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Abstract: Control of permanent magnetic actuators is not an easy task because of the presence of the nonlinear
quadratic terms of the currents. In order to achieve a suitable controlled dynamics canceling the effect of the
nonlinearity, a new control strategy has been conceived. The proposed strategy combines the geometric eigenvector
concept through a pre-compensation action and a Model Predictive Control (MPC) strategy. The pre-compensation
action is conceived through an input partition matrix based on the eigenvector concept. It is known that each
eigenvector represents an invariant subspace for the system and this property is useful to realize a very simple
control technique which is able to speed up the controlled dynamics without incurring oscillations. This technique
can be applied to a large variety of actuators. Simulation results are reported to validate the proposed strategy.
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1 Introduction and motivations

In the past three decades, research on the geometric
approach to dynamic systems theory and control has
allowed the development of instruments and has be-
come a powerful and a thorough tool for the anal-
ysis and synthesis of dynamic systems [1], [2], [3].
Over the same time period, mechanical systems used
in industry and developed in research labs have also
evolved rapidly. Interests in robust control by using
geometric approach have been developed during the
last few years [4, 5, 6]. Recently, the interest in this
topic has increased in theoretical aspects and applica-
tions as well, see for instance [7, 8], particulary on
problems like non-interaction and noise localization,
see [9]. As an important mechatronic component,
electromagnetic actuators are used in many industrial
applications, in particular in automotive and produc-
tion systems. In production systems they are used
for movements and precise positioning. Mechanical
or hydraulic-mechanical components have been re-
placed by electromagnetic actuators due to their high
efficiency, excellent dynamic behavior and small size.
Generally, there is a large variety of different elec-
tromagnetic actuators for motions. For long strokes,
AC linear motor concepts are often preferred while
for micro and nanometer applications special designs
based on piezoelectric or magnetostrictive principles
have been frequently investigated. However, for mov-

ing distances between 5 and 15 mm, DC linear mo-
tors (especially using permanent magnets as excita-
tion) have been proven to be advantageous in indus-
trial applications. Particular applications using elec-
tromagnetic actuators are presented in [10], [11], and
[12] in which different kinds of actuators are used to
generate movement of valves for engine applications.
Linear actuators play a very important role in conceiv-
ing new mechanisms and applications in the actuator
theory field. This paper proposes a method based on
a geometric approach which, moreover, involves the
concept of the eigenvectors generating a very simple
controller structure. The idea consists of using eigen-
vectors as structural invariant subspaces to preselect
a suitable controlled subspace. To show the effec-
tiveness of this approach, the paper considers using
a position controller for a linear electromagnetic ac-
tuator used for industrial applications to move a mass
with a high precision. A controller based on a con-
trolled invariant subspace cancels the current nonlin-
earity. The presented actuator can be described by
using four state variables. The system is nonlinear
and time varying. In particular, the nonlinearities con-
sist of quadratic current terms i21(t)− i22(t) and non-
linear induced voltages uq(t). Because of the spe-
cial form of the current nonlinearity it is possible to
eliminate, or at least to reduce the nonlinearity by us-
ing a controller based on a controlled invariant sub-
space. In [13] the authors considered the same prob-
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lem, and they proposed a solution based on the de-
coupling and thus considered transforming two con-
trolled invariant subspaces into two constrained con-
trolled invariant subspaces. Therefore the proposed
method in [14] represents an enhancement of that pro-
posed in [13] realizing a very simple controller struc-
ture which is based on the idea of transforming a
unique controlled invariant subspace into an invari-
ant one. This paper considers the results presented
in [13] and improves them using the eigenvectors of
the matrix describing the dynamics of the actuator. A
pre-compensation control structure, which is able to
speed up the controlled output without incurring os-
cillations of the controlled output, is considered. In
drive and actuator systems as well as in electrical ma-
chines the nonlinearities play a crucial role in the de-
sign of the controller. In practical applications, to
achieve stability and moreover an acceptable ratio of
convergence of a tracking problem, complex control
structures are often the result from the controller anal-
ysis design. The idea is to utilize the linear predic-
tion algorithm to obtain the tracking. However, the
computation burden in solving the optimization prob-
lem on-line usually limits the MPC applications by
slow dynamic systems [15]. Recently the study of ap-
plying MPC to mechatronic systems for servo design
draws much interest from many researchers, owing to
the emerging development of microprocessor technol-
ogy, as in [16] and also in different fields of the control
engineering as in [17], [18] and [19]. Moreover, var-
ious advanced techniques integrating with MPC for
performance improvement [20], have also rapidly de-
veloped. The two control structures, geometric con-
troller and MPC are organised in a cascade form. The
resulting controller can be seen as a two stage con-
troller in which the first stage consists of a geomet-
ric control law which cancels the nonlinearity of the
electrical system. In the second stage of the con-
trol structure, an MPC is used to predict the output
to be tracked. The advantage of this combination
consists of an improvement of the dynamic perfor-
mances, as shown by the computer simulations, and
in the mean time, by using a geometric controller in
the first stage of the control structure a linearising ac-
tion is performed. Therefore a linear MPC is applica-
ble with its exact off-line optimal solution and an On-
line optimisation problem can be avoided. The paper
is organized in the following way. Section 2 is de-
voted to the model description. Section 3 shows the
problem statement. Section 4 shows a possible pro-
cedure to cancel the nonlinearity in the actuator and
presents the procedure which uses the eigenvectors
and eigenvalues to speed up the dynamics of the whole
actuator using a pre-controller structure. Section 5
shows a Model Predictive Controller (MPC) which

