16) satisfies all the
conditions of Theorem 4.2 from [19].

Choose a numberδ ∈ (0, δ0). Assume that,
for a solution(yT (t), zT (t))T of (15), the inequality
‖y(ξ)‖ + ‖z(ξ)‖ < δ, and the Razumikhin condi-
tion V (y(ξ), z(ξ)) ≤ 2V (y(t), z(t)) are fulfilled for
ξ ∈ [t − 2τ0, t]. Then there exist positive numbersc1

andc2 such that the esimates

‖y(ξ)‖ ≤ c1

(
‖y(t)‖+ ‖z(t)‖γ2/γ1

)
,

‖z(ξ)‖ ≤ c2

(
‖y(t)‖γ1/γ2 + ‖z(t)‖

) (18)

hold for ξ ∈ [t− 2τ0, t].
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Using estimates (18) and applying the Mean
Value Theorem, we obtain

‖y(t− τ(t))− y(t)‖ ≤ τ0‖ẏ(t− ζτ(t))‖

≤ c3τ0

(
‖y(t)‖µ + ‖z(t)‖µ + ‖z(t)‖2

‖y(t)‖µγ1/γ2 + ‖z(t)‖µγ2/γ1

)
,

wherec3 = const > 0, and0 < ζ < 1.
By the use of homogeneous functions properties,

see [37], it can be shown that if the parametersγ1

andγ2 satisfy the condition (17), then, for sufficiently
small values ofδ, the inequality

V̇ (y(t), z(t)) ≤ −a3

2

(
‖y(t)‖γ1+µ−1 + ‖z(t)‖γ2

)
is valid. Thus, for the Lyapunov function (16), all the
assumptions of Theorem 4.2 from [19] are fulfilled.
So the zero solution of(15) is asymptotically stable.
This implies that the equilibrium positionq = q̇ = 0
of (4) is also asymptotically stable. ut

Remark 5 It is worth mentioning that mechanical
systems with essentially nonlinear positional forces
have been considered, for instance, in [9, 11, 15, 16,
36]. In particular, in [15, 16], they were applied for
the developing of seismic mitigation devices.

Remark 6 Unlike Theorem 1, in Theorem 4 it is not
required the presence in the considered equations of a
large parameter.

Remark 7 The fulfilment of assumptions of Theorem
4 guarantees that the equilibrium positionq = q̇ = 0
of (4) is asymptotically stable for any continuous non-
negative and bounded fort ∈ [0,+∞) delay τ(t).
Thus, we obtained co-called delay-independent sta-
bility conditions, see [18].

Example 2:Consider the control system

q̈(t) + b q̇(t) + ‖q(t)‖2

(
0 c

−c 0

)
q(t) = u, (19)

whereq(t), q̇(t) ∈ R2; b andc are positive constants;
u = (u1, u2)T is a control vector. Equations of such
type are used, for instance, for the modelling of rotor
dynamics in a magnetic bearing system [31].

We are going to design a feedback control law to
stabilize the equilibrium positionq = q̇ = 0 of system
(19). Assume that the control law depends onq, and is
independent oḟq. Furthermore, we consider the case
when there exists a delay in the control scheme. The
delay may be unknown and time-varying.

It is known, see [18, 29], that for the linear control
law

u1 = α11q1(t− τ(t)) + α12q2(t− τ(t)),

u2 = α21q1(t− τ(t)) + α22q2(t− τ(t)),

whereα11, α12, α21, α22 are constants, the presence
of delay might result in instability of the equilibrium
position.

Choose now functionsu1 andu2 in the form

u1 = −α1q
3
1(t− τ(t)),

u2 = −α2q
3
2(t− τ(t)).

(20)

Hereα1 andα2 are positive constants.
Applying Theorem 4, we obtain that for the con-

trol law (20) the equilibrium positionq = q̇ = 0 of the
corresponding closed-loop system is asymptotically
stable for any continuous nonnegative and bounded
for t ≥ 0 delayτ(t).

The results of numerical simulation are repre-
sented in Figs. 3 and 4, where the dependence of the
coordinateq1 on time is shown. The following val-
ues of parameters of the system were chosen:b = 1,
c = 8, a1 = 2.5, a2 = 1.5, τ = 3.

0 200 400 600 800 1000

t

−0.10

−0.05

0.00

0.05

0.10

0.15

q 1

Figure 3. Simulation results (q1(θ) = 0.08,
q2(θ) = −0.08)

0 20 40 60 80 100

t

−0.2

0.0

0.2

0.4

0.6

q 1

Figure 4. Simulation results (q1(θ) = 0.1007,
q2(θ) = −0.1007)

Fig. 3 corresponds to the case whent0 = 0,
q1(θ) = 0.08, q2(θ) = −0.08, q̇1(θ) = 0, q̇2(θ) = 0
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for θ ∈ [−3, 0], whereas for Fig.4 we havet0 = 0,
q1(θ) = 0.1007, q2(θ) = −0.1007, q̇1(θ) = 0,
q̇2(θ) = 0 for θ ∈ [−3, 0].

