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Abstract: This paper presents time scale analysis and synthesis (control) methodology for Model Predictive Control

(MPC). In this method, a higher-order plant with a two-time (slow and fast) scale character is analyzed (decoupled)

into low-order slow and fast subsystems and sub-augmented systems. Then slow and fast subcontrollers based

on MPC method are synthesized (designed) separately and a composite MPC is obtained. The methodology

is illustrated for a high-order Wind Energy Conversion Systems (WECS) with Permanent Magnet Synchronous

Generators (PMSG). The results show that the performance of the system with composite MPC is very close to
that of the MPC of the original high-order system showing the superiority of the proposed method in terms of

separation of dynamics, simplicity in designing model predictive controllers and reduced computational effort.

Key–Words: Singular perturbations, wind energy conversion systems, time scales, model predictive control, order

reduction

1 Introduction

In physical world, modeling of many systems calls

for high-order and ill-conditioned dynamic equations

because of the presence of some parasitic parameters

such as small time constants, resistances, inductances,

capacitances, moments of inertia, and Reynolds num-

ber. The high dimensionality and ill-conditioned nu-

merical issues in the system, attributed to the si-

multaneous occurrence of slow and fast phenomena,

give rise to time scales [1]. The curse of dimen-
sionality coupled with ill-conditioned dynamics poses

formidable computational complexities for the analy-

sis and design of multiple time-scale systems.

The methodology of singular perturbations and

time-scales (SPaTS) has obtained intensively attention

during the past three decades because of its dimen-

sional reduction and stiffness relief [1, 2].

Wind energy has been growing rapidly during the

last two decades [3, 4, 5, 6] and advances in tech-

nology have enabled wind energy conversion systems

∗Presently Visiting Research Scholar, Measurement and

Control Engineering Research Center, Idaho State University,

Pocatello, ID, USA

(WECSs) to reach mega-watt (MW) ranges of power

[7, 8]. Such systems with both mechanical and electri-

cal components can be viewed as singularly perturbed

or two-time scale systems [3, 9, 10].

Model Predictive Control (MPC) is a form of con-

trol in which the current control action is obtained
by solving on-line a finite horizon open-loop opti-

mal control problem, using the current state of the

plant as the initial state at each sampling instant. The

optimization yields an optimal control sequence and

the first control in this sequence is applied to the

plant [11]. It has received on-going interest from re-

searchers in both the industrial and academic commu-

nities because of its ability to handle both soft con-

straints and hard constraints in a multivariable con-
trol framework and the ability to perform on-line pro-

cess optimization [12, 13, 14, 17]. MPC is used to

design a composite controller for nonlinear singularly

perturbed systems in [15]. Reference [16] studies the

MPC control for linear two-time-scale systems with

and without time delay.

In this study, we present time scale analysis and

synthesis (control) methodology for continuous-time

Model Predictive Control (MPC). In this method, a
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higher-order plant with a two-time-scale (slow and

fast) character is analyzed (decoupled) into low-order

slow and fast subsystems. Model predictive con-

trollers are designed for two subsystems separately

based on augmented models. Then the discrete-time

Model Predictive Control is also introduced. Apply-

ing this method to WECS in both continuous-time and
discrete-time region, the results show that the perfor-

mance of the system with continuous-time composite

MPC is very close to that of the continuous-time MPC

of the original high-order system showing the superi-

ority of the proposed method in terms of separation

of dynamics, simplicity in designing model predictive

controllers and reduced computational effort.

The remainder of this paper is organized as fol-
lows. In section II, modeling of the WECS is pre-

sented followed by time-scale analysis for decoupling

the original high-order system into low-order slow and

fast subsystems. Section IV describes the continuous-

time MPC method to design controllers for slow and

fast subsystems and discrete-time MPC method. The

simulation results are given in Section V. Finally Sec-

tion VI discusses the conclusion of this work.