represents the main regulator of the actuator. The
simulation results and conclusions close the paper.

The main nomenclature
uin(t): input voltage vector
i(t): coil current vector
x(t): position of the armature
ẋ(t) = v(t): velocity of the armature
uq(t): induced voltage vector
Rc: coil resistance
Lc: coil inductance
Bg: magnetic flux density vector
ΘM: magnetic voltage sources of the permanent
magnets
ΘCoil = ΘCoil1+ΘCoil2: magnetic voltage source
of both coils
FL(t): Lorentz force
F0(t): disturbance force
A: state matrix of the electrical model
B: input matrix of the electrical model
B = imB: image of matrix B
(subspace spanned by the columns of matrix B)
Aw: state matrix of the whole actuator linearized
model
Bw: input matrix of the whole actuator lin-
earized model
Bw = imBw: image of matrix Bw

(subspace spanned by the columns of matrix
Bw)
Vw: eigenvectors of matrix Aw

minI (A,B) = ∑n−1
i=0 AiimB: minimum A–

invariant subspace containing im(B)
F: decoupling feedback gain matrix
Si: decoupling input partition matrix with
i = 1,2.
Si = imSi: image of matrix Si with i = 1,2.
(subspace spanned by the columns of matrix Si)
Sp: eigenvector input partition matrix
Sp = imSp: image of matrix Sp

(subspace spanned by the columns of matrix Sp)
I : invariant subspace
Ii: currents matrix with i = 1,2.
Ci: image of the current subspaces with i = 1,2.
RIi : minimum current invariant subspace with
i = 1,2.
x f : discrete state vector
Awk: discrete state matrix of the whole actuator
linearized model
Bwk: discrete input matrix of the whole actuator
linearized model

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Paolo Mercorelli

E-ISSN: 2224-2856 141 Volume 9, 2014



2 Model description

The geometry of the considered linear motor is given
in Fig. 1. The device consists of an outer and an inner
iron part. Permanent magnets are mounted on top of
the inner iron bar. Their polarization is indicated by
the element arrows. The actuator’s coils are attached
to the outer iron. Each coil is equipped with a separate
voltage input. For controller design purposes the dy-
namical model of the linear motor must be identified.

