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Abstract: The design of a conventional power system stabilizer (PSS) based on linearized model cannot 
guarantee its performance in practical operating, so some intelligent techniques have been used. However, 

the parameters cannot update online in most of these mehods, thus the performance cannot be further 
improved. This paper adopts the design method of adaptive neural-fuzzy based power system stabilizer 
(ANFPSS). It consists of two separate neural networks, namely radial basis function neural network 
(RBFNN) identifier and adaptive neuro-fuzzy controller (ANFC). Meanwhile, particle swarm optimization 
(PSO) algorithm is used to obtain appropriate initial parameters of the RBFNN identifier. Based on the 
optimized initial parameters, the RBFNN online identifier provides a dynamic model of controlled plant and 
updates the adaptive link weights of the ANFC. Simulation results on a single machine infinite bus power 
system demonstrate that the proposed stabilizer is effective in damping low-frequency oscillations as well as 
improving system dynamic stability. In addition, the proposed approach provides superior performance 

when compared to IEEE PSS2B. 
 
Key-Words: power system stabilizers, particle swarm optimization, neural network identifier, neuro-fuzzy 
controller.  

 

1 Introduction 

 
The application of a supplementary control signal 
in the excitation system of a generating unit can 
provide extra damping for the system and thus 
improve the unit’s dynamic performance. The 
power system stabilizer (PSS) can generate the 
supplementary control signal for the excitation 
system in result to damp the low frequency 

oscillations and help improve power system 
stability. 
The conventional power system stabilizers (CPSS) 
are designed very extensively, using phase 
compensation techniques. The parameters of CPSS 
are calculated based on linearized model of the 
power system [1]. The application of CPSS for the 
improvement of small signal oscillation and the 
dynamic stability of a power system has been 

explained in the literature [2]. Different types of 
arrangement of lag-lead compensator based PSS are 
discussed in details [3]. However, power systems 
are dynamic and highly nonlinear. Therefore, CPSS 
performance may deteriorate under variations 
which result from nonlinear and time-variant 
characteristics of a controlled plant. Thus, the 
adaptive PSS with the nonlinear nature of the plant 

is required. 
To improve the performance of CPSS, different 
intelligent techniques have been proposed for 
designing, such as fuzzy logic, artificial neural 
network, intelligent optimization and hybrid 
artificial intelligent techniques, which have been 
proposed in the literature [4]-[8]. The gain and time 
constants of PSS are optimized through different 

computational optimization techniques such as 
genetic algorithm, particle swarm optimization and 
bacteria foraging optimization, which have been 
explained in [9]-[14]. Usually, it is difficult to 
obtain fuzzy rules and adjust parameters online in 
fuzzy logic control. The tuning of CPSS parameters 
does not update the weights of neural networks 
online, so their performances highly depend on the 
quality of offline training samples. The intelligent 

optimization algorithm is used to determine the 
optimal parameters for CPSS by  optimizing a cost 
function in an offline mode. Since above methods 
are based on a linearized model and the parameters 
are not updated online, therefore they lack 
satisfactory performance during practical 
operations. 
The radial basis function neural network (RBFNN) 
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has fast convergence, strong generalization, and 
simple structure, which can achieve higher 
accuracy than BP network. In this paper, a RBFNN 

identifier is used. The values of output weight 
jw , 

center vector 
jic  and basis width 

jb  in RBFNN 

have great influence on the identification 
performance. Currently, gradient descent method is 

widely used, which particularly depends on the 

selection of initial values of 
jw 、

jic  and 
jb . The 

inappropriate initial values of the RBFNN will lead 
to a relatively slow convergent speed and the 
falling of local optimum. Finally, it will cause the 
deterioration in identification performance.  
The commonly used learning methods are 
orthogonal least square, clustering and self-

organizing mapping and so on. However, the 
traditional learning strategies of  RBFNN have 
some shortcomings: they can only find the optimal 
solution in the local space to determine the 
parameters of the network structure. At present, it is 
difficult to obtain optimum values of the network 
structure parameters theoritically. Simultaneously, 
the process of learning is complexd. Currently, the 
papers in [15]-[16] optimize parameters in RBFNN 