2 Modeling

2.1 Nonlinear Model

In general, a WECS is a system that converts wind

power into electrical power. The devices of a WECS

can be grouped as functional blocks with respect to

power flow as shown in Fig. 1[3]. The wind power

is converted into mechanical power (rotations) in the

aerodynamics block, and this mechanical power (ro-

tations) is transmitted to the generator block by the
drive train block. In the generator block, the mechan-

ical power is transformed into electrical power.

Figure 1: WECS Block Diagram[3]

For the control purpose, only aerodynamics, drive

train dynamics, and generator dynamics are taken into

account. The aerodynamics takes the wind speed V
and wind rotor speed ωr as inputs. The output is given

in terms of aerodynamics torque Tr as follows:

Tr =
1

2
ρπR3CQ(λ, β)V 2, (1)

where ρ is the air density, R is the radius of the wind

rotor plane, CQ is the torque coefficient given as a
function of the pitch angle β and the tip-speed ratio λ,

where λ is defined as

λ =
ωrR

V
, (2)

where ωr is the wind rotor speed. The torque coef-

ficient CQ can be approximated by a polynomial of

λ:

CQ(λ) = a0 + a1λ + a2λ
2 + a3λ

3 + a4λ
4 (3)

+a5λ
5 + a6λ

6.

The drive train block consists of a low-speed

shaft and a high-speed shaft connected to each other

through a gearbox which increases the rotational

speed. The drive train can be represented by a rigid

or flexible model. In this study, a flexible drive train
is used which has the model:

ω̇r = −
i

ηJr
TH +

1

Jr
Tr (4)

ω̇g =
1

Jg

TH −
1

Jg

Tg (5)

ṪH = iKgωr − Kgωg − Bg(
1

Jg
+

i2

ηJr
)TH (6)

+
iBg

Jr
Tr +

Bg

Jg
Tg

where ωg is the generator speed, TH is the internal

torque, Jr is the wind rotor inertia, Jg is the genera-

tor inertia, Kg is the stiffness coefficient of the high-

speed shaft, Bg is the damping coefficient of the high-

speed shaft (the generator shaft), i is the gearbox ratio,

and η is the gearbox efficiency.

Essentially, asynchronous and synchronous gen-

erators are two primary types of generator which
have been used in WECSs. Three popular generators

are Squirrel Cage Induction Generator (SCIG), Dou-

bly Fed Induction Generator (DFIG), and Permanent

Magnet Synchronous Generator (PMSG) [9, 18]. This

study is focused on the PMSG which has the model in

(d, q) axes as follows:

i̇d = −
Rs

Ld
id +

pLq

Ld
iqωg −

1

Ld
ud, (7)

i̇q = −
Rs

Lq
iq −

p

Lq
(Ldid − φm)ωg −

1

Lq
uq,(8)

Tg = pφmiq, (9)
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where id, Ld, ud and iq, Lq, uq are the d and q
components of the stator current, inductance, voltage,

respectively; Rs is the stator resistance; P is the num-

ber of pole pairs, φm is the flux.

The complete nonlinear model of a PMSG-based

WECS is obtained by combining (4)-(8).

2.2 Linear Model

Choosing an operating point with x̄ =
[ω̄r ω̄g T̄H īd īq]

T and ū = [ūd ūq V̄ ]T , the linearized
model is obtained as follows

δ̇x = Aδx + Bδu, (10)

where δx = x − x̄ and δu = u − ū are variations of
variables in the neighborhood of the operating point.
The system and control matrices are given as:

A =




1

2Jrω̄r
ρπR3CQ(λ̄)γV̄ 2 0

0 0

iKg +
iBg

2Jrω̄r
ρπR3CQ(λ̄)γV̄ 2 −Kg

0
pLq

Ld
īq

0 − p

Lq
(Ld īd − φm)

− i
ηJr

0 0
1
Jg

0 −pφm

Jg

−Bg

(
1
Jg

+ i2

ηJr

)
0

Bgpφm

Jg

0 −Rs

Ld

pLqω̄g

Ld

0 −
pLdω̄g

Lq
−Rs

Ld




, (11)

B =




0 0 2−γ
2Jr

ρπR3CQ(λ̄)V̄

0 0 0

0 0 2−γ
2Jr

iBgρπR3CQ(λ̄)V̄

− 1
Ld

0 0

0 − 1
Lq

0




, (12)

where γ =
λ̄C′

Q(λ̄)

CQ(λ̄)
, λ = ωrR

V
,CQ(λ) = a0 + a1λ +

a2λ
2 + a3λ

3 + a4λ
4 + a5λ

5 + a6λ
6.