2.1 The electrical system

Figure 2 demonstrates the equivalent electrical circuit
diagram of the actuator’s coils. The electrical system

ferromagnetic
material,e.g. iron

permanent
magnets

coil

ferromagnetic
material, e.g. iron

permanent
magnet

coil

Figure 1: Geometry of the actuator, front (top) and
side section (bottom).

of the coils is generally given by:

uin(t) = Rci(t)+Lc
di(t)

dt
+uq(t),

where uin(t) represents the input voltage vector, i rep-
resents the coil current vector and Rc and Lc the re-
sistance and the inductance of the coil windings. The
induced voltages uq(t) = lv(t)Bg are generated due to
the armature speed v(t). Parameter l represents the

uq

Lc

uin

Rc

<
i

Figure 2: Equivalent electrical circuit diagram.

coil length and Bg represents the magnetic flux den-
sity vector in the air gap. From Fig. 1 it is easy to see
that:

Bg =
[

Bg1 Bg2
]T

,

where Bg1 = −Bg2. A vectorial expression of the
induced voltage is not required since the geometry
boundaries are quadratical, see Fig. 1. Finite-element
simulations prove that considering a quarter of the ge-
ometry is sufficient for modeling the magnetic system
of the actuator (see Fig. 3). Thus, taking into account
all self and coupling inductances and reducing the ge-
ometry only to two coils (quarter of geometry), the
electrical system of Eq. (1) can be derived: di1(t)

dt
di2(t)

dt

=

 − Rc
Lc1Lc5

RcLc2
Lc1Lc3Lc5

RcLc4
Lc1Lc3Lc5

− Rc
Lc3Lc5

 i1(t)

i2(t)

+
 1

Lc1Lc5
− Lc2

Lc1Lc3Lc5

− Lc4
Lc1Lc3Lc5

1
Lc3Lc5

 uin1(t)−uq1(t)

uin2(t)−uq2(t)

 ,

(1)

with

Lc1 = L11 +L41; Lc2 = L21 +L31

Lc3 = L22 +L32; Lc4 = L12 +L42

Lc5 = 1− Lc2Lc4
Lc1Lc3

,

(2)

where L11 and L12 are the self-inductances of coil 1
and coil 2. The remaining inductances in Eqs. (2)
represent the coupled inductances among the coils.

2.2 The magnetic system

Figure 3 represents the reduced, quarter geometry as
well as its equivalent magnetic circuit diagram (com-
pare with geometry, Fig. 1). The expressions ΘM and
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Figure 3: Quarter of the geometry and equivalent
magnetic circuit diagram.

ΘCoil represent the magnetic voltage sources of the
permanent magnets and the coils. The magnetic re-
sistances of the air gap, the iron parts, the coil and the
permanent magnets are expressed by term Rm. The
magnetic flux through the equivalent elements is rep-
resented by Φ. The element ΘCoil = ΘCoil1 +ΘCoil2
represents the magnetic voltage source of both in-
volved coils, where ΘCoil1 = i1N and ΘCoil2 = i2N,
with N as the number of windings. ΘM represents
the magnetic voltage source of the permanent mag-
nets ΘM = 2Hchm, where Hc is the coercive field and
hm the thickness of the permanent magnets in direc-
tion of the magnetic flux Φ. The calculation of all
magnetic resistances is based on the well-known re-
luctance equation

Rm =
lm
µS

, (3)

where lm represents the length of the magnetic circuit,
µ is its magnetic permeability and S represents the
surface involved in the magnetic circuit. The reluc-
tance of the iron parts, the coils and the air gaps are
merged into single circuit elements (see Fig. 3). The
leakage flux reluctance Rmσ is derived from Finite-
Element simulations. Solving the magnetic circuit
leads to the magnetic fluxes through the circuit ele-
ments from which the magnetic flux density Bg in the
air gap can be derived. One possibility to obtain the
solution is the use of superposition. Therefore, only
one magnetic voltage source is active at any time in or-
der to calculate the magnetic fluxes within the network
(Fig. 3). It is known that the superposition is appli-
cable to linear systems only. Since nonlinear satura-
tion effects are supposed to be implemented, a model
based on superposition delivers correct results only
for the linear range of the reluctance. Nevertheless,

in order to involve nonlinear effects we designed an
iterative equation system which determines linearized
reluctance data for each magnetic flux calculation se-
quence.