by genetic algorithm. However, the reproduction, 
crossover and mutation bring problems of local 
optimization. With the increase of scale and 
complex of the problem, the training time in neutral 
network shows exponential growth. 
In this thesis, an online adaptive PSS based on RBF 
neural network identifier is proposed. Firstly, we 
use particle swarm optimization (PSO) to obtain 
appropriate initial parameters of the RBFNN 

identifier. Secondly, based on the optimized initial 
parameters, the RBFNN identifier provides a 
dynamic model of the controlled plant and updates 
the adaptive link weights of the adaptive neuro-
fuzzy controller (ANFC) online. Finally, the 
effectiveness of this method is proved by 
simulation experiments.  
 

 

2 Power system model 
 

The single machine infinite bus power system 
(SMIB) model used to evaluate the adaptive neural-
fuzzy based power system stabilizer (ANFPSS) is 
shown in Fig. 1.  
The SMIB consists of a synchronous generator, a 
turbine, a governor, an excitation system and a 
transmission line connected to an infinite bus. The 
model is built in Matlab/simulink environment 

using the power system blockset. In Fig. 1, PREF is 
the mechanical power reference, PSV is the 
feedback through the governor, TM is the turbine 
output torque. VTREF is terminal voltage reference, 
VT is terminal voltage, VA is the AVR output. P is 

the active power and Q is the reactive power at the 

generator terminal. △ω is the speed deviation, 

VPSS is the PSS output signal, Vinf is the infinite bus 
voltage.  
 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 1  System model configuration 

 

In Fig. 1, the switch S1、S2、S3 is used to carry out 

tests on the power system with ANFPSS, CPSS and 

without PSS respectively.  
Parameters of the synchronous generator, hydraulic 
turbine and governor, automatic voltage regulator 
(AVR) and excitation system, equivalent circuit of 
the transformer used in the SMIB model are given 
in Appendix A. 
 

 

3 Design of the ANFPSS 
 

The online adaptive PSS design consists of two 
separate neural networks, namely radial basis 
function neural network (RBFNN) identifier and 
adaptive neuro-fuzzy controller (ANFC). The 
structure for the training of the RBFNN identifier 
and the ANFC is shown in Fig. 2. The dash lines 
show the backpropagation paths to update the 
parameters of the RBFNN identifier and the  

ANFC. 
In this control architecture, the RBFNN identifier is 
used to track the dynamic characteristics of the 
plant, and the ANFC to damp the oscillations of the 
power system. The RBFNN identifier provided a 
dynamic model of the plant to evaluate and help in 
tuning the ANFC link weights online. The ANFC is 
used to generate the stabilizing supplementary 
control signal to the plant.  
The RBFNN identifier, first trained offline by PSO. 

Then it is used for online object identification. In 
this way, the RBFNN identifier provides a dynamic 
model of the controlled plant. After that, the link 
weights of ANFC updating were performed in an 
online learning environment. Since both the 
RBFNN identifier and the ANFC are updated 
online, the ANFPSS can adapt to changes in the 
system and perform well under severe disturbances. 
These two phases are carried out in cascade once 
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the ANFPSS is connected to the plant by placing 
the switch S1 in Fig. 1.  
 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 2  Structure of the control system 

 

3.1 RBFNN identifier 
The RBFNN identifier is developed using the 
series-parallel nonlinear auto regressive moving 
average (NARMA) model. The model output ŷ  at 

time k+1 depends on both past n values of output 
and m past values of input. The neuro-identifier 
output equation takes the form given by the 
following formula: 
 













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)1(),...,1(),(

)1(),...,1(),(
)1(ˆ

mkukuku

nkykyky
fky    (1) 