3 Time Scale Analysis

3.1 Two-time-scale Property of the PMSG-

based WECS

Assume V = 10 m/s, a linear model is derived. The

system and control matrices of the linear model are

obtained as

A =




−1.0133 0 −2.0833

0 0 4.5455
448.1760 −75.0000 −5.1136

0 10.5141 0

0 18.2715 0

0 0
0 −5.9755

0 1.7926
−79.4033 441.7308

−441.7308 −79.4033




, (13)

B =




0 0 18.3058
0 0 0

0 0 32.9504
−24.0616 0 0

0 −24.0616 0




. (14)

This linear system has five eigenvalues P1 =
−0.2, P2 = −2.92 + j35.63, P3 = −2.92 −
j35.63, P4 = −79.45 + j441.86, P5 = −79.45 −
j441.86.

The first three eigenvalues P1, P2, P3 are close to

the origin which characterizes the slow response for

the system. The other two eigenvalues P4 and P5 are

far from the origin characterizing the fast dynamics of

the system.

The distance between these two eigenvalue clus-

ters is computed by dividing the largest absolute value

of the slow group by the smallest absolute value of the

fast group [10]. In this case the computed distance,

called the small parameter, is ε = 0.036. A system is

said to have a two-time-scale property if ε � 1 [10],

thereby it is concluded that the PMSG-based WECS
has a two-time-scale property.

3.2 Two-Time-Scale System Decoupling

In this section, the system decoupling procedure is

briefly described [10, 19]. Consider a general two-

time-scale linear system

ẋ1 = A1x1 + A2x2 + B1u, (15)

ẋ2 = A3x1 + A4x2 + B2u, (16)

where x1 and x2 are m− and n− dimensional

slow and fast state vectors, respectively, u is an

r−dimensional control vector, Ai(i = 1, 2, 3, 4), are

system matrices with appropriate dimensions, B1, B2

are control matrices with appropriate dimensions. The

system (15)-(16) can be decoupled into a slow subsys-

tem and a fast subsystem using the well-known Chang

transformation [19]. This transformation includes two
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phases. The first phase transforms the system (15)-

(16) into the form

[
ẋ1

ẋf

]
=

[
As A2

0 Af

][
x1

xf

]
+

[
B1

Bf

]
u (17)

by using the change of variable xf = x2 + Lx1 and

choosing the matrix L (n × m) such that

LA1 − A4L − LA2L + A3 = 0, (18)

where

As = A1 − A2L, (19)

Af = A4 + LA2, (20)

Bf = B2 + LB1. (21)

The second phase continues to transform the system

(17) into the form

[
ẋs

ẋf

]
=

[
As 0

0 Af

][
xs

xf

]
+

[
Bs

Bf

]
u (22)

by using the change of variable xs = x1 − Hxf and
choosing the matrix H (m × n) such that

AsH − HAf + A2 = 0, (23)

where

Bs = B1 − HLB1 − HB2. (24)

Note that the system (22) includes two independent

subsystems represented by (As, Bs) and (Af , Bf),

where As, Af , Bf , and Bs are given in (19), (20),

(21), and (24), respectively.

3.3 Numerical Solutions

The decoupled subsystems can be obtained if there ex-

ist two matrices L and H which satisfy (18) and (23),

respectively. Analytical solutions for those equations

haven’t been found yet, therefore approximate solu-

tions are obtained numerically. One efficient numeri-

cal algorithm is the Newton algorithm [3, 20].