2.3 The mechanical system

The mechanical model of the actuator is given by:

ẍ(t) =
FL(t)−Ff ric(t)+F0(t)

m
, (4)

where x(t) is the position of the armature. Ff ric(t) =
kd ẋ(t) is the friction force and F0(t) is the disturbance
force acting on the armature. The mass of the ar-
mature is given by m. The Lorentz force FL(t) =
l(i1(t)Bg1 + i2(t)Bg2) is determined by the electrical
and by the magnetic system. Assuming quadratically
shaped geometry boundaries as shown in Fig. 1, the
scalar Lorentz force expression is applicable. Using
superposition, the Lorentz force expression can be for-
mulated as:

FL(t)=
2l

ACoil

(
N(i21(t)− i22(t))

RmRes1
+g(t)(i1(t)− i2(t))

)
,

(5)
where RmRes1 is the magnetic resistance of the equiv-
alent circuit (Fig. 3) with a short-cut voltage source
ΘM . ACoil represents the coil area in flux direction.
Expression g(t) substitutes

g(t) =
(

Rmσ Φσ2

RmAir +RmCoil +RmFeo

)
, (6)

where Φσ2 is the leakage flux generated by the perma-
nent magnets. g(t) is time varying since RmFeo is sub-
ject to saturation effects. The presented system model
was validated with finite-element programs. The
modelling technique can be considered as a paradigm
for similar actuator systems.

3 Problem statement

The nonlinear influence of term N(i21(t)− i22(t)) in Eq.
(5) can be easily seen. It is obvious that this nonlin-
earity leads to problems of control. In this paper the
following problem can be defined:

• To control state variables i1(t) and i2(t) so that
i2(t) =−i1(t).

In so doing, the nonlinear term N(i21(t)− i22(t)) in Eq.
(5) is canceled. The electrical model part of the sys-
tem described in Eq. (1) is linear and the following
problem can be formulated.
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Problem 1 (Invariance) Given the system repre-
sented by Eq. (1), under the assumption uq(t) = 0
determine, if possible, a state feedback u(t) = Fi(t)
and an input partition matrix Si such that,

• for state vector i(t) (i1(t) and i2(t)), and two ref-
erence identical input functions r(t), the follow-
ing relationship

i1(t) =−i2(t) (7)

holds.

�

Remark 1 Condition (7) allows the cancellation
of the nonlinearity of the actuator as stated in (5).
The idea is to realize condition (7) as a permanent
working condition of the actuator. �

Given the dynamic system in Eq. (1) of a permanent
magnetic actuator, and let

A =

[
− Rc

Lc1Lc5

RcLc2
Lc1Lc5Lc5

RcLc4
Lc1Lc3Lc5

− Rc
Lc3Lc1

]
; (8)

B =

[
1

Lc1Lc5
− Lc2

Lc1Lc3Lc5

− Lc4
Lc1Lc3Lc5

1
Lc3Lc5

]
, (9)

then a controller based on a state feedback gain F and
an input partition matrix Si which solve Problem 1. To
be more precise, we look for an invariant and stabiliz-
ing state feedback matrix F, along with input partition
matrices Si with i = 1,2., such that, for the dynamic
triples

(Ii, A+BF, BSi) , (10)

the requirements

RIi =minI (A+BF, BSi)⊆ imIi (11)

can be achieved. In Eq. (11), the following nota-
tions, as already indicated in the nomenclature sec-
tion, B = imB and Si = imSi are used. In other
words, we have to find the invariant controllable sub-
space RIi which depends on the actuator model pa-
rameters A and B. For the currents i1(t) and i2(t) for
instance, this subspace is a subspace of controllability
1 and it can be expressed by minI (A+BF, BSi).