These results show that, for nonlinear systems, we
can guarantee only local asymptotic stability of the
equilibrium position.

5 Decomposition of Systems with
Switched Positional Forces

We will show now that the approaches proposed in
the present paper can be used for the stability analy-
sis of some classes of switched mechanical systems.
A switched system is a particular kind of hybrid dy-
namical system that consists of a family of subsystems
and a switching law determining at each time instant
which subsystem is active [13, 23, 25].

In various cases, it is necessary to design a con-
trol system in such a way that it remains stable for
any admissible switching law [23, 34]. A general ap-
proach to the problem is based on the construction
of a common Lyapunov function for family of sub-
systems corresponding to switched system. This ap-
proach has been effectively used in many papers, see,
for instance, [3, 5–7, 13, 23–25, 28, 34], and the ref-
erences cited therein. However, the problem of the
existence of a common Lyapunov function has not
got a constructive solution even for the case of family
of linear time-invariant systems [23, 34]. This prob-
lem is especially difficult for mechanical systems with
switched force fields. Such systems possess a special
structure. Therefore, well known approaches devel-
oped for switched systems of general form may be in-
efficient or even inapplicable for mechanical systems,
see [5].

In this section, we consider time-delay mechan-
ical systems of the forms (1) and (4) with switched
positional forces. We will look for conditions under
which the trivial equilibrium position of these sys-
tems is asymptotically stable for an arbitrary admis-
sible switching law.

Let the family of time-delay mechanical systems

d

dt

∂T

∂q̇
−∂T

∂q
= −hBq̇(t)− C

(s)
1 q(t)

−C
(s)
2 q(t− τ(t)), s = 1, . . . , N,

(21)

be given. HereC(s)
1 andC

(s)
2 are constant matrices,

and the rest notation is the same as in (1).
Switched system generated by the family (21) and

a switching lawσ is

d

dt

∂T

∂q̇
−∂T

∂q
= −hBq̇(t)

−C
(σ)
1 q(t)− C

(σ)
2 q(t− τ(t)).

(22)

Hereinafter, a switching law is defined as a piece-
wise constant functionσ = σ(t) : [0, +∞) → S =
{1, . . . , N}. We assume that the functionσ(t) is right-
continuous, and on every bounded time interval the
function has a finite number of discontinuities. This
kind of switching law is called admissible one.

Consider subsystem (3) and the family of subsys-
tems

Bẏ(t) +
(
C

(s)
1 + C

(s)
2

)
y(t) = 0,

s = 1, . . . , N.
(23)

Theorem 8 Let subsystem(3) and all subsystems
from the family(23) be asymptotically stable, and
family(23)admit a continuously differentiable fory ∈
Rn homogeneous of the second order common Lya-
punov functionV1(y) satisfying the assumptions of the
Lyapunov asymptotic stability theorem. Then, for any
continuous nonnegative and bounded fort ∈ [0,+∞)
delay τ(t), there exists a numberh0 > 0 such that
the equilibrium positionq = q̇ = 0 of system(22) is
asymptotically stable for allh ≥ h0 and for an arbi-
trary switching law.

Proof: Substitution (5) transforms (21) to the family

Bẏ(t) = − 1
h

(
C

(s)
1 + C

(s)
2

)
y(t)

− 1
hC

(s)
2 (y(t− τ(t))− y(t))

+ 1
h2 C

(s)
2 B−1A(0)z(t− τ(t))

+ 1
h2 C

(s)
1 B−1A(0)z(t)

+L
(s)
1 (h, y(t), z(t), y(t− τ(t)), z(t− τ(t)),

A(0)ż(t) = −hBz(t)− C
(s)
1 y(t)

−C
(s)
2 y(t− τ(t)) + 1

hC
(s)
1 B−1A(0)z(t)

+ 1
hC

(s)
2 B−1A(0)z(t− τ(t))

+L
(s)
2 (h, y(t), z(t), y(t− τ(t)), z(t− τ(t)),

(24)

where the vector functionsL(s)
i (h, y, z, u, v) satisfy

the conditions‖L(s)
i (h, y, z, u, v)‖/(‖y‖ + ‖z‖ +

‖u‖ + ‖v‖) → 0 as‖y‖ + ‖z‖ + ‖u‖ + ‖v‖ → 0,
i = 1, 2; s = 1, . . . , N .

Let V1(y) be a common Lyapunov function for
subsystems (23) possessing the properties specified in
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the theorem. From the asymptotic stability of sub-
system (3), it follows the existence of a quadratic
form V2(z) satisfying the assumptions of the Lya-
punov asymptotic stability theorem.

Consider the Lyapunov functionV (y, z) defined
by the formula (7). Similar to the proof of Theorem
1, it can be shown that, for sufficiently small values
of ε and sufficiently large values ofh, V (y, z) is a
common Lyapunov function for family (24) satisfying
all the assumptions of Theorem 4.2 from [19]. ut

Remark 9 Theorem 8 permits to reduce, for suffi-
ciently large values ofh, the problem of finding of
a common Lyapunov function for family(21) consist-
ing of second order systems to that for family(23) of
first order systems. Unlike systems from(21), systems
from the family(23) are delay free, and, generally,
do not possess a special structure. Therefore, some
known conditions of the existence of a common Lya-
punov function can be applied to family(23).