Applying Newton algorithm to the linear PMSG-

based WECS (13) and (14), The results show that the

Newton algorithm was convergent with solutions L
and H given as

L =

[
0.0005 −0.0443 −0.0001

0.0000 0.0158 −0.0005

]
, (25)

H =




0.0004 0.0003
−0.3159 0.0561
0.0771 −0.0670


 . (26)

The slow subsystem is obtained as




δ̇ωr

δ̇ωg

δ̇TH




︸ ︷︷ ︸
ẋs

= As




δωr

δωg

δTH




︸ ︷︷ ︸
xs

+Bs




δud

δuq

δV




︸ ︷︷ ︸
us

, (27)

where

As =




−1.0133 0 −2.0833

0 0.0947 4.5426
448.1760 −75.0284 −5.1128


(28)

Bs =




0.0089 0.0072 0

−7.6008 1.3488 0
1.8552 −1.6120 0


 , (29)

And the fast subsystem is obtained as

[
δ̇id

δ̇iq

]

︸ ︷︷ ︸
ẋf

= Af

[
δid

δiq

]

︸ ︷︷ ︸
xf

+Bf




δud

δuq

δV




︸ ︷︷ ︸
uf

, (30)

where

Af =

[
−79.4033 441.9953

−441.7308 −79.4988

]
, (31)

Bf =

[
−24.0616 0 0

0 −24.0616 0

]
. (32)

The slow subsystem has three eigenvalues Ps1
=

−0.2007, Ps2
= −2.9154 + j35.6295, Ps3

=
−2.9154 − j35.6295 which are almost the same as

the slow eigenvalues of the original system (13) and

(14).

Similarly, the fast subsystem also has two eigen-

values Pf1
= −79.45 + j441.86, Pf2

= −79.45 +
j441.86 which are also almost the same as the fast

eigenvalues of the system (13) and (14).

Therefore, the decoupling was reliable.

4 Model Predictive Control for Two-

Time-Scale PMSG-based WECS

4.1 Continuous-Time Model Predictive Con-

trol

The two-time-scale PMSG-based WECS is now de-

coupled into two independent subsystems, the control

design is therefore independent for each subsystem.

Based on two subsystems, augmented models are de-

rived and two continuous model predictive controllers

are designed separately for fast and slow subsystems.
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( - - )Two Time Scale

Original Plant

slow

subsystem

fast

subsystem

Xs

-K
mf

-K
ms

slow MPC controller

fast  MPC controller

u
+

+
decouple

augmented

slow

subsystem

X faugmented

fast

subsystem

xs

x f

Figure 2: Two-Time-scale Decoupling of MPC

The final control which is fed to the original system

will be the composite of the controls from two sub-

systems as indicated in Fig. 2.

MPC refers to a class of computer control algo-

rithms that utilize an explicit process model to predict

the future response of a plant. At each control interval

an MPC algorithm attempts to optimize future plant

behavior by computing a sequence of future manipu-
lated variable adjustments. The first input in the opti-

mal sequence is then sent into the plant and the entire

calculation is repeated at subsequent control intervals

[12].

Fig. 3 is the closed-loop block diagram of

continuous-time model predictive control method..

Bs

+

+
∫ Cs

+
-

-Kys

-Kxs

+

+

∫

xs(t)
.

.

As

dt

d(.)
-

xs(t)

us(t)

us(t)

rs

ys(t)

Figure 3: Block diagram of Continuous-Time MPC of

Slow Subsystem.

In this section, we consider the slow subsystem

as an example to show the process of designing a

continuous-time model predictive controller. For the

fast subsystem and the original system, we can design

the continuous-time model predictive controllers us-

ing the same method.