 
Where )(ky  and )(ku  represent the output and 

input of the plant to be controlled at time k. For this 
particular system, y, u and ŷ  are the speed 

deviation   of the plant, the output 
pssV  of the 

ANFC and the estimated plant output ̂  by the 

RBFNN identifier respectively. Here both m and n 
are chosen to be 3. One reason for choosing three 
time step values is because a third order model of 
the system is sufficient for the study of transient 
stability. The other reason is that more time delays 

means more computation and one author’s previous 
work verified that three time delays is enough for 
this kind of problem [17]. 
The RBFNN is a three-layer structural network, 
with an input layer, a hidden layer and an output 
layer. It has been proved that it can approximate 
any continuous network with arbitrary precision. 
The RBFNN mapping from input to output is 
nonlinear while the mapping from hidden layer to 

output is linear, which can improve learning speed 
greatly. The RBFNN learning algorithm is faster in 
convergence than the BP network and it can avoid 
local minimum problems. In the same conditions of 
training time, steps of implementation and required 
parameters, RBFNN can achieve higher accuracy 
than BP network. RBFNN has fast convergence, 
strong generalization, simple structure and other 

characteristics, so it is adopted in this paper. Fig. 3 
shows the structure of RBFNN. The numbers of 
neurons in the input, hidden and output layers are 
six, ten and one respectively. All the inputs and 

outputs signals of the RBFNN identifier are 
normalized to the range of [-1,1]. 

 

 

 

 
 

 

 

 

 

 

 

Fig. 3  Structure of RBFNN identifier 

 

In the RBFNN identifier, T

nxxxX ],...,[ 21  is the 

input vector, T

mhhhH ],...,[ 21  is the radial basis 

vector, 
jh  is Gaussian function, which can be 

described as: 













 


2

2

2
exp

j

j

j
b

CX
h , mj ,...2,1          (2) 

T

jnjijjj ccccC ]...,...,[ 21  is the center vector of the 

j th node. T

mbbbB ],...,[ 21  is the basis width 

vector. The weight vector of the network is given 
by 
 

T

mj wwwwW ]...,...,[ 21                  (3) 

The output vector of the network is given by 
 

mmhwhwhwk  ...)1(ˆ
2211          (4) 

 
The RBFNN is used as an identifier to obtain the 
Jacobian information of controlled object. Training 
of the RBFNN identifier has two steps, offline 
training by PSO and online update.  
 

3.2 RBFNN identifier offline optimization 

with PSO 
PSO is a new method of intelligent group 
optimization, which has strong global search ability 
and is easy to be operated. In order to select 

appropriate initial parameters of 
jw 、

jic  and 
jb  

in the RBFNN, PSO algorithm is applied here. 

 
3.2.1  Particle swarm optimization algorithm 

The PSO is an optimization algorithms based on 
collective intelligent theory, famous for its strong 
points as follows: quick convergence rate, strong 
global search ability, omitting  the process of 
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gradient computing. The basic PSO algorithms are 
as follows: 
 

)(11

1 k

id

k

id

kk

id

k

id xpbestrandcwvv 
 

)(22

k

id

k

d

k xgbestrandc 
        (5) 

11   k

id

k

id

k

id vxx
                        (6) 

 
w ---- inertia weight, usually 0.4~1.2; 

k

idv ---- the d dimensional velocity of the particle i 

for the k time; 

1c 、 2c ---- acceleration factor, which adjust the 

longest step width toward the best global particle 

and the best individual particle. Proper 
1c 、 2c  

can accelerate the convergence rate and not get into 
the local optimum. Usually 221  cc ; 

krand 21、
----any value among [0,1]; 

k

idx ----the d dimensional position of the particle i 

for the k time; 
k

idpbest ----the d dimensional position of the 

individual extreme point of the particle i for the k 
time; 

k

dgbest ----the d dimensional position of global 

extreme point of the whole swarm for the k time; 

dv  value range is 
maxdv  to 

maxdv  in order 

to prevent the particle from staying away from the 
search space. 

For practical optimization problems, we often 
consider the global search first, and make the 
search space fast enough to converge to an area. 
Then, we make a careful local search to obtain the 
high accuracy solution. The study finds that a larger 
w  can strengthen the global search ability, while a 

smaller w  strengthen the local search ability. In 

this paper, a linear descending algorithms is 
adopted. w  reduces linearly along with the 

increasing number of iteration. In this way the 
global search ability is greatly improved. The 
formula for w  is as follows: 

 

iter
iter

ww
ww 




max

minmax
max

              (7)                        

 

maxw minw ---- maximal and minimal inertia 

weight, usually 2.1~8.0max w , 4.0min w ; 

maxiter -----the maximum number of the iteration 

set; 

iter ---- the current number of iteration.  

