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Abstract: This paper proposes a discrete-time adaptive model predictive control (MPC) algorithm for a class

of constrained linear time-invariant systems subject to state-dependent disturbances, which updates the estimate

of uncertain system parameters on-line and produces the control input ensuring the constraint fulfillment. This

method is based on an adaptive mechanism and a robust MPC algorithm using the comparison model which

enables to estimate the future prediction error bound. First, the parameter estimation method for MPC based

on the moving horizon estimation is introduced. It allows to predict explicitly the worst-case estimation error

bound over the prediction horizon. Second, we propose an adaptive-type MPC strategy developed by combining

an on-line parameter estimator with a robust MPC method based on the modified comparison model. The MPC

controller designed in this way guarantees constraint fulfillment, closed-loop stability and feasibility in the presence

of uncertain system parameters and state-dependent disturbances. A numerical example demonstrates the unique

features of the proposed approach.
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1 Introduction

Model predictive control (MPC), often also referred to

as receding horizon control (RHC) or moving horizon

control, uses the pre-specified system models and it-

eratively determines the control input at each time in-

stant through finite/infinite horizon optimization prob-

lem. This strategy is one of the most promising ways

to handle control problems for systems having in-

put and/or state constraints, and is by now a widely

used in industry and well established technique (see

e.g. [1, 2, 3, 4] and the references therein). In this

control scheme, the prediction is achieved based on

the system model, which implies the model quality

plays a vital role in MPC, and in reality there al-

ways exist model uncertainties and these may cause a

significantly large effect on the system performance.

Although the nominal MPC has inherent robustness

properties when no constraint exists, it cannot guar-

antee the robustness of general constrained uncertain

systems [5]. Therefore, it has been an important is-

sue to develop robust MPC methods which guaran-

tee a certain control performance in the presence of

model uncertainties. This type of MPC has been ex-

tensively studied for many years and the MPC ap-

proaches developed based on an explicit model uncer-

tainty description such as polytopic model have been

proposed. [6, 7, 8, 9, 10]. However, in this line of

research, the system model is fixed though its uncer-

tainties are taken explicitly into account. Therefore,

its control performance is limited by the quality of the

fixed (initial) model.

Another attractive way to handle model uncer-

tainties in MPC is to update the system model on-line

based on measurement data. Although the develop-

ment of adaptive-type MPC strategy is one of the re-

search issues for the control of constrained systems,

there have been few reports on this topic so far [2].

One of the main reasons is the difficulty to guaran-

tee the fulfillment of system constraints in the pres-

ence of an adaptive mechanism through the receding

horizon strategy. In order to overcome this problem,

we have to estimate the future behavior of the real

system while updating the system parameters on-line.

In addition, it seems extremely difficult to guarantee

both feasibility and stability theoretically whenever an

adaptive approaches is combined with MPC. For such

control scheme, Fukushima et al. [11] have proposed

a continuous-time adaptive-type MPC methodology

for a class of linear uncertain systems subject to state

and input constraints. Further, since the control input

to be determined in MPC is generally piecewise con-
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stant, Kim and Sugie [12] have introduced its discrete-

time formula from the viewpoint of implementability.

The purpose of this paper is to develop a discrete-

time MPC algorithm combined with an adaptive

mechanism for a class of uncertain linear time-

invariant systems subject to state-dependent distur-

bances and constraints on state and control, which is

one of the extensions of [11, 12]. This MPC controller

updates the estimate of system parameters on-line and

produces the control input satisfying the given state

and input constraints in the presence of parameter es-

timation errors. The key idea is to combine the ro-

bust MPC method based on the extended compari-

son model [13] with a parameter estimation method

suitable for MPC. First, we present such a parameter

estimation method based on moving horizon estima-

tion. This method allows to predict the worst-case es-

timation error bound over the prediction horizon, by

which one can take account of the future model im-

provement. Then, it is shown that the proposed esti-

mation method can be incorporated into robust MPC

method [13], which can handle state-dependent distur-

bances, by modifying the comparison model to handle

time-varying parameter estimation errors. Using such

a comparison model, the original MPC problem based

on an uncertain model can be transformed into a nom-

inal one without uncertain parameters. In addition, we

show that feasibility and stability are guaranteed un-

der certain conditions. Finally, a numerical example is

given to demonstrate the effectiveness of the proposed

method.

The paper is organized as follows. In Section 2,

the system is presented along with the constraints for

states and input. Sections 3 and 4 present the main

results, namely a new parameter estimation algorithm

and a modified adaptive-type MPC algorithm which

has a merit such that the future model improvement

can be explicitly considered. Then, Section 5 shows

feasibility and stability results. A numerical example

is provided in Section 6. Finally, a conclusion is given

in the end.

Nomenclature:

R set of real numbers

R
n set of n− dimensional real vectors

R
n×m set of n×m-dimensional real matrices

xi i-th entry of the vector x ∈ R
n

In n× n identity matrix

0m×n m× n null matrix

|a| absolute value of the scalar a ∈ R

‖ · ‖ Euclidean norm of a vector or matrix

‖ · ‖p p-norm of a vector or matrix

σ(M) largest singular value of the matrix M

λ(M) maximum eigenvalue of the matrix M
λ(M) minimum eigenvalue of the matrix M

2 System description and problem

formulation

Consider the following discrete-time linear time-

invariant uncertain system described in controllable

canonical form:

x(t+1) = A(θ∗)x(t)+Bu(t)+Bdd(t), x(0) = x0,
(1)

with

A(θ∗) =


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0
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











,

(2)

where A(θ∗) ∈ R
n×n, B ∈ R

n, Bd ∈ R
n×d, x(t) ∈

R
n is the measurable state vector, x0 is a given initial

state, u(t) ∈ R is the control input, d(t) ∈ R
d is the

bounded disturbance which satisfies

d(t) ∈ D, D := {d ∈ R
d : ‖d(t)‖ ≤ 1}. (3)

It is assumed that the disturbance d(t) ∈ D is measur-

able at the current time instant, but the future ones are

uncertain [1, 14, 15, 16, 17]. We denote the uncertain

parameter of A(θ∗) as

θ∗ :=
[

a1 a2 · · · an−1 an
]T ∈ R

n, (4)

and use the notation θ(t) ∈ R
n to denote the estimate

of θ∗ at time instant t. Then, we define the parameter

estimation error as

θ̃(t) := θ(t)− θ∗ (5)

which is unmeasurable. We assume that the initial es-

timate θ0 of θ∗ and initial estimation error bound ν0,

which satisfy the following condition

‖θ0 − θ∗‖ ≤ ν0, (6)

are given as a priori information. We introduce an

additional variable z(t) ∈ R to denote that

z(t) := x1(t+ 1)− u(t)− (Bd)1 d(t) (7)

where (Bd)1 denotes the first row of Bd. Notice that

since x1(t+1) and d(t) ∈ D are measurable and con-

trol u(t) is a known value at time instant t+1, z(t) is

a measurable one. It is also important to note that (7)
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yields z(t) = θ∗Tx(t), which is easily derived from

(1). The system (1) is subject to the hard constraints

on state x(t) and control u(t) as

x(t) ∈ X, X := {x ∈ R
n : |xi(t)| ≤ ψi, ∀i},

u(t) ∈ U, U := {u ∈ R : |u(t)| ≤ η},
(8)

with given ψ ∈ R
n and η ∈ R, which should be ful-

filled at all time instants t ≥ 0, and the following ter-

minal constraint.

Xf := {x ∈ R
n : V (x) ≤ 1}, V (x) :=

√
xTPx,

(9)

where P is an n × n symmetric positive definite ma-

trix. It is assumed that this matrix P and a state feed-

back gain K0 ∈ R
n, both of which are given in ad-

vance, satisfy the following assumptions [11, 12, 13].