Now let us consider the slow subsystem as given

below:

ẋs = Asxs + Bsus (33)

ys = Csxs (34)

with the cost function

Js =

∫ Tp

0
(X ′

s(ti + τ |ti)QsXs(ti + τ |ti)

+u̇′

s(τ)Rsu̇s(τ))dτ (35)

where Tp is the prediction horizon, Xs(ti + τ) is

the state of augmented model as below:

Xs(t) =

[
ẋs(t)

ys(t) − rs(t)

]
(36)

Ẋs(t) =

[
ẍs(t)

ẏs(t) − ṙs(t)

]

=

[
As 0

Cs 0

][
ẋs(t)

ys(t)− rs(t)

]
+

[
Bs

0

]
u̇s(t)

, ApXs(t) + Bpu̇s(t) (37)

where

Ap =

[
As 0
Cs 0

]
, Bp =

[
Bs

0

]
(38)

In order to follow the set-point signal, the control

signal needs to converge to a non-zero constant that

is related to the steady-state gain of the plant and the

magnitude of the set-point change. Therefore, instead

of modeling the control signal, the continuous-time

predictive control design will target the derivative of

the control signal, u̇(t), which will satisfy the property

∫
∞

0
u̇2

s(t)dt < ∞ (39)

A set of Laguerre functions L(τ) is used as or-

thonormal basis functions [12].

According to [12], the derivative of the control

signal can be described as:

u̇s(τ) ≈

N∑

i=1

Cili(τ) = L′(τ)η (40)

Where η = [c1 c2 · · · cN ]′ is the coefficient
vector.

Let ti be the current time, and assume the state

variable Xs(ti) is available. Then at the future time
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τ , τ > 0, the predicted state variable Xs(ti + τ |ti) is

described by the following equation:

Xs(ti + τ |ti) = eApτXs(ti) +∫ τ

0

eAp(τ−γ)Bsu̇s(γ)dγ (41)

According to (40), we have u̇si(τ) = L′

i(τ)ηi, then

the predicted future state Xs(ti + τ |ti) at time τ is:

Xs(ti + τ |ti) = eApτXs(ti) + (42)∫ τ

0
eAp(τ−γ)[Bs1L

′

1(γ) · · ·BsmL′

m(γ)]dγη

written as

X(ti + τ |ti) = eApτX(ti) + Φ′(τ)η (43)

where Φ′(τ) is the convolution integral with

Φ′(τ) =

∫ τ

0
eAs(τ−γ)[Bs1L

′

1(γ) · · ·BsmL′

m(γ)]dγ

We assume that Rs is a diagonal matrix with

Rs = diag {rk} (44)

where k = 1, 2, · · · , m. Then the second term in the

cost function (35) is

∫ Tp

0
u̇′

s(τ)Ru̇s(τ)dτ =

m∑

k=1

rk

∫ Tp

0
u̇2

sk(τ) (45)

The prediction horizon is selected to be larger than

then the time for which the control signal is effective,

thus

∫ Tp

0
u̇′

sk(τ)u̇sk(τ)dτ ≈

∫
∞

0
η′

kLk(τ)L′

k(τ)ηkdτ

= η′

kηk (46)

Since
∫
∞

0 Lk(τ)L′

k(τ)dτ is the identity matrix with

dimension equal to the number of Laguerre coeffi-
cients for the kth input. The cost function Js is then

equivalently given by

∫ Tp

0
(X ′

s(ti + τ |ti)QsXs(ti + τ |ti) + η′RLη (47)

where RL is a block diagonal matrix with the kth

block being Rk, and Rk = rkINk×Nk
. Using (43)

in (47), we get Js as

Js =

∫ Tp

0

(eApτXs(ti) + Φ′(τ)η)′Qs

(eApτX(ti)Φ
′(τ)η)dτ + η′RLη (48)

which is a quadratic function of η

Js = η′

{∫ Tp

0
Φ(τ)QsΦ

′(τ)dτ + RL

}
η (49)

+2η′

{∫ Tp

0
Φ(τ)Qse

Apτdτ

}
Xs(ti)

+X ′

s(ti)

{∫ Tp

0
eA′

pτQse
Apτdτ

}
Xs(ti)

For notational simplicity, we define

Ω =

∫ Tp

0
Φ(τ)QsΦ

′(τ)dτ + RL (50)

Ψ =

∫ Tp

0
Φ(τ)Qse

Apτdτ (51)

Completing the square of (49) leads to

Js = [η + Ω−1ΨXs(ti)]
′Ω[η + Ω−1ΨXs(ti)]

+X ′

s(ti)

∫ Tp

0
eA′

pτQse
ApτdτXs(ti)

−X ′

s(ti)Ψ
′Ω−1ΨXs(ti)

Since the last two terms are independent of η , the

optimal η that minimizes J is:

η = −Ω−1ΨXs(ti) (52)

and the minimum of the cost function Jsmin is:

X ′

s(ti)

[∫ Tp

0
eA′

pτQse
Apτdτ − Ψ′Ω−1Ψ

]
Xs(ti) (53)

So feedback gain matrix Kms is as below:

Kms =




L′

1(τ) o2 · · · om

o1 L′

2(τ) · · · om

...
...