1It is known that, minI (A,B) = ∑n−1
i=0 AiimB is the mini-

mum A–invariant subspace containing im(B).

This formulated criterion holds if the controlled sub-
space lies within the following subspace:

IiRIi = imIi. (12)

In addition, the partition matrices Si satisfy the fol-
lowing relationships

im(BSi) = imB∩RIi . (13)

Expression ”im” of a matrix, e.g. imIi or imB, rep-
resents the image of that matrix which indicates the
subspace created by the columns of this matrix. An
invariant controllable subspace consists of state space
vectors reachable through trajectories entirely lying in
the subspace RIi . Moreover, the trajectories lying in
this subspace remain in this subspace.

4 Analysis of a procedure using a ge-
ometric approach based on a con-
trolled invariant subspace

In [13] the authors proposed a decoupling control
structure in order to achieve the cancelation of the
nonlinearity stated by (5). Considering the following
current subspaces:

Ci=1 = C(1,0) = im

[
1
0

]
, (14)

Ci=2 = C(0,1) = im

[
0
1

]
. (15)

In this approach, taking into account conditions (11)
and (13), input partition matrices Si can be determined
by:

Si=1 = S(1,0) =

 1
Lc1Lc5

− Lc2
Lc1Lc3Lc5

− Lc4
Lc1Lc3Lc5

1
Lc3Lc5


−1 1

0

 ,
(16)

Si=1 = S(1,0) =

 L2
c1

Lc3Lc5
Lc1Lc3−Lc2Lc4

Lc1Lc3Lc4Lc5
Lc1Lc3−Lc2Lc4

 . (17)

To complete the calculation of the input partition ma-
trix it follows:

Si=2 = S(0,1) =

 1
Lc1Lc5

− Lc2
Lc1Lc3Lc5

− Lc4
Lc1Lc3Lc5

1
Lc3Lc5


−1 0

1

 .
(18)
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Through symbolic calculation the following result is
obtained:

Si=2 = S(0,1) =

 Lc1Lc2Lc3Lc5
Lc1Lc3−Lc2Lc4

L2
c3

Lc1Lc5
Lc1Lc3−Lc2Lc4

 . (19)

In [13], in order to satisfy condition (11), matrix F
must be designed such that: − Rc

Lc1Lc5

RcLc2
Lc1Lc5Lc5

RcLc4
Lc1Lc3Lc5

− Rc
Lc3Lc1

+
 1

Lc1Lc5
− Lc2

Lc1Lc3Lc5

− Lc4
Lc1Lc3Lc5

1
Lc3Lc5

F =

 λ 0

0 λ

 . (20)

In order to obtain i2(t) = −i1(t) in Eq. (20) the two
eigenvalues of the dynamics of the currents must be
the same and this can be calculated by using matrix
F. Moreover, after that, the control system needs a
proportional factor, which equals −1 in one of the in-
puts in order to obtain the required condition i2(t) =
−i1(t). Parameter λ represents the eigenvalues of
the desired electrical system. For stability, λ must
lie in the negative real plane. By adjusting the val-
ues of λ we can obtain a desired dynamics of the
electrical system of the actuator which influences the
whole dynamics of the actuator. After the cancela-
tion due to the currents compensation, considering
i(t) = i2(t) =−i1(t) the following state variables can
be chosen:

x f (t) =

 i(t)
y(t)
v(t)

 , (21)

where y(t) = x(t) and v(t) = ẋ(t), then the following
matrices can represent the system:

Aw = (− Rc
Lc1Lc5

− RcLc2
Lc1Lc3Lc5

+ RcLc4
Lc1Lc3Lc5

+ Rc
Lc3Lc5

) 0 2lBg

0 0 1
4lg

ACoil
0 − kd

m

 ,
(22)

Bw =

 1
Lc1Lc5

− Lc2
Lc1Lc3Lc5

− Lc4
Lc1Lc3Lc5

1
Lc3Lc5

0 0

 , (23)

in which g(t) is considered constant because of its
small variability.