The experiment result shows that PSO has better 

convergence rate when w  value is 0.8~1.2.  

 
3.2.2 Offline optimization of RBFNN parameters 

with PSO 

In the process of optimizing RBFNN identifier, the 
position vector x  is defined as the output weight 

jw , center vector 
jic  and basis width 

jb , and 

finally to construct particle swarm. Initialize x  

and search for the optimal position to get the 
minimal error of mean square: 
 

2* )(
1

i

N

i

i yy
N

EJ                    (8) 

 
*

iy ---- the expected output value of the particle i; 

jy ---- the real output value of the particle i; 

N ---- the number of sample in the training set. 

So, the fitness function is defined as: 

 

Jf /1                              (9) 

 

The calculation process of RBFNN identifier 
trained with PSO is given in Fig.4, which is 

described as follows: 
Step 1: Collecting the training samples.  
Step 2: Initialize the topological structure of 
RBFNN. It is supposed that the dimension of input 
vector X  is n , and the radial basis vector H  is 

m . Then the dimension of 
jw 、

jic  and 
jb is m , 

nm  and m , respectively, thus the total 

dimension of all parameters is )2( nm . 

Step 3: Generate initial condition of each agent. 

Each particle is constituted by parameters 
jw 、

jic  

and  
jb , then generate the initial location and 

velocity of a set of particles. Initialize inertia 

weight w , acceleration factor 
1c 、

2c , max 

iteration 
maxN .The current searching point is set to 

pbest for each agent. The best-evaluated value of 
pbest is set to gbest and the agent number with the 
best value is stored. 
Step 4: Calculate the fitness function value of each 

particle according to the formula (8)、(9).  

Step 5: For each particle, compare the current 
fitness value with its corresponding the pbest 
fitness value, if better, update the pbest. 
Step 6: For each particle, compare the current 
fitness value with the global optimum gbest fitness 
value, if better, update the gbest. 
Step 7: Make iterative update of speed and position 

for all particles of population according to the 

formula (5)、(6). 

Step 8: Checking the exit condition. If reach to the 
maximum iteration number 

maxN  or the expected 

precision, then exit. Otherwise, continue iteration. 
Go to step 4. 
Step 9: The individual that generates the latest is 

the optimal parameters of 
jw 、

jic  and 
jb . 
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Step 10: Input the test samples to verify whether 
the RBFNN is able to meet the required 
functionality. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The parameters optimization of RBFNN 
identifier based on PSO 

 
In step1, training data for the RBFNN identifier is 
acquired from the system controlled by the CPSS, 
which is tune for each operating condition. The 
RBFNN identifier is trained offline over a wide 
working range of the generator operating conditions 
i.e. output ranging from 0.1 to 1.0 pu. Similarly, 

different kinds of disturbances are also included in 
the training, like change in reference voltage, 
governor input torque variation and three phase 
fault on one circuit of the double circuit 
transmission line. 

 

3.3 RBFNN online identification of 

controlled object 
The RBFNN for online system identification during 
control is shown in Fig. 2. The inputs to the 
RBFNN identifier during this phase are ( )(k , 

)1(  k , )2(  k , )(kVpss
, )1( kVpss

, 

)2( kVpss
) and its output is )1(ˆ  k . The 

desired output is the output of the plant )(k . 

The cost function for training the RBFNN identifier 
is given by: 
 

22 )](ˆ)([
2

1
)(

2

1
)( kkkekJ ii        (10) 

 
According to the gradient descent method, the 

output weight 
jw , basis width 

jb , center vector 

jic  can be calculated from: 
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Where   is the learning speed,   is the 

momentum factor.  
Jacobian matrix (sensitivity of plant output to 
controlled input) algorithm is as follows: 
 



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
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In the above formula, it is necessary to clarify the 

time step definition. Both )(kVpss  and )(k  
signals are sampled at time step k , but )(k  is 

not the response for the control signal )(kVpss
. Due 

to the time lag property of the plant, the impact of 

the control signal )(kVpss  is reflected in the next 

time sample of the output signal )1(  k .  