Assumption 1: 1 ≤
√

λ(P )min
i
ψi and ‖K0‖ ≤

√

λ(P )η

Assumption 2: 0 ≤ b0
1− a0

< 1, a0 < 1 where

a0 :=

√

1− λ(Q)

λ(P )
+
σ(P

1

2B)ν0
√

λ(P )
, b0 := ‖P

1

2Bd‖,

Q := P − F TPF, F := A(θ0) +BK0

Notice that Assumption 1 implies that the given feed-

back control u(t) = K0x(t) always satisfies the con-

straints (8) in the terminal set (9). On the other hand,

Assumption 2 implies that Xf is a robustly invariant

set by u(t) = K0x(t) [11, 12, 13, 18].

The goal of this paper is to develop a discrete-time

robust MPC controller combined with an adaptive

parameter estimator, which guarantees feasibility and

stability in the presence of parameter estimation error.

To that purpose, we first propose a new recursive

adaptive parameter estimation algorithm suitable for

MPC in the following section.

Remark 1: An example of systems described in (1)

and (2) is a DC servo motor with uncertain parame-

ters. Since the position and the velocity of the sys-

tem can be measured (by a potentiometer and a tacho-

generator, respectively), there is no loss of generality

in the canonical form representation. A broad class

of mechanical/electrical systems would satisfy simi-

lar conditions. Nevertheless, the authors aware that

the representations, (1) and (2), may be restrictive in

general. This is the price at the current status in or-

der to incorporate an adaptive mechanism into MPC

while ensuring feasibility and stability theoretically in

the presence of the constraints on state and input.

3 Adaptive-type parameter estima-

tor for robust predictive controller

In order to design an adaptive-type MPC controller, it

is required to develop an appropriate adaptive parame-

ter estimation method, by which the future model im-

provement can be taken into account explicitly. More-

over, it is important how to incorporate this method

with robust MPC scheme in a less conservative man-

ner. From this viewpoint, a novel recursive adaptive

parameter estimation algorithm for MPC is proposed

in the follows. It enables to predict the worst-case es-

timation error bound over the prediction horizon of

MPC explicitly. This key feature allows us to develop

an adaptive-type MPC controller based on a robust

MPC method proposed by Fukushima and Bitmead

[13], which will be described in the next section. To

that purpose, we first introduce the following quanti-

ties.

F1(t) =

∑t−Ne+1

s=t x(s)z(s)

α+
∑t−Ne+1

s=t xT (s)x(s)
,

F2(t) =

∑t−Ne+1

s=t x(s)xT (s)

α+
∑t−Ne+1

s=t xT (s)x(s)
,

(10)

whereNe denotes the length of estimation horizon and

α > 0, both of which are chosen by the designer. We

set x(t) := 0 and z(t) := 0 for t < 0. The proposed

adaptive mechanism tries to estimate θ∗ based on the

above matrices F1(t) and F2(t). Then, the recursive

adaptive parameter estimation algorithm for MPC is

described as follows:

[Adaptive parameter estimation algorithm]

Step 0: At time t = 0, initialize γ(t) ∈ R, f1(t) ∈
R
n×1 and f2(t) ∈ R

n×n as follows:

fi(0) = Fi(0), i = 1, 2,

γ(0) =
√

λ((In − κF2(0))T (In − κF2(0)))

(11)

where κ > 0 denotes an adaptive gain given by the

designer. Then, go to Step 1.

Step 1: Apply the following parameter update law.

θ(t) = θ(t− 1) + κ(f1(t)− f2(t)θ(t− 1)). (12)

Then, go to Step 2.

Step 2: At the next sampling instant, let t ← t + 1.

Then, update fi(t) and γ(t) as

fi(t) = Fi(t), i = 1, 2,

γ(t) =
√

λ((In − κF2(t))T (In − κF2(t))) ,

(13)
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if the following condition is satisfied.

√

λ((In − κF2(t))T (In − κF2(t))) ≤ γ(t− 1).

(14)

Otherwise, perform the following update.

fi(t) = fi(t− 1), i = 1, 2,

γ(t) = γ(t− 1).
(15)

Then, go to Step 1.

It is important to note that one of the differences from

the conventional parameter update law (see (20) given

later) is to use the summation of measured data over

the estimation horizon Ne as shown in (10). Another

difference is that the condition (14) in Step 2 aims at

choosing the best data set for parameter estimation in

terms of the excitation of x(t) over the horizon, which

will be shown in the following. Notice that the value

of γ(t) determined in the above algorithm means

γ(t) := min
0≤ti≤t

√

λ((In − κF2(ti))T (In − κF2(ti)))

(16)

where ti denotes the sampling instant. Now we in-

troduce the notation νt+k|t to denote the k-step ahead

prediction of upper bound of parameter estimation er-

ror θ̃ from t onwards; i.e., νt+k|t ≥ ‖θ̃(t+ k)‖ where

k = 0, 1, · · · , N , and N denotes the length of predic-

tion horizon of MPC. Then, the following key result

can be obtained based on the proposed adaptive pa-

rameter estimation algorithm.

Lemma 1: The worst-case upper bound νt+k|t (k =
0, 1, · · · , N ) of the future parameter estimation error

satisfying

‖θ̃(t+ k)‖ ≤ νt+k|t, k = 0, 1, · · · , N, (17)

can be predicted by

νt+k+1|t = γ(t)νt+k|t, k = 0, 1, · · · , N − 1,

νt|t =

{

ν0 for t = 0

νt|t−1 for t ≥ 1
(18)

Proof: See Appendix A �

This result shows that the future worst-case estimation

error bound can be predicted explicitly and, therefore,

one can take into account the future improvement of

θ(t) by using νt+k|t in the robust MPC method. Fur-

thermore, (16) and (18) show that the proposed algo-

rithm tries, at each time instant, to choose the “best”

data set in the sense that the predicted estimation error

bound νt+k|t is minimized more rapidly by minimiz-

ing γ than that of the previous time instant. The above

feature results in the following lemma.

Lemma 2: Given a scalar system (18), the following

holds.

νt+k|t+1 ≤ νt+k|t, k = 1, 2, · · · , N, ∀t ≥ 0. (19)

Proof: See Appendix B �

In the next section, we describe how this adaptive es-

timation approach can be incorporated into a robust

MPC method for the development of a discrete-time

adaptive-type MPC scheme.

Remark 2: The conventional parameter estimation

method [19, 20, 21] which is described as

θ(t) = θ(t− 1)

+
κx(t)

α+ xT (t)x(t)
(z(t)− xT (t)θ(t− 1))

(20)

could be incorporated into a MPC method to de-

velop an adaptive-type MPC algorithm. However,

this method makes the MPC too conservative in the

sense that the future value of error bound νt+k|t is

fixed. That is, since γ(t) = 1 in (16) at all time

instants as long as (20) is used, νt+k|t = ν0 for

k = 1, · · · , N . Therefore, although the estimation

error bound ‖θ̃(t + k)‖ could be decreased, it cannot

be considered and evaluated explicitly over the pre-

diction horizon by the conventional methods.

Remark 3: The proposed parameter estimation al-

gorithm has the additional computational burden in-

cluding the determination of maximum eigenvalue

compared with the conventional estimation algorithm

[19, 20, 21]. However, as shown in Step 2, one can

determine the required values such as f1, f2 and γ
in (13) by checking the condition (14) only once at

each time instant. It is probably not so much time-

consuming procedure. Also, it is nothing but a simple

mathematical computation to predict νt+k|t in (18).