4.1 Speeding up the dynamics of the con-
trolled system with the help of a geomet-
ric pre-compensator

In order to speed up the dynamics of the actuator with-
out using strong actions of the regulators which can
generate large oscillations and thus tracking errors,
a geometric pre-compensator is proposed. The idea
is to select an eigenvector of matrix AW which rep-
resents the matrix of the predicted dynamics of the
whole actuator. This eigenvector must be included in
the intersection between imBW and between the set of
the eigenvectors of matrix AW . Once the eigenvec-
tor which corresponds to the biggest absolute value of
the eigenvalue is chosen, according to the meaning of
the eigenvalues and eigenvectors, then it is possible to
control the system along the direction of this eigen-
vector to obtain the fastest dynamics. The advantage
here is that these dynamics can be reached using just
another input partition matrix which should select the
eigenvector of the system. If a matrix Iλ is considered,
such that:

imIλ = {imBW ∩ imVW}, (24)

where VW represents the matrix containing all eigen-
vectors of matrix AW , then subspace imIλ represents
the intersection subspace between the image of the
matrix of the eigenvectors and the image of input ma-
trix BW . Considering Iλmax which represents the eigen-
vector of set defined in (24) to which the maximal ab-
solute value of an eigenvalue corresponds, then we are
looking for an input partition matrix Sp such that, for
the dynamic triples(

Iλmax , AW , BW Sp
)
, (25)

the requirements

RIi =minI (AW , BW Sp)⊆ imIλmax (26)

can be achieved. In Eq. (26), the following nota-
tions, as already indicated in the nomenclature sec-
tion, BW = imBW and Sp = imSp are used. About
the calculation of input partition matrix Sp, if imBW ∩
imVW ̸= 0, then:

Sp = (BT
W BW )−1BT

W Iλmax . (27)

5 Solving a linear position MPC op-
timization problem

Considering the models described by the matrices in
(22) and (23) in which Euler discretization is consid-
ered with k = nTs, n ∈ N, where Ts is the sampling
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time. If y(t) = x(t) is the position of the actuator
which is assumed to be the controlled output, and
v(t) = ẋ(t), then a control structure is obtained sim-
ilar to that presented in [21]. This contribution pro-
poses an advancement of the work in [21]. In fact, a
pre-selection matrix Swk which, as already explained,
is calculated using the eigenvectors of the mechani-
cal model, and is included in the proposed MPC al-
gorithm to speed up the dynamic performances. The
following system is proposed:

x f (k+1) = Awkx f (k)+BwkSp

[
u1(k)
u2(k)

]
y(k) = Hkx f (k), (28)

where

x f (k) =

 i(k)
y(k)
v(k)

 (29)

and matrix Hk = [0 1 0] is the output matrix which
determines the position of the valve according to the
whole system represented by matrix Awk. In MPC ap-
proach just two samples are considered:

y(k+1/k) = HkAwkx f (k)+HkBwkSpumpc(k) (30)

y(k+2/k) =HkA2
wkx f (k)+HkAwkBwkSpumpc(k)+

HkBwkSpumpc(k+1). (31)

Eqs. (30) and (31) can be vectorially expressed as:

Y(k) = Gpx f (k)+F1p(k)Umpc(k), (32)

where

Umpc(k) =
[

umpc(k) umpc(k+1)
]
, (33)

and

F1p =

[
HkBwkSp 0

HkAwkBwkSp HkBwkSp

]
, (34)

Gp =

[
HkAwk

HkA2
wk

]
. (35)

If the following performance criterion is assumed,

J =
1
2

N

∑
j=1

(
yd(k+ j)− y(k+ j)

)T
Qp×(

yd(k+ j))− y(k+ j)
)
+

1
2

N

∑
j=1

(
umpc(k+ j)

)T
Rpumpc(k+ j), (36)

where yd(k+ j), j = 1,2, . . . ,N is the position refer-
ence trajectory (desired trajectory) and N the number
of samples of the prediction horizon, and Qp and Rp

are non-negative definite matrices, then the solution
minimizing performance index (36) may then be ob-
tained by solving

∂J
∂umpc(k)

= 0. (37)

A direct off-line computation may be obtained explic-
itly as:

umpc(k) = (FT
1pQpF1p +Rp)

−1FT
1pQp×(

Ydp(k)−Gpx f (k)
)
, (38)

where Ydp(k) and Yp(k) are the desired output col-
umn vector and the measured or observed output vec-
tor. For further details on this optimization procedure
see [23].