Next, cosider the family of systems

d

dt

∂T

∂q̇
−∂T

∂q
= −hBq̇(t)−Q

(s)
1 (q(t))

−Q
(s)
2 (q(t− τ(t))), s = 1, . . . , N,

and the corresponding switched system

d

dt

∂T

∂q̇
−∂T

∂q
= −hBq̇(t)

−Q
(σ)
1 (q(t))−Q

(σ)
2 (q(t− τ(t))).

(25)

Here components of the vectorsQ
(s)
1 (q) andQ

(s)
2 (q)

are continuously differentiable forq ∈ Rn homoge-
neous functions of the orderµ > 1, and the rest nota-
tion is the same as in (4).

Construct the auxiliary family of delay free ho-
mogeneous subsystems

Bẏ(t) = −Q
(s)
1 (y(t))−Q

(s)
2 (y(t)),

s = 1, . . . , N.
(26)

Theorem 10 Let the zero solutions of subsystem(3)
and all subsystems from the family(26) be asymptoti-
cally stable, and family (26) admit a continuously dif-
ferentiable fory ∈ Rn common homogeneous Lya-
punov functionV1(y) satisfying the assumptions of
the Lyapunov asymptotic stability theorem. Then the
equilibrium positionq = q̇ = 0 of (25) is asymp-
totically stable for any continuous nonnegative and
bounded fort ∈ [0,+∞) delayτ(t) and for an ar-
bitrary switching law.

The proof of the theorem is similar to that of The-
orem 4.

Remark 11 Sufficient conditions for the existence of
a common homogeneous Lyapunov function for a fam-
ily of homogeneous systems have been obtained in [7].

Example 3:Let the family consisting of two con-
trol systems q̈1(t) + q̇1(t)− q3

2(t) = u
(1)
1 ,

q̈2(t) + q̇2(t) + q3
1(t) = u

(1)
2 ,

(27)

 q̈1(t) + q̇1(t) + q3
2(t) = u

(2)
1 ,

q̈2(t) + q̇2(t)− q3
1(t) = u

(2)
2

(28)

be given. Hereq1(t), q2(t) ∈ R; u
(1)
1 , u

(1)
2 , u

(2)
1 , u

(2)
2

are control variables.
It is known [27], that, in the case whenu(1)

1 =
u

(1)
2 = u

(2)
1 = u

(2)
2 = 0, the equilibrium position

q1 = q2 = q̇1 = q̇2 = 0 for both systems (27) and
(28) is unstable. Consider the problem of stabilization
of the equilibrium position.

Assume that the control variables are chosen in
the form

u
(1)
1 = 0, u

(1)
2 = −2q3

2(t− τ(t)),

u
(2)
1 = −2q3

1(t− τ(t)), u
(2)
2 = 0.

Then we obtain the family of closed-loop systems q̈1(t) + q̇1(t)− q3
2(t) = 0,

q̈2(t) + q̇2(t) + q3
1(t) + 2q3

2(t−τ(t))= 0,
(29)

 q̈1(t) + q̇1(t) + q3
2(t) + 2q3

1(t−τ(t))= 0,

q̈2(t) + q̇2(t)− q3
1(t) = 0.

(30)

In this case, the corresponding subsystem (3) is ż1(t) + z1(t) = 0,

ż2(t) + z2(t) = 0,
(31)

and the family (26) can be written as follows ẏ1(t)− y3
2(t) = 0,

ẏ2(t) + y3
1(t) + 2y3

2(t) = 0,
(32)

 ẏ1(t) + 2y3
1(t) + y3

2(t) = 0,

ẏ2(t)− y3
1(t) = 0.

(33)
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It is easily verified that the zero solutions of sub-
systems (31), (32), (33) are asymptotically stable.
Moreover, in [7], it was proved that the family con-
sisting of subsystems (32) and (33) admits the com-
mon homogeneous Lyapunov function

V (y1, y2) = 5y2
1 + 4y1y2 + 5y2

2.

Applying Theorem 10, we obtain that the equi-
librium position q1 = q2 = q̇1 = q̇2 = 0 of the
switched system generated by the family (29), (30)
and a switching signalσ(t) is asymptotically sta-
ble for any continuous nonnegative and bounded for
t ∈ [0,+∞) delayτ(t) and for an arbitrary switching
law.

6 Conclusion
In the present paper, by the usage of the decomposi-
tion method, sufficient conditions of the asymptotic
stability of equilibrium positions for some classes of
time-delay mechanical systems are obtained. It should
be noted that, to provide the decomposition, in the
case of linear positional forces the presence of a large
parameter in the considered equations is required,
whereas in the case of nonlinear positional forces the
decomposition is ensured by orders of their homo-
geneity.

The results of the paper can be extended to me-
chanical systems with essentially nonlinear velocity
forces. Moreover, the proposed approaches permit to
obtain stability conditions for systems with delay both
in positional forces and in velocity ones.
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