 

3.4 Adaptive neuro-fuzzy controller (ANFC) 
The structure of ANFC is shown in Fig. 5, it is a 
zero-order sugeno-type fuzzy controller. The inputs 
of the ANFC are the speed deviation   and its 

derivative  . The output is the control signal 

)(kVpss
. 

ek  and 
eck  are the input scaling factors, 

and 
uk  is the proportion factor for the output. 

1  

and 
2  are adaptive link weights between the 

input scaling factors and the input layer. The 
products 

1ek  and 
2eck  represent the sensitivity 

of the controller for each assigned input. In this 
paper, it is used to make them adaptive through the 

online modification of the weights 
1  and 

2 . It 

is need to work with only a small number of tuning 
parameters, regardless of the number and shape of 
input membership functions. The initial values for 

both 
1  and 

2  are set to 1.0.  

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 5  Architecture of ANFC 
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As for the ANFC, the network has 2, 14, 49, 7 and 
1 neurons for layers L1, L2, L3, L4 and L5, 
respectively. Seven triangular membership 
functions are used with the following fuzzy sets for 
each input: NB (negative big), NM (negative 

medium), NS (negative small), ZO (zero), PS 
(positive small), PM (positive medium) and PB 
(positive big). The output variable also uses seven 
fuzzy sets to determine its value. The firing 
strength of each rule is calculated using the 
“product” operation. The rule base for the ANFC is 
given in Table 1. The fuzzy sets are normalized to 
the range of [-1,1]. 
 

Table 1  Control rules of ANFC. 
  

  
NB NM NS ZO PS PM PB 

NB NB NB NB NB NM NS ZO 

NM NB NB NB NM NS ZO PS 

NS NB NB NM NS ZO PS PM 

ZO NB NM NS ZO PS PM PB 

PS NM NS ZO PS PM PB PB 

PM NS ZO PS PM PB PB PB 

PB ZO PS PM PB PB PB PB 

 

Gradient descent method is employed to update 
these parameters according to the following cost 

function: 
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For the parameter 

1 , the gradient )(1 kJ c  is 
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Where )(/)1(ˆ kVk pss  , the Jacobian matrix of 

the plant, is obtained through the RBFNN identifier. 

It is the same with parameter 
2 . 

 

 

4 Simulation results 
 

In this section, the simulations are carried out in 
Matlab and Simulink environments for training the 
system introduced by Fig. 1. The simulation results 
of the proposed ANFPSS for SIMB system will be 
evaluated and compared with those of IEEE PSS2B 
and without PSS. For evaluating the robustness of 
the designed ANFPSS, performance of these PSS 
are simulated for different types of the disturbances. 

 

4.1 Input mechanical power change 
To verify the robustness of the proposed ANFPSS, 

a small disturbance was applied to the SIMB 
system.  
A 5% increase in mechanical input is applied at 5 
second and removed at 5.2 second, the response of 

rotor speed deviation and the line power variation 
are shown in Fig. 6. 
As seen in Fig. 6, the open loop response without 
PSS is highly oscillatory. The speed deviation with 
PSS2B having large overshoots and settling time is 
3.1 seconds. The ANFPSS having small overshoots 
and settling time is less than 2.2 seconds. From the 
comparison of three methods, it is indicated that the 
system oscillations of the proposed strategy are 

damped faster than those of the IEEE PSS2B and 
no PSS. 
 

 

 (a)  
 

 

 (b)  

 

Fig. 6 Response to 5% increase in mechanical input 
a) Rotor speed deviation  b) Line power variation 

 

4.2 Input reference voltage change 
A 5% increase in reference input voltage is applied 
at 5 second and removed at 5.2 second, the 
response of rotor speed deviation and the line 
power variation are shown in Fig. 7.  
As seen in Fig. 7, the system without stabilizer is 
highly oscillatory. Although the IEEE PSS2B is 
effective in damping the oscillations, 
the overshoot is still large. The ANFPSS having 
less peak overshoot and quicker response, it settles 

the oscillations smoothly and quickly. 
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Fig. 7 Response to 5% increase in reference voltage 
a) Rotor speed deviation  b) Line power variation 
 