6 Simulation results

The presented case considers an actuator of 21kg as
a moving mass. The mass must be moved to reach
a position of 8mm with respect to the initial one.
In the shown simulations, a sampling time Ts equals
0.1ms is used. In Fig. 4 the block diagram of the
whole control system is shown. The computer simula-
tions were done using Matlab/Simulink developed by
MathWorks. Matlab routines which realise the con-
troller are integrated with Simulink being used to rep-
resent and simulate the actuator. Case 1, Figs. 5 and
6: Simulations with the controller stated by matrices
F and Si but without pre-compensation matrix Sp. In
Fig. 5 input voltages and current coils simulation us-
ing the control scheme without using the eigenvec-
tor structure is shown. Figures 5 and 6 show sim-
ulation results using the decoupling geometric struc-
tures F and Si which satisfy conditions of Eqs. (11),
(12) and (13) but without using the pre-compensator
stated in Eq. (27). In particular, from Fig. 5 it is pos-
sible to observe that the coil currents are oscillating
ones. In Fig. 6 the effects of the signals of Fig. 5
on the position and on the velocity of the actuator are
shown. In more detail, on the upper part part of Fig.
6 the effect on a test positioning is shown. It is pos-
sible to see how, in case pre-compensation matrix Sp

of Eq. (27) is not used, overshoot and oscillations of
the response to the step function are present. Case 2;
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Figure 4: Block diagram of the whole control system

Figs. 7 and 8: Simulations with the controller stated
by matrices F, Si and with pre-compensation matrix
Sp. In Fig. 7 the simulation results of the proposed
approach are shown. Figure 7 shows the input voltage
coils (the upper part of the figure) and the compen-
sated coil currents (the lower part of the figure) using
the decoupling geometric structures F and Si which
satisfy conditions of Eqs. (11), (12) and (13) and us-
ing the pre-compensator stated in Eq. (27). In the
simulations of Figs. 7 and 8 the same matrices F and
Si as in Case 1 are proposed. Figure 8 shows the ef-
fects of the signals of Fig. 7 on the position and on the
velocity of the actuator. In more detail, on the upper
part of Fig. 8 the effect on a test positioning is shown.
It is possible to see how, by using pre-compensation
matrix Sp of Eq. (27), the overshoot and oscillations
are not present on the response to the step function. In
both analyzed cases, Case 1 and Case 2, matrices Qp

and Rp are set such that the energy needed to achieve
the desired position within 0.1s is the same.

7 Conclusions

The paper deals with a control for a permanent mag-
netic actuator. The controller is designed in order to
cancel the nonlinearity of the proposed actuator. The
proposed approach uses the invariant subspace theory.
After cancelling the nonlinearity, a pre-compensation
action is used to speed up the controlled dynamics of
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Figure 5: Top: Inputs voltage u1(t) and u2(t) of the
coils. Bottom: Current i1(t) and i2(t) in the coils of
the actuator.

the actuator and a linear MPC strategy is applied for
the control of the positioning. The advantage of this
proposed method is that the control structure is a very
simple one which is based on the concept of the in-
variant subspaces to cancel the nonlinearity. The main
disadvantage is that the cancellation method can be
imperfect and thus the linearization can be flawed. A
possible improvement could be to implement a robust
decoupling control law as mentioned in the introduc-
tion.
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Figure 6: Top: Position of the actuator. Bottom: Ve-
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