From this viewpoint, the computational burden due

to the parameter estimation is much less than that of

MPC.

4 Robust predictive control algo-

rithm for constrained systems sub-

ject to disturbances

In this section, we describe how to combine the adap-

tive parameter estimation method proposed in Section
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3 with a robust MPC method. To that purpose, the fol-

lowing notations will be adopted hereafter: υ̂t+k|t and

υ̃t+k|t denote the k-step ahead prediction of a variable

υ from t onwards; θ̂t+k|t denotes the k-step ahead es-

timation of variable θ from t onwards, which is calcu-

lated by

θ̂t+k+1|t = θ̂t+k|t + κ(f1(t)− f2(t)θ̂t+k|t),

θ̂t|t := θ(t), k = 0, 1, · · · , N − 1,
(21)

which is derived from (12). Notice that θ(t + 1) =

θ̂t+1|t from (12) and (21).

In order to reduce conservatism in MPC scheme,

we adopt the following control parameterized in terms

of the system state and a new variable ũ ∈ R [7, 9, 13,

22].
u(t) = K(θ(t))x(t) + ũ(t),

K(θ(t)) := −θT (t) + θT0 +K0

(22)

where K(θ(t)) is a feedback gain and ũ(t), a feedfor-

ward control, is a decision variable. The key differ-

ence from existing other MPC methodologies is that

K(θ(t)) depends on the estimated parameter vector

θ(t) which is updated based on (12) at each time in-

stant t. Therefore, during the on-line operation, the

feedback gain K(θ(t)) is updated by (12) and the free

variable ũ(t) is computed by solving the constrained

optimization problem of MPC shown later so that (8)

is guaranteed. Then, under (22), the real system (1)

can accordingly be rewritten as

x(t+ 1) = Fx(t) +Bũ(t)−Be(t) +Bdd(t),

e(t) := θ̃T (t)x(t).
(23)

Notice that e(t) implies the disturbance caused by the

uncertain system parameters θ∗ and depends on not

only θ̃(t) but also x(t) of the real system. Here, since

we know the future worst-case upper bound νt+k|t of

‖θ̃(t + k)‖ as shown in Lemma 1, the future upper

bound of e(t + k) (k = 0, 1, · · · , N − 1) can be de-

scribed as follows:

e(t+ k) ∈ E, k = 0, 1, · · · , N − 1,

E := {e ∈ R : ‖e(t+ k)‖ ≤ νt+k|t‖x(t+ k)‖}.
(24)

However, the future upper bound of e(t+k) can never

be predicted in its present stage because x(t + k) is

unknown at the current time instant t.
On the other hand, for the design of MPC con-

troller, the following nominal model is adopted.

x̂t+k+1|t = A(θ̂t+k|t)x̂t+k|t +Bût+k|t +Bdfk,

fk =

{

d(t) for k = 0

0 for k = 1, 2, · · · , N − 1,
(25)

where x̂t|t = x(t). The control sequence ût+k|t to be

determined is parameterized similarly to (22) as

ût+k|t = K(θ̂t+k|t)x̂t+k|t + ũt+k|t,

K(θ̂t+k|t) := −θ̂Tt+k|t + θT0 +K0

(26)

where θ̂t+k|t is obtained from (21) and thus only

ũt+k|t is computed by MPC scheme as mentioned in

the above. Substituting (26) into (25) results in the

following equation.

x̂t+k+1|t = Fx̂t+k|t +Bũt+k|t +Bdfk,

x̂t|t = x(t), k = 0, 1, · · · , N − 1.
(27)

In MPC algorithm, the k-step ahead prediction of state

x in (23) is obtained by using the model (27). In this

case, the state prediction error due to the disregard of

d(t+k) ∈ D and e(t+k) ∈ E for k = 0, 1, · · · , N−1
is unavoidable and, therefore, the evaluation of this

prediction error is necessary for the robustness anal-

ysis of the real system (23). Moreover, if the robust

MPC approach using the optimization problem with

nominal performance index is introduced, the suitable

tightening of constraint is necessary to ensure that the

control input which guarantees (8) in the presence of

disturbances e(t) and d(t) can be computed at all time

instants [11, 12]. This should be performed based on

the consideration of the effects of both d(t + k) and

e(t + k). However, since e depends on x as well as θ̃
as mentioned in the above, it is not so easy to evaluate

the effect of e(t + k) for k = 0, 1, · · · , N − 1 upon

the state prediction error.

In order to overcome this difficulty, we now in-

troduce the following scalar system into the MPC for-

mulation.

wt+k+1|t = at+k|twt+k|t + b0gk + b1|ũt+k|t|,
wt|t = V (x(t)), k = 0, 1, · · · , N − 1

(28)

where

at+k|t :=

√

1− λ(Q)

λ(P )
+
σ(P

1

2B)νt+k|t
√

λ(P )
,

b1 := ‖P
1

2B‖,

gk =

{

‖d(t)‖ for k = 0

1 for k = 1, 2, · · · , N − 1

It is constructed based on a priori information about

the future upper bound of parameter estimation error

νt+k|t in (18) [11, 12]. The system (28) enables to ob-

tain an upper bound of the k-step ahead unknown fu-

ture value V (x(t+k)), k = 1, 2, · · · , N , as described

in the following lemma.
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Lemma 3: For any ũt+k|t (k = 0, 1, · · · , N−1) and a

given x(t), the states of real system in (23) and scalar

system in (28) satisfy

V (x(t+ k)) ≤ wt+k|t, k = 0, 1, · · · , N. (29)

Proof: See Appendix C �

This lemma implies that the upper bound of the future

state x(t+k) of system (23) can be predicted by (28).

Therefore, the k-step ahead upper bound of e(t+k) ∈
E can be predicted based on (18) and (28).

Once the prediction error due to e(t + k) and

d(t + k) can be evaluated, we then modify the origi-

nal constraint sets, X and U in (8), to more restricted

ones in order to guarantee feasibility and robust sta-

bility in the presence of disturbances e and d. The

modified constraint sets, X̂ and Û , imposed on the

prediction using the nominal model (27) are described

as follows:

X̂(t+ k + 1, νt+k+1|t, wt+k+1|t) :=

{x̂ ∈ R
n : |x̂i,t+k+1|t|

≤ ψi − ψ̂i(t+ k + 1, νt+k+1|t, wt+k+1|t),∀i},
Û(t+ k, νt+k|t, wt+k|t) :=

{K0x̂+ ũ ∈ R : |K0x̂t+k|t + ũt+k|t|
≤ η − η̂(t+ k, νt+k|t, wt+k|t)}

(30)

where

ψ̂i(t+ k + 1, νt+k+1|t, wt+k+1|t)

:=

k
∑

s=0

(

|ζ1i(s)|
νt+k−s|twt+k−s|t

√

λ(P )
+ ‖ζ2i(s)‖

)

,

η̂(t+ k, νt+k|t, wt+k|t) := 2(νt+k|t + ν0)

×
k
∑

s=0

(

‖ξ1(s)‖
νt+k−s|twt+k−s|t

√

λ(P )
+ ‖ξ2(s)‖

)

+

k
∑

s=0

(

|K0ξ1(s)|
νt+k−s|twt+k−s|t

√

λ(P )
+ ‖K0ξ2(s)‖

)

+
(νt+k|t + ν0)wt+k|t

√

λ(P )
,

ζ1(s) := F sB, ζ2(s) :=

{

F s−1Bd for s 6= 0,

0n×d for s = 0,

ξ1(s) :=

{

F s−1B for s 6= 0,

0n×1 for s = 0,

ξ2(s) :=

{

F s−2Bd for s = 2, 3, · · · , N − 1,

0n×d for s = 0, 1,
(31)

and ζji(s) (j = 1, 2) denotes the ith row of ζj(s).
The above modified constraints satisfy the following

important property.