4.3 Single phase to earth fault 
In the next simulation, the responses of speed 
deviations and the line power variation when a 

large disturbance was applied were investigated.  
A single phase to earth fault is created at 5 second 
at the sending end of the circuits of transmission 
line and cleared after 200ms. The response of rotor 
speed deviation and the line power variation are 
shown in Fig. 8. 
As seen in Fig. 8, the settling time of IEEE 
PSS2B is 2.4 seconds, while the ANFPSS is less 
than 1.7 seconds. It is clearly shown that the 

oscillations and the setting time of the proposed 
strategy is better than that of the IEEE PSS2B. The 
overshoots and settling time are reduced to a 
greater extent compared to the open loop response 
without PSS. 

 

 
 (a) 

 

 

 (b)  

 
Fig. 8 Response to a single phase to earth fault 

a) Rotor speed deviation b) Line power variation 

 

4.4 Phase to phase fault 
A phase to phase fault is created at 5 second at the 
sending end of the circuits of transmission line and 
cleared after 200ms. The response of rotor speed 
deviation and the line power variation are shown in 
Fig. 9. 
It is clear that the proposed ANFPSS is more 
effective than IEEE PSS2B and no PSS both in 

better damping and quicker response. 
 

 
 (a) 

 

 

 (b)  

 
Fig. 9. Response to a phase to phase fault 

a) Rotor speed deviation  b) Line power variation 
 

 

5 Conclusion 

 
The studies show that the ANFPSS has better 
performance in comparison with IEEE PSS2B. The 
conclusions of the paper can be summarized as 
follows: 

1. The ANFPSS is an effective mean to 

enhance transient stability in SMIB. A large 
number of simulations for the different types of 
disturbances show that the ANFPSS prevents 
stability violations and damps oscillations in power 
system, which is more efficient in comparsion with 
IEEE PSS2B.  

2. The proposed PSO algorithm provids a 
better solution to nonlinear system identification 
performance in the SMIB.  

3. The design of RBFNN online identification 

and ANFC are quite robust and maintain a superior 
performance for different kinds of disturbances. 
This robustness is actually an inherent feature of 
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the RBFNN identifier and ANFC . 
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Appendix A. System parameters 
 
All data are in p.u. unless specified otherwise. 

Synchronous generator 
Rotor Type: Salient-pole, Pole Pairs: 32, Nominal 
Power: 200MVA, Line to Line Voltage: 13.8kV, 

f=50Hz, 305.1dx , 296.0' dx , 252.0'' dx , 

474.0qx , 243.0' qx , 18.0'' qx , sTd 01.1'  , 

sTd 053.0''  ,  sTq 1.0''

0  , 3108544.2 sR , Inertia 

Factor: 3.2, Friction Factor: 0.  
 
Hydraulic turbine and governor (HTG) 

Servo Motor: 33.3AK , sTA 07.0 , 01.0min G , 
9752.0max G , spuVg /1.0min  , spuVg /1.0max  ; 

Permanent Droop and PID Regulator: 05.0pR , 

163.1pK , 105.0iK , 0dK , sTd 01.0 . 

Hydraulic Turbine: 0 , sTw 67.2 . 
 

AVR and excitation system 
Low pass Filter Time Constant: sTr 02.0 ; 
Regulator Gain and Time Constant: 300aK , 

sTa 001.0 ;  Exciter: 1eK , sTe 0 ; Transient 

Gain Reduction: sTb 0 , sTc 0 ; Damping Filter 

Gain and Time Constant: 001.0fK ,  sTf 1.0 ; 
Regulator Output Limits and Gain: 5.11min fE , 

5.11max fE ,  0pK . 
 
Power transformer 
Nominal Power: 200MVA, 13.8/230kV, f=50Hz, 
D1/Yg connection; Winding 1 and Winding 2 

Parameters: 0027.01 R , 08.01 L , 0027.02 R , 

12.02 L ; Magnetizing Resistance and Reactance: 

500mR ,  500mL  . 
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