. . .
...

o1 o2 · · · L′

m(τ)


Ω−1Ψ

,
[

Kxs Kys

]
(54)

Similarly, we can get uf using MPC for the fast

subsystem. Then composite input u(t) for the original

system is obtained:

u = us + uf (55)

Then, we can get the model predictive control for

the original system in the same way.
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Bd
+

+
Cd

y(k)

+
-

r

-Ky
1-q

-1

-Kx

+

+

u( )k

x(k+1)

△u( )k

Ad

q
-1

x(k)

-

1

1-q
-1

Figure 4: Block diagram of Discrete-Time MPC

Method

4.2 Discrete-Time Model Predictive Control

Here we provide the discrete-time model predictive

control method to compare with the continuous-time

model predictive control.

Fig. 4 is the closed-loop block diagram of

discrete-time MPC method from [12], where q−1

denotes the backward shift operator. The diagram

shows the state feedback structure for the discrete-

time model predictive control (DMPC) with inte-
gral action in which the module 1

1−q−1 denotes the

discrete-time integrator.

Consider a discrete-time system as below:

x(k + 1) = Adx(k) + Bdu(k); (56)

y(k) = Cdx(k) (57)

where u is the input variable; y is the process output,

and x(k) is the state variable vector with assumed di-
mension n.

We define

4x(k + 1) = x(k + 1) − x(k) (58)

= Ad(x(k) − x(k − 1))

+Bd(u(k)− u(k − 1))

4u(k) = u(k) − u(k − 1) (59)

Then easily we can obtain the augmented model as

below from equation (56-57),

Xd(k+1)︷ ︸︸ ︷[
4x(k + 1)
y(k + 1)

]
=

eAd︷ ︸︸ ︷[
Ad 0′

CdAd 1

]
Xd(k)︷ ︸︸ ︷[
4x(k)
y(k)

]

+

[
Bd

CdBd

]

︸ ︷︷ ︸
eBd

4u(k), (60)

y(k) =

eCd︷ ︸︸ ︷[
0 I

]



4x(k)

y(k)


 (61)

Note Nc as the control horizon dictating the num-

ber of parameters used to capture the future control

trajectory.

Our aim is to find the best control parameter vec-

tor 4U=[4u(ki) 4u(ki + 1) · · · u(ki + Nc − 1)]
such that the error between the set-point signal and

the predicted output signal is minimized.

Define the cost function J that reflects the control
objective as

J = (Rs − Y )′Qd(Rs − Y ) + 4U ′Rd4U (62)

where Np is the length of the optimization win-

dow; Qd ≥ 0 and R > 0 are weighting matrices with

appropriate dimensions; Y is the vector of predicted

output variables defined as

Y = [y(ki + 1|ki) y(ki + 2|ki) · · · y(ki + Np|ki)]
′

and R′

s =

Np︷ ︸︸ ︷[
1 1 · · · 1

]
r(ki) is the reference

signal;

At time ki, the control trajectory 4u(ki),

4u(ki + 1), · · · , 4u(ki + Nc − 1) is regarded as the

impulse response of a stable dynamic system, Thus,

a set of discrete-time Laguerre functions L(k) =
[l1(k) l2(k) · · · lN(k)]′ which are generated from the

discretization of continuous-time Laguerre functions

are used to describe the difference of the control vari-
able

4u(ki + k) =

N∑

j=1

cj(ki)lj(k) = L(k)′ηd (63)

with ki being the initial time of the moving hori-

zon window and k being the future sampling instant;

N is the number of terms used in the expansion and

cj , j = 1, 2, · · · , N , are the coefficients, and they

are functions of the initial time of the moving hori-

zon window ki, and η = [c1 c2 · · ·cN ]′ is the vector

of coefficients.