Theorem 1: For the nominal model (27) with a given

x(t) ∈ R
n, any feedforward control ũt+k|t ∈ R (k =

0, · · · , N − 1) satisfying

x̂t+k+1|t ∈ X̂(t+ k + 1, νt+k+1|t, wt+k+1|t),

K0x̂t+k|t + ũt+k|t ∈ Û(t+ k, νt+k|t, wt+k|t),
(32)

also ensures the robust constraint fulfillment for state

and control of the real system (23); i.e.,

x(t+ k + 1) ∈ X,
K(θ̂t+k|t)x(t+ k) + ũt+k|t ∈ U,

(33)

are guaranteed for all possible e(t+k) ∈ E and d(t+
k) ∈ D.

Proof: See Appendix D �

The above theorem shows the sufficient conditions for

ũ under which the MPC controller is able to guaran-

tee one of the control objectives; i.e., the original con-

straints (33) can be always satisfied by the feedfor-

ward control ũ which satisfies the modified ones (32).

Remark 4: The idea of restricting the original state

and control bounds by suitable quantities which

take into account the perturbations is not new. This

can be found in Chisci et al. [23] proposed for the

constrained discrete-time systems with persistent

bounded disturbances. However, it is crucial to

deal with state-dependent (possibly unbounded)

disturbances in order to incorporate the parameter

update mechanism, because the system parameter

uncertainty results in the form of state-dependent

disturbances as shown in (23). Therefore, we intro-

duce the robust MPC method proposed by Fukushima

and Bitmead [13] and extend it to handle the

state-dependent disturbance due to the time-varying

parameter estimation error.

The optimal feedforward control sequence ũt+k|t

for k = 0, 1, · · · , N − 1 is determined during the on-

line operation by minimizing the objective function

such as

J(x(t), ũt+k|t) :=

N−1
∑

k=0

ũTt+k|tRũt+k|t (34)

where R > 0 is the weighting constant. Therefore,

the following optimization problem for the proposed
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adaptive-type MPC developed based on the above re-

sults and the given constant ω (≥ max{V (x0), 1}) is

solved on-line at each time instant t.

Finite horizon constrained optimization problem

for MPC:

min
ũ

J(x(t), ũt+k|t) (35)

subject to (18), (27), (28), (32) and

wt+k|t ≤ ω, k = 0, 1, · · · , N − 1,

wt+N |t ≤ 1.
(36)

The above optimization problem is referred to as

AMPC optimization problem throughout the paper.

The role of ω and the conditions which ω should sat-

isfy will be mentioned in detail in Section 5. Notice

that it is easily verified from Theorem 1 that, if the

above optimization problem is feasible at each sam-

pling instant, the original constraints (8) are satisfied

for all t ≥ 0. The proposed adaptive-type MPC al-

gorithm based on the above optimization problem and

the adaptive parameter estimation algorithm in Sec-

tion 3 is summarized as follows:

[Adaptive-type MPC algorithm]

Step 1: Measure the current state x(t) and then set

x̂t|t = x(t).

Step 2: Update the parameter θ(t) based on the adap-

tive parameter estimation algorithm in Section 3.

Step 3: Calculate νt+k|t and θ̂t+k|t using (18) and

(21).

Step 4: Determine ũt+k|t by solving AMPC optimiza-

tion problem.

Step 5: Apply the control u(t) = ût|t (=
K(θ(t))x(t) + ũt|t) to the real system.

Step 6: At the next time instant, let t← t+ 1 and go

to Step 1.

In the following section, feasibility and stability issues

of the proposed MPC scheme are described.

Remark 5: The following constraint given in (28)

wt+k+1|t = at+k|twt+k|t + b0gk + b1|ũt+k|t|

is a nonlinear with respect to ũt+k|t. By introducing

a new variable χt+k|t ∈ R, we can modify the above

constraint to

wt+k+1|t = at+k|twt+k|t + b0gk + b1χt+k|t,

|ũt+k|t| ≤ χt+k|t, wt|t = V (x(t)),
(37)

and the objective function J(x(t), ũt+k|t) to

J(x(t), χt+k|t) :=

N−1
∑

k=0

χT
t+k|tRχt+k|t. (38)

Then, the AMPC optimization problem is modified as

follows:

min
χ
J(x(t), χt+k|t)

subject to (18), (27), (32), (36) and (37). Notice that

the above optimization problem has only linear con-

straints and can be solved by the standard quadratic

programming (QP) method with free variables ũt+k|t

and χt+k|t.

5 Further study on feasibility and

stability

In the proposed AMPC optimization problem, we

introduced the additional constraint (36) for wt+k|t

in order to ensure the feasibility at all time in-

stants. The constant ω is a number satisfying ω ≥
max{V (x0), 1} and, on the other hand, the termi-

nal constraint wt+N |t ≤ 1 is adopted to guarantee

x(t+ T ) ∈ Xf for the real system. Although ω is de-

sired to be as large as possible for the feasibility at the

current time instant, it should be bounded to guarantee

feasibility at the next time instant, which is described

in the following assumption [11, 12, 13].

Assumption 3: The given ω (≥ max{V (x0), 1}) in

(36) satisfies

ων0cζ1 ≤
√

λ(P )

(

min
i
ψi − cζ2

)

− 1,

ων0(4ν0cξ1 + cξ2 + 2) ≤
√

λ(P ) (η − 4ν0cξ3 − cξ4)− ‖K0‖

where

cζ1 :=
∑N−1

s=0
‖ζ1(s)‖∞, cζ2 :=

∑N−1

s=0
‖ζ2(s)‖∞,

cξ1 :=
∑N−1

s=0
‖ξ1(s)‖, cξ2 :=

∑N−1

s=0
|K0ξ1(s)|,

cξ3 :=
∑N−1

s=0
‖ξ2(s)‖, cξ4 :=

∑N−1

s=0
‖K0ξ2(s)‖.

Notice that Assumption 3 is a sufficient condition for

Assumption 1 [11, 12, 13]. If Assumption 3 cannot

be satisfied for any ω ≥ max{V (x0), 1}, we need to

consider a smaller terminal set Xf or modify the term

K0 of the feedback gain in (26). It is also important to

notice that once the state is steered into the robustly

invariant constraint set Xf , the control law (26) is
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completely switched to the feedback law û = K(θ)x̂,

since it is the optimal control in Xf in terms of the

cost function in (35). That is, the control law of the

proposed method converges to the given feedback law

û = K(θ)x̂.

In the following, we describe the feasibility and sta-

bility issues of adaptive-type MPC method. The next

lemma is a key result to prove the ultimately bounded

stability (see Theorem 2 given later) and means that if

the proposed AMPC optimization problem is feasible

at time instant t, then it is also feasible at the next time

instant t+ 1.

Lemma 4: Assume that Assumption 3 is satisfied and

the AMPC optimization problem is feasible at the cur-

rent time instant t; i.e., there exists ũ which minimiz-

ing (35) subject to (18), (27), (28), (32) and (36) at

time t. Then, the following control sequence

ũt+k|t+1 =

{

ũ∗
t+k|t, k = 1, 2, · · · , N − 1,

0, k = N,
(39)

where ũ∗
t+k|t denotes the optimal solution determined

at time instant t, is one of the feasible solutions of the

AMPC optimization problem at the next time instant

t+ 1.

Proof. See Appendix E �

It is important to note that the feasible solution ũ of

the AMPC optimization problem ensures that the con-

straints on state and control given in (8) are fulfilled,

since the condition (32) in Theorem 1 is always satis-

fied. Then, the following key result is obtained based

on the above lemma.

Theorem 2: Suppose that Assumption 3 is satisfied

and the AMPC optimization for MPC is feasible at

t = 0. Then, the proposed adaptive-type MPC strat-

egy has the following properties.

(i) The AMPC optimization problem is feasible at any

time instant t > 0.

(ii) For any µ satisfying

µ >
b0

1− β0
, β0 :=

√

1− λ(Q)

λ̄(P )

there exists tc which guarantees

‖x(t)‖ ≤ µ
√

λ(P )
, ∀t ≥ tc. (40)

(iii) It is guaranteed that x(t) ∈ X and u(t) ∈ U for

any t ≥ 0.

0 5 10 15
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−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [sec]

d1 (t)

d2 (t)

Figure 1: Time trajectory of disturbance d(t)
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t=5 [sec]

t=15 [sec]

Figure 2: Upper bound νt+k|t over the prediction hori-

zon

Proof. See Appendix F �

It shows that the proposed adaptive-type MPC scheme

is feasible at all time instants, provided that it is feasi-

ble at t = 0, and is able to steer the state x into a ball

around the origin with radius of b0/((1−β0)
√

λ(P ))
without violating the constraint (8). In case that the

disturbance term d(t) is zero, the state is steered to

the origin [12].

6 Simulation example

In this section, we present a numerical example that

illustrates the features of the proposed adaptive-type

MPC scheme. Consider the following discrete-time

linear time-invariant system in controllable canonical

form.
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Figure 3: Time trajectory of the estimated parameter

θ(t)
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Figure 4: Time trajectory of control input u(t)

x(t+ 1) =

[

1 4
1 0

]

x(t) +

[

1
0

]

u(t)

+

[

0.08 0
0 0.08

]

d(t)

(41)

The initial state has been chosen equal to x0 =
[−2 1.7]T . We denote the uncertain parameter vec-

tor as θ∗ = [1 4]T and assume that the initial estimate

θ0 and the estimation error bound ν0 are given as fol-

lows:

θ0 = [0.8 4.15]T , ν0 = 0.251, (42)

which satisfy (6). The system (41) is affected by ran-

domly generated disturbance d(t) as shown in Fig 1

and the bound on the disturbance ‖d(t)‖ ≤ 0.37 is

given as a priori information. The constraints on con-

trol and state are

|u(t)| ≤ 9.35, |xi(t)| ≤ 2, i = 1, 2, (43)

and the terminal constraint is

Xf = {x(t) ∈ R
n : V (x(t)) ≤ 1}. (44)
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−0.5

0

0.5

1

1.5
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State x1

S
ta

te
 x

2

Terminal set

Ultimate
bound

Figure 5: Trajectory of system state x(t)

During the simulation, we have usedK0 and P chosen

as

K0 =
[

−0.8445 −4.0418
]

,

P =

[

0.1026 −0.0051
−0.0051 0.2026

]

.
(45)

We choose the length of prediction horizon as N =
20. For an adaptive parameter estimation algorithm,

we choose the estimation horizon asNe = 5 and other

design parameters as α = 0.3 and κ = 1.2.

The simulation results illustrated hereafter were

performed on a Pentium IV 3.2GHz machine running

Matlab 7.0. The average time required to determine a

control u(t) was 0.04[sec]. Fig 2 shows that since

the decay rate γ̄ is minimized at each time instant

as shown in Section 3, the predicted error bound ν·|t
based on (18) is minimized more rapidly than that

of the previous time instant, which has been men-

tioned in Lemma 2. The convergence of the esti-

mated parameters to their true values by the proposed

method in Section 3 is shown in Fig 3. In Fig 4,

the dotted line shows the upper bound for control

used at time instant t = 0[sec], which is calculated

based on the modified constraint set (30). Therefore,

at time instant t = 0, the future control sequence

K0x̂t+k|t + ût+k|t, which is denoted as the dashed

line, is predicted by solving the AMPC optimization

problem using the above modified upper bound. Then,

u(0) = K(θ(0))x(0)+ũ(0) is applied to the plant and

the same procedure is repeated at the next time instant

as mentioned in Section 4. In this figure, the solid line

shows the control trajectory u(t) applied to the real

system and it verifies that the control input obtained

by the proposed adaptive-type MPC strategy satisfies

the given constraints. When this control is used, we

obtain the state trajectory as shown in Fig 5. It veri-

fies that the state trajectory goes into a set smaller than

the terminal set as mentioned in Section 5.
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7 Conclusion

In this paper, we have proposed a discrete-time

adaptive-type model predictive control algorithm for

a class of linear systems with uncertain parameters

subject to both state-dependent disturbances and hard

constraints on state and control input. It updates the

estimate of system parameters on-line and produces a

control input satisfying the given constraints. In order

to construct such an adaptive-type MPC scheme, we

first introduce a parameter update algorithm based on

the moving horizon estimation method. It allows to

predict the worst-case estimation error bound over the

given prediction horizon. We then have incorporated

the estimation algorithm with a robust MPC method

based on the modified comparison models which are

extended to be applicable to the time-varying case.

Furthermore, we have shown that the proposed algo-

rithm guarantees feasibility and stability of the closed-

loop system in the presence of input/state constraints,

state-dependent disturbances and parameter estima-

tion error. As a future work, the assumption on the

system description in canonical form should be re-

laxed. Also, it is important to extend the results to the

output feedback case, though it is a difficult problem

even in the existing robust MPC framework.
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APPENDIX

Appendix A: Proof of Lemma 1

We first define Tmin as

Tmin :=

arg min
0≤ti≤t

√

λ((In − κF2(ti))T (In − κF2(ti)))

(46)

Then, f1(t) in the proposed estimation algorithm im-

plies that

f1(t) =















Tmin−Ne+1
∑

s=Tmin

x(s)xT (s)

α+

Tmin−Ne+1
∑

s=Tmin

xT (s)x(s)















θ∗ (47)

which also means that

f1(t) = f2(t)θ
∗. (48)

Therefore, we have from (12)

θ̃(t) = (In − κf2(t))θ̃(t− 1). (49)

Then, for ̟(θ̃(t)) := ‖θ̃(t)‖, we obtain

̟(θ̃(t))

=

√

θ̃T (t− 1)(In− κf2(t))T (In− κf2(t))θ̃(t− 1)

≤
√

λ((In − κf2(t))T (In − κf2(t))) ‖θ̃(t− 1)‖.
(50)

It follows from (16), (46) and (50) that

̟(θ̃(t)) ≤ γ(t)̟(θ̃(t− 1)). (51)

Thus, (17) is proved by induction.

Appendix B: Proof of Lemma 2

It follows from (18) that

νt+k+1|t+1 − νt+k+1|t

= γk(t+ 1)νt+1|t+1 − γk(t)νt+1|t.
(52)

Also, from (18), we have

νt+1|t+1 = ̟(θ̃(t+ 1)) ≤ νt+1|t. (53)

Since γ(t+ 1) ≤ γ(t) from (16), it follows from (53)

and (52) that

νt+k+1|t+1 − νt+k+1|t ≤ 0, k = 0, 1, · · · , N − 1.
(54)

Therefore, (19) is proved by (53) and (54).

Appendix C: Proof of Lemma 3

For x := Fx(t+k)+Bũt+k|t−Be(t+k)+Bdd(t+k),

V (x) =
√
xTP x as shown in (9). Then, the follow-

ing is satisfied.