Using the partial derivative of the cost function,
we can obtain the minimum value of the cost function

Jmin is

Jmin = Xd(ki)
′




Np∑

m=1

(Ã′

d)
mQd(Ãd)

m−

Ψ′

dΩ
−1
d Ψd

)
Xd(ki) (64)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Yan Zhang, Hoa Nguyen, D. Subbaram 
Naidu, Yun Zou, Chenxiao Cai

E-ISSN: 2224-2856 136 Volume 9, 2014



where

Φd(m)′ =

m−1∑

i=0

Ãm−i−1
d B̃dL

′(i) (65)

Ωd =

Np∑

m=1

Φd(m)QdΦ
′

d(m) + RL (66)

Ψd =

Np∑

m=1

Φd(m)QdA
m
d (67)

leading to

ηd = −Ω−1
d ΨdXd(ki) (68)

Thus the control 4u(k) can be written in the form of

linear state feedback control by replacing ki with k.

Namely,

4u(k) = −L(0)Ω−1
d ΨdXd(ki)

= −KdmpcXd(ki) (69)

And the feedback gain matrix is as below:

Kdmpc = L(0)Ω−1
d Ψd (70)

5 Simulation Results

Both Continuous-Time (CT) MPC controllers for

the high-order (original) and low-order (decoupled)
wind energy conversion systems were obtained using

MATLAB R©1.

Also Discrete-Time (DT) MPC controller is de-

signed using the discretized wind energy conversion

system with sample interval, Ts = 0.1s.

All reference signals are set zeros. Output coeffi-

cients are chosen as:

Cf =

[
1 0
0 1

]
, Cs =

[
1 1 1

]
,

C =
[

1 0 0 0 0
]

Weighting matrices Q, R, Qs, Rs, Qf , and Rf were

chosen as below:

Q = C′C, Qs = C′

sCs, Qf = C′

fCf ,

R = Rs = Rf = 0.2× I3×3

The simulation results are depicted in Fig. (5-9).
From Fig. 5-6 and Fig. 8-9, we can tell the re-

sponses of high-order and low-order model predictive

controllers of the states ωr, ωg , id and iq are very

1MATLAB is registered trademarks of The Mathworks, Inc.,

Natick, MA, USA.
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Figure 5: The state ωr response of the high-order and

low-order CT model predictive controllers and DT

model predictive controller
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Figure 6: The state ωg response of the high-order and

low-order CT model predictive controllers and DT

model predictive controller

close. And for the state Th in Fig. 7, the conver-

gence of the low-order model predictive controller is

quicker and more accurate than that of the high-order

model predictive controller. It proves that the com-

posite model predictive controller gives more accu-

rate results than the model predictive control of the

original system with less computation effort. In ad-

dition, the performance of discrete-time model pre-

dictive controller converges much quicker than that of
the continuous-time model predictive controllers.

6 Conclusion

This paper presents time scale analysis and synthe-

sis (control) methodology for continuous-time Model

Predictive Control (MPC). In this method, a higher-

order plant, wind energy conversion system, with a
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Figure 8: The state id response of the high-order and

low-order CT model predictive controllers and DT

model predictive controller

two-time-scale (slow and fast) character is decou-

pled into low-order slow and fast subsystems and
sub-augmented systems. Then slow and fast sub-

controllers based on continuous-time MPC method

are synthesized (designed) separately and a compos-

ite MPC is obtained. Then discrete-time MPC is in-

troduced comparing with the continuous-time MPC.

The results show that the performance of the sys-

tem with continuous-time composite MPC is more ac-

curate than that of the continuous-time MPC of the

original high-order system with simpler design and
reduced computational effort. The performance of

discrete-time model predictive controller converges

much quicker than that of the continuous-time model

predictive controllers.
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