V (x) =
√
xTP x

= ‖P 1

2 (Fx(t+ k) +Bũt+k|t −Be(t+ k))

+Bdd(t+ k)‖
≤ ‖P 1

2Fx(t+ k)‖ + ‖P 1

2Bd(t+ k)‖
+‖P 1

2Bdd(t+ k)‖+ ‖P 1

2Bũt+k|t‖
(55)

Then, since e(t + k) ∈ E, d(t + k) ∈ D and
√

λ(P )‖x‖ ≤ V (x), the followings hold.

‖P 1

2Fx(t+ k)‖ =
√

xT (t+ k)F TPFx(t+ k)

=
√

xT (t+ k)(P −Q)x(t+ k)

=
√

V 2(x(t+ k))− xT (t+ k)Qx(t+ k)

≤ V (x(t+ k))

√

1− λ(Q)

λ(P )
,

(56)

‖P 1

2Be(t+ k)‖ ≤ σ(P 1

2B)‖e(t+ k)‖
≤ σ(P 1

2B)νt+k|t‖x(t+ k)‖

≤
σ(P

1

2B)νt+k|t
√

λ(P )
V (x(t+ k))

(57)
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‖P 1

2Bdd(t+ k)‖

≤
{

‖P 1

2Bd‖‖d(t)‖, for k = 0,

‖P 1

2Bd‖, for k = 1, · · · , N − 1.
(58)

Thus, it follows from (55), (56) (57) and (58) that

V (x) ≤
(√

1− λ(Q)

λ(P )
+
σ(P

1

2B)νt+k|t
√

λ(P )

)

×V (x(t+ k)) + ‖P 1

2Bd‖gk + ‖P
1

2B‖|ũt+k|t|
= at+k|tV (x(t+ k)) + b0gk + b1|ũt+k|t|.

(59)

Therefore, (29) is shown from (28) and (59) by an in-

ductive method.

Appendix D: Proof of Theorem 1

From (23) and (27), we have

x(t+ k + 1) = F k+1x(t)−
k
∑

s=0

F sBe(t+ k − s)

+
k
∑

s=0

F sBdd(t+ k − s) +
k
∑

s=0

F sBũt+k−s|t,

(60)

x̂t+k+1|t = F k+1x(t)+F kBdd(t)+

k
∑

s=0

F sBũt+k−s|t.

(61)

It follows from (24), (28) and Lemma 3 that

|xi(t+ k + 1)− x̂i,t+k+1|t|

≤
k
∑

s=0

|ζ1i(s)e(t+ k − s)|

+
k−1
∑

s=0

|ζ2i(s)d(t+ k + 1− s)|

≤
k
∑

s=0

|ζi(s)|
νt+k−s|twt+k−s|t

√

λ(P )
+

k−1
∑

s=0

‖ζ2i(s)‖.

(62)

Therefore, from (30) and (62),

|xi(t+ k + 1)|
≤ |x̂i,t+k+1|t|+ |xi(t+ k + 1)− x̂i,t+k+1|t|
≤ |x̂i,t+k+1|t|+ ψ̂i(t+ k + 1, ν·|t, w·|t) ≤ ψi.

(63)

This implies that any ũt+k|t which satisfies x̂t+k+1|t ∈
X̂(t + k + 1, ν·|t, w·|t) also satisfies x(t + k + 1) ∈
X in the presence of all possible e(t + k) ∈ E and

d(t + k) ∈ D. Similarly, from (22) and (26), the

following holds.

|u(t+k)−ût+k|t| ≤ |K(θ̂t+k|t)(∆e(t+k)+∆d(t+k))|
(64)

where

∆e(t+ k) := −
k
∑

s=0

F s−1Be(t+ k − s),

∆d(t+ k) :=

k
∑

s=0

F s−2Bdd(t+ k + 1− s).

It follows from (24), (28) and Lemma 3 that

|K(θ̂t+k|t)∆e(t+ k)|

≤
k
∑

s=0

|K(θ̂t+k|t)F
s−1B|‖e(t+ k − s)‖

≤
k
∑

s=0

|(θ̂Tt+k|t + θT0 )F
s−1B|‖e(t+ k − s)‖

+

k
∑

s=0

|K0F
s−1B|‖e(t+ k − s)‖

≤
k
∑

s=0

(νt+k|t + ν0)‖F s−1B‖‖e(t+ k − s)‖

+

k
∑

s=0

|K0F
s−1B|‖e(t+ k − s)‖

≤ (νt+k|t + ν0)

k
∑

s=0

‖ξ1(s)‖
νt+k−s|twt+k−s|t

√

λ(P )

+

k
∑

s=0

|K0ξ1(s)|
νt+k−s|twt+k−s|t

√

λ(P )
.

(65)

and

|K(θ̂t+k|t)∆d(t+ k)|

≤
k
∑

s=0

‖K(θ̂t+k|t)F
s−2Bd‖‖d(t + k + 1− s)‖

≤
k
∑

s=0

(

‖(θ̂Tt+k|t + θT0 )F
s−2Bd‖+ ‖K0F

s−2Bd‖
)

≤
k
∑

s=0

(

(νt+k|t + ν0)‖F s−2Bd‖+ ‖K0F
s−2Bd‖

)

≤ (νt+k|t + ν0)

k
∑

s=0

‖ξ2(s)‖+
k
∑

s=0

‖K0ξ2(s)‖.

(66)
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Therefore, from (31), (65) and (66), we have

|u(t+ k)| ≤ |ût+k|t|+ |u(t+ k)− ût+k|t|
≤ |ût+k|t|

+

k
∑

s=0

(

|K0ξ1(s)|
νt+k−s|twt+k−s|t

√

λ(P )
+ ‖K0ξ2(s)‖

)

+ (νt+k|t + ν0)

k
∑

s=0

‖ξ1(s)‖
νt+k−s|twt+k−s|t

√

λ(P )

+ (νt+k|t + ν0)

k
∑

s=0

‖ξ2(s)‖

(67)

Also, it follows from (26) that

|ût+k|t| ≤ |K0x̂t+k|t+ũt+k|t|+|(−θ̂Tt+k|t+θ
T
0 )x̂t+k|t|.

(68)

From (61) and Lemmas 1 and 3, the last term of (68)

can be written as follows

|(−θ̂T
t+k|t + θT0 )x̂t+k|t|

≤ (νt+k|t + ν0)

k
∑

s=0

‖x(t+ k)‖

+(νt+k|t + ν0)

k
∑

s=0

‖F s−1B‖‖e(t+ k − s)‖

+(νt+k|t + ν0)

k
∑

s=0

‖F s−2Bd‖‖d(t + k + 1− s)‖

≤ (νt+k|t + ν0)
wt+k|t
√

λ(P )
+ (νt+k|t+ν0)

×
k
∑

s=0

(

‖ξ1(s)‖
νt+k−s|twt+k−s|t

√

λ(P )
+‖ξ2(s)‖

)

.

(69)

Therefore, from (67), (68) and (69), it follows that

|u(t+ k)| ≤ |K0x̂t+k|t + ũt+k|t|
+2(νt+k|t+ν0)

×
k
∑

s=0

(

‖ξ1(s)‖
νt+k−s|twt+k−s|t

√

λ(P )
+‖ξ2(s)‖

)

+

k
∑

s=0

(

|K0ξ1(s)|
νt+k−s|twt+k−s|t

√

λ(P )
+ ‖K0ξ2(s)‖

)

+(νt+k|t + ν0)
wt+k|t
√

λ(P )

= |K0x̂t+k|t + ũt+k|t|+ η̂(t+ k, ν·|t, w·|t) ≤ η
(70)

This implies that any ũt+k|t satisfying (32) also satis-

fies (33) for all possible d(t+ k) ∈ D.

Appendix E: Proof of Lemma 4

In order to prove Lemma 4, we use the following two

facts, Lemmas 5 and 6.

Lemma 5: For a given trajectory ũ∗
t+k|t, k =

0, 1, · · · , N − 1, and

ũt+k|t+1 = ũ∗t+k|t, k = 1, 2, · · · , N − 1, (71)

the scalar system (28) satisfies

wt+k|t+1 ≤ wt+k|t, k = 1, 2, · · · , N − 1. (72)

Proof: From (28) and Lemma 2, it follows that

at+k|t+1 ≤ at+k|t. (73)

Therefore, we have

wt+k+1|t+1 − wt+k+1|t

= at+k|t+1wt+k|t+1 − at+k|twt+k|t

≤ at+k|t(wt+k|t+1 − wt+k|t)

(74)

where k = 1, 2, · · · , N − 1. Since wt+1|t+1 =
V (x(t + 1)) ≤ wt+1|t from (28) and Lemma 3, it

follows from (74) that

wt+k+1|t+1 − wt+k+1|t ≤ 0

where k = 1, 2, · · · , N − 1. Thus (72) is proved. �

Lemma 6: Assume a predicted trajectory w·|t in (28)

satisfies

wt+k|t ≤ ω, k = 0, 1, · · · , N (75)

under ũt+k|t at the current time t. Then, for the control

ũt+k|t+1, k = 1, 2, · · · , N − 1, in (39), we have

ψ ≤ ψi − ψ̂i(t+ k + 1, ν·|t+1, w·|t+1) (76)

and

η ≤ ηi − η̂(t+ k, ν·|t+1, w·|t+1) (77)

at the next time instant t+ 1 where

ψ := max
i
ψi −

ων(t)cζ1
√

λ(P )
− cζ2

η := η − ω
√

λ(P )

×
(

(ν(t) + ν0)(2ν(t)cξ1 + 1) + ν(t)cξ2
)

−2(ν(t) + ν0)cξ3 − cξ4
(78)
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Proof: From (18), (75) and the definition of ψ̂i in (31),

min
i
ψi+ψ̂i(t+k+1, ν·|t, w·|t) ≤ ψi+

ων(t)cζ1
√

λ(P )
+cζ2

(79)

which implies

ψ ≤ ψi − ψ̂i(t+ k + 1, ν·|t, w·|t). (80)

Also, from (31) and Lemmas 2 and 5, it follows that

ψ̂i(t+k+1, ν·|t+1, w·|t+1) ≤ ψ̂i(t+k+1, ν·|t, w·|t).
(81)

Thus (76) is proved by (80) and (81).

Similarly, from the definition of η̂ in (31),

η + η̂(t+ k, ν·|t, w·|t) ≤ η +
ν(t)ω
√

λ(P )
cξ2 + cξ4

+ (ν(t) + ν0)

(

2ν(t)ω
√

λ(P )
cξ1 + 2cξ3 +

ω
√

λ(P )

)

(82)

which implies

η ≤ η − η̂(t+ k, ν·|t, w·|t). (83)

Also, from (31), Lemmas 2 and 5, it follows that

η̂(t+ k, ν·|t+1, w·|t+1) ≤ η̂(t+ k, ν·|t, w·|t). (84)

Thus (77) is proved by (83) and (84). �

Based on the results above, we first prove the feasibil-

ity of ũt+k|t+1 for k = 1, 2, · · · , N − 1 in (39). From

(39) and (61), x̂t+k+1|t+1 is described as

x̂t+k+1|t+1

= F kx(t+ 1)

+

k−1
∑

s=0

F sBũt+k−s|t+1 + F k−1Bdd(t+ 1)

= F kx(t+ 1)

+

k−1
∑

s=0

F sBũ∗t+k−s|t + F k−1Bdd(t+ 1)

= F kx̂t+1|t

+

k−1
∑

s=0

F sBũ∗t+k−s|t + F k(x(t+ 1)− x̂t+1|t)

+F k−1Bdd(t+ 1)

= x̂t+k+1|t + F k(x(t+ 1)− x̂t+1|t)

+F k−1Bdd(t+ 1).
(85)

Thus, from (60) and (61), it follows that

x̂t+k+1|t+1 = x̂t+k+1|t−F kBe(t)+F k−1Bdd(t+1).
(86)

Therefore, from e(t) ∈ E, d(t) ∈ D and Lemma 3,

|x̂i,t+k+1|t+1|+ ψ̂i(t+ k + 1, ν·|t+1, w·|t+1)

≤ |x̂i,t+k+1|t|+ |ζ1i(k)|
ν(t)w(t)
√

λ(P )

+ |ζ2i(k)d(t+ 1)| + ψ̂i(t+ k + 1, ν·|t+1, w·|t+1)

≤ |x̂i,t+k+1|t|+ |ζ1i(k)|
ν(t)w(t)
√

λ(P )
+ ‖ζ2i(k)‖

+ ψ̂i(t+ k + 1, ν·|t+1, w·|t+1).
(87)

From the definition of ψ̂i in (31) and Lemmas 2 and

5,

ψ̂i(t+ k + 1, ν·|t+1, w·|t+1)

=

k−1
∑

s=0

(

|ζ1i(s)|
νt+k−s|t+1wt+k−s|t+1

√

λ(P )
+ ‖ζ2i(s)‖

)

≤
k−1
∑

s=0

(

|ζ1i(s)|
νt+k−s|twt+k−s|t

√

λ(P )
+ ‖ζ2i(s)‖

)

= ψ̂i(t+ k + 1, ν·|t, w·|t)

− |ζi(k)|
ν(t)w(t)
√

λ(P )
− ‖ζ2i(k)‖.

(88)

Therefore, from (87) and (88),

|x̂i,t+k+1|t+1|+ ψ̂i(t+ k + 1, ν·|t+1, w·|t+1)

≤ |x̂i,t+k+1|t|+ ψ̂i(t+ k + 1, ν·|t, w·|t).
(89)

This implies that, if the solution ũ∗
t+k|t satisfies

x̂t+k+1|t ∈ X̂(t+ k + 1, ν·|t, w·|t) (90)

at the current time t, then ũt+k|t+1 in (39) satisfies

x̂t+k+1|t+1 ∈ X̂(t+ k + 1, ν·|t+1, w·|t+1) (91)

where k = 1, 2, · · · , N −1 at the next time step t+1.

Likewise, from (39) and (86), it follows that

ũt+k|t+1 +K0x̂t+k|t+1

= ũ∗
t+k|t +K0x̂t+k|t −K0F

k−1Be(t)

+K0F
k−2Bdd(t+ 1)

(92)
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Thus, from (30) and (92),

|ũt+k|t+1 +K0x̂t+k|t+1|+ η̂(t+ k, ν·|t+1, w·|t+1)

≤ |ũ∗
t+k|t +K0x̂t+k|t|+ |K0ξ1(k)|

ν(t)w(t)
√

λ(P )

+ |K0ξ2(k)d(t + 1)| + η̂(t+ k, ν·|t+1, w·|t+1)

≤ |ũ∗
t+k|t +K0x̂t+k|t|+ |K0ξ1(k)|

ν(t)w(t)
√

λ(P )

+ ‖K0ξ2(k)‖ + η̂(t+ k, ν·|t+1, w·|t+1).
(93)

From the definition of η̂ in (31), Lemmas 2 and 5,

η̂(t+ k, ν·|t+1, w·|t+1)

≤ 2(νt+k|t+ν0)

×
k−1
∑

s=0

(

‖ξ1(s)‖
νt+k−s|twt+k−s|t

√

λ(P )
+‖ξ2(s)‖

)

+

k−1
∑

s=0

(

|K0ξ1(s)|
νt+k−s|twt+k−s|t

√

λ(P )
+ ‖K0ξ2(s)‖

)

+ (νt+k|t + ν0)
wt+k|t
√

λ(P )

= η̂(t+ k, ν·|t, w·|t)

− 2(νt+k|t + ν0)

(

‖ξ1(k)‖
ν(t)w(t)
√

λ(P )
+ ‖ξ2(k)‖

)

−
(

|K0ξ1(k)|
ν(t)w(t)
√

λ(P )
+ ‖K0ξ2(k)‖

)

.

(94)

Therefore, from (93) and (94),

|ũt+k|t+1 +K0x̂t+k|t+1|+ η̂(t+ k, ν·|t+1, w·|t+1)

≤ |ũ∗
t+k|t +K0x̂t+k|t|+ η̂(t+ k, ν·|t, w·|t)

− 2(νt+k|t + ν0)

(

‖ξ1(k)‖
ν(t)w(t)
√

λ(P )
+ ‖ξ2(k)‖

)

≤ |ũ∗
t+k|t +K0x̂t+k|t|+ η̂(t+ k, ν·|t, w·|t).

(95)

Thus, if ũ∗
t+k|t, k = 0, 1, · · · , N − 1, satisfies

ũ∗t+k|t +K0x̂t+k|t ∈ Û(t+ k, ν·|t, w·|t), (96)

then ũt+k|t+1, k = 1, 2, · · · , N − 1, satisfies that

ũt+k|t+1 +K0x̂t+k|t+1 ∈ Û(t+ k, ν·|t+1, w·|t+1).
(97)

Moreover, it is clear from Lemma 5 that if the con-

straint wt+k|t ≤ ω, k = 0, 1, · · · , N − 1, is satisfied,

then

wt+k|t+1 ≤ ω, k = 1, 2, · · · , N − 1, (98)

which conclude the proof for the feasibility at k =
1, 2, · · · , N − 1. Notice that, similarly to (98), it fol-

lows from wt+N |t ≤ 1 and Lemma 5 that

wt+N |t+1 ≤ 1. (99)

Next, we prove

wt+N+1|t+1 ≤ 1 (100)

as follows: From (28) and Assumption 2, wt+N+1|t+1

is decreasing for ũt+N |t+1 = 0. Therefore, (100) is

obviously satisfied from (99). Note that for the same

ω satisfying Assumption 3, the following conditions

are also satisfied.

ων(t)cζ1 ≤
√

λ(P )

(

min
i
ψi − cζ2

)

− 1,

ω
(

(ν(t) + ν0)(2ν(t)cξ1 + 1) + ν(t)cξ2
)

≤
√

λ(P ) (η − 2(ν(t) + ν0)cξ3 − cξ4)− ‖K0‖,
(101)

which are the sufficient conditions for Assumption 1

[11, 12]. It can be easily verified using the result of

Section 3; i.e., ν(t) ≤ ν0 is guaranteed for t ≥ 0.

Since the above condition (101) can be rewritten as

1 ≤ ψ
√

λ(P ) and ‖K0‖ ≤ η
√

λ(P ) by using ψ and

η in Lemma 6, we have

|xi| ≤ ‖x‖ ≤
1

√

λ(P )
≤ ψ,

|K0x| ≤
‖K0‖
√

λ(P )
≤ η, ∀x ∈ Xf .

(102)

Since it is clear from (100) and Lemma 3 that

x̂t+N+1|t+1 ∈ Xf , we have

x̂t+N+1|t+1 ∈ X̂(t+ k + 1, ν·|t+1, w·|t+1),

K0x̂t+N+1|t+1 ∈ Û(t+ k, ν·|t, w·|t)
(103)

from (102) and ũt+N |t+1 = 0. Therefore, (100) and

(103) prove the feasibility for k = N , which con-

cludes the proof.

Appendix F: Proof of Theorem 2

We show (i) by induction. The AMPC optimization

problem is feasible at t = 0 by the assumption. As-

sume now it is feasible at each t = i (i = 1, · · · , k).
Then, from Lemma 4, the AMPC optimization prob-

lem is feasible at t = i+1. Therefore (i) is proved. In

order to prove (ii), we next show that the optimal cost

J(x(t), ũ∗) is nonincreasing. At the time step t + 1,

the feasible solution in Lemma 4 satisfies

J(x(t+ 1), ũt+k|t+1) ≤ J(x(t), ũ∗t+k|t) (104)
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since

J(x(t+ 1), ũt+k|t+1)− J(x(t), ũ∗t+k|t)

=
N
∑

k=1

ũTt+k|t+1
Rũt+k|t+1 −

N−1
∑

k=0

ũ∗Tt+k|tRũ
∗
t+k|t

= −ũ∗T
t|tRũ

∗
t|t ≤ 0.

(105)

It also holds that

J(x(t+ 1), ũ∗t+k|t+1
) ≤ J(x(t), ũt+k|t+1) (106)

from the optimality of J(x(t + 1), ũ∗
t+k|t+1

). From

(104)and (106), the optimal cost is nonincreasing; i.e.,

J(x(t+ 1), ũ∗t+k|t+1
) ≤ J(x(t), ũ∗t+k|t). (107)

Since the optimal cost is nonincreasing and bounded

by 0 from below, it satisfies J(x(t+1), ũ∗
t+k|t+1

)→ c

as t →∞ for a constant c ≥ 0. This implies that, for

each ǫ > 0, there exists tǫ ≥ 0 such that

0 ≤ J(x(t), ũ∗t+k|t)− J(x(t+ 1), ũ∗t+k|t+1
) < ǫ

(108)

for ∀t ≥ tǫ. But, from (104), (105) and (106), we have

ũ∗T
t|tRũ

∗
t|t = J(x(t), ũ∗

t+k|t)− J(x(t+ 1), ũt+k|t+1)

≤ J(x(t), ũ∗
t+k|t)− J(x(t+ 1), ũ∗

t+k|t+1
).

(109)

Thus, (108) and (109) imply

ũ∗t|t → 0 as t→∞. (110)

On the other hand, νt|t → 0 as t → ∞ from (18).

Hence, given ǫu and ǫν satisfying

b0 + b1ǫc
1− β0 − β1ǫν

< µ (111)

for µ > b0/(1 − β0), we can choose tǫ such that

|ũ∗t|t| ≤ ǫu, νt|t ≤ ǫν , ∀t ≥ tǫ. (112)

From (59), (112) and Lemma 2, it follows that

V (x̄) ≤ at|tV (x(t)) + b0 + b1|ũ∗t|t|
≤ (β0 + β1ǫν)V (x(t)) + b0 + b1ǫu

= âV (x(t)) + b̂

(113)

for ∀t ≥ tǫ where â := β0 + β1ǫν and b̂ := b0 + b1ǫc.
Thus, it is satisfied that

V (x(tǫ + k)) ≤ âkV (x(tǫ)) +

k−1
∑

s=0

âsb̂

= âkV (x(tǫ)) +
b̂(1 − âk)
1− â

(114)

and the right-hand side of (114) converges to b̂/(1−â)
as k → ∞. Therefore, from (111) and (114), there

exists a finite time tc (≥ tǫ) satisfying

V (x(t)) ≤ µ, ∀t ≥ tc (115)

Thus, (40) follows from (115). Finally, we prove (iii).

It is easily verified that the feasible solution ũt+k|t+1

of the AMPC optimization problem in Lemma 4 en-

sures that the constraints on state and control given in

(8) are fulfilled, since the condition (32) in Theorem 1

is always satisfied.
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