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Abstract 
All cancers are usually classified further according to the extent or stage of disease so that 
therapies may be tailored to the particular disease stage. Moreover, detection of asymptomatic 
recurrences is associated with prolonged overall survival and survival from the time of initial 
detection of recurrence. This study applied Bayesian decision theorem to an inferential 
problem of recurrent ovarian cancer in survival analysis. A formulation is considered where 
individual was expected to experience repeated events, along with concomitant variables. In 
addition, the sampling distribution of the observations is modelled through a proportional 
Nonhomogeneous Poisson process. Finally, this paper develops a systematic way to integrate 
the expert’s opinions which will furnish clinician with valuable support for quality medical 
decision making. 
 
Keywords: Bayesian Decision Analysis; Recurrent Ovarian Cancer; Nonhomogeneous 
Poisson process 
 
1. Introduction 
Ovarian cancer remains one of the leading 
causes of cancer-related death among 
women globally [1, 2]. Even though the 
morbidity and the mortality have been 
decreasing in recent years, the morbidity 
rates of ovarian cancer are the second 
leading type in women and the mortality 
rates are the fifth of the top ten cancers in 
Taiwan. The studies related to the causes 
of and the treatment to the ovarian cancer 
has been described sufficiently in lots of 
advanced researches. The cure rate of 
ovarian carcinoma is quite high if detected 
early, International Federation of 
Gynecology and Obstetrics (FIGO) stage 

IB2 to stage IV disease will ultimately 
recur with modern multimodality treatment 
[3, 4]. There are few researches on its 
relationship between recurrent events and 
the mortality and incidence rate. Indeed, 
recurrent ovarian cancer is a devastating 
disease for those women unfortunate 
enough to suffer such an event. Limitations 
in the number of active agents in ovarian 
cancer management make it more 
important for oncologists to manage the 
available treatment options [5].Once the 
primary treatment has failed, the 
opportunity of secondary cure is slim. 
Probably several factors exist which indeed 
affect the ultimate prognosis of early stage 
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ovarian carcinoma other than clinical 
staging. Since, the treatment of recurrent 
ovarian cancer is still a clinical challenge. 
When the recurrence is not surgically 
resectable, and/or suitable for curative 
radiation, therapeutic options are limited. 
In other words, early detection of 
recurrence may impact survival. Moreover, 
detection of asymptomatic recurrences is 
associated with prolonged overall survival 
and survival from the time of initial 
detection of recurrence [6, 7, 8]. Therefore, 
this paper attempts to improve surveillance 
after treatment might lead to earlier 
detection of relapse, and precise 
assessment of recurrent status could 
improve outcome. 

  
2. Nonhomogeneous Possion 
Process (NHPP) 
In order to model the recurrent ovarian 
cancer, the Nonhomogeneous Poisson 
process (NHPP) was introduced to make 

the time-dependent behavior of more 
ovarian cancer tractable [9]. The 
assumption that the survival after a 
medication is essentially the same as it was 
immediately before the recurrent event is 
plausible. Based on the assumption, the 
recurrent ovarian cancer is time-dependent 
[9]. The intensity function of the failure 
process is usually assumed to be of the 
form λ(x)=λ0h(β;x), where λ0 is the scale 
factor, β is the aging rate, x is the elapsed 
time, and h(.) can be any function that 
reflects the recurrent ovarian cancer. 

Suppose we have a patient with ovarian 
cancer who recurrent process is given by a 
NHPP. We observe ovarian cancer for x* 
units of time, during which we observe N 
recurrent events. In this (time-truncated) 
case, x* is a constant and N is a random 
variable. It is known for such an NHPP that 
the joint density function of the first N 
recurrent times is

 
f x x x n x xX X X N n ii

n

N1 2 1 2 1, , , , =
( , , , , ) [ ( )] ( ( *)]



 = −∏ λ exp Λ  (1) 
 

where Λ( ) ( )x u dux= ∫ λ0  is the mean 
number of recurrent events by time x in the 
nonhomogeneous Poisson process.  If we 
instead observe the ovarian cancer until the 
n*th recurrent event (rather than until time 

x*), and the n*th recurrent time occurs at 
time Xn* (i.e., the recurrent event-truncated 
case, where n* is a constant and Xn* is a 
random variable), then the joint density 
function of the first n* recurrent times is  

 
f x x x x xX X X n ii

n
nn1 2 1 2 1, , , * =

*
**

( , , , ) [ ( )] ( ( )]


 = −∏ λ exp Λ       (2) 
 

The recurrent ovarian cancer is modeled 
by a power law failure model if it is given 

by an NHPP with an intensity function of 
the form 

 
λ λ β β( ) -x x= 0

1  λ β0 0 0> >,  (3) 
 

where β is effectively unit. When β is 
equal to one, the NHPP degenerates to an 
HPP with a constant λ0. For β<1 the failure 
intensity is decreasing (corresponding to 
survival growth), and for β>1 the failure 
intensity is increasing. Note that for 1<β<2 
the failure intensity is concave downward, 
and for β>2 the failure intensity is concave 
upward. 

 
The nonhomogeneous Poisson process is 

often used because it is mathematically 
tractable. Cook et al. [10] developed a 
robust test for kidney transplant based on 
recurrent event responses. Wang et al. [11] 
using a nonhomogeneous poisson process 
to analyze the times between failures to 
determine the optimum first metastases. 
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Aggarwal et al. [12] also investigated the 
mean time between failures for dorsal 
cochlear nucleus neurons. They stated a 
necessary and sufficient condition for the 
mean time until the next failure to be 
asymptotically proportional to the 
reciprocal of the intensity function, and 
verified their theorem for power law and 
log-linear processes. 

 
Other failure models have also been 

proposed to model recurrent process, but in 
more complicated ways. Unlike the power 
law failure model given above, these 
models often have more than two 
parameters. This makes the analysis more 
difficult. But since some of these models 
are generated by combining two of the 
three commonly used models. For 
example, the exponential polynomial rate 
model proposed by Cox [13] is of the form

)exp()(
0∑ =

=
r

m
m

mxx αλ , the Weibull and 
log-linear rate model proposed by Lee [14] 
is of the form )exp()( 1 xxx βαγλ γ −= , the 
nonlinear failure rate model proposed by 
Salem [15] is of the form

)()( 1
21

−+= ββααλ xx , the bounded 
intensity model proposed by Hartler [16] is 
of the form ])1(1[)( 1−+−= xx ηηλ , the 
gamma type intensity model proposed by 
Yamada et al. [17] is of the form 
λ αη η( ) ( )x xexp x= −2 , and the bathtub 
type failure rate models 
λ δ θ β( ) ( )x x x= + +/ 1  and 

1
32

1
1

21)( −− ++= ββ αααλ xxx  are proposed 
by Calvin [18] and Hjorth [19], 
respectively. 

In this paper, we develop a Bayesian 
decision process for the power law failure 
model, since the power law intensity 
function allows for a wide variety of 
shapes (including both concave upward 
and concave downward, as well as 
decreasing) and tends not to increase very 
steeply, which may make it more realistic 
for clinical practices. 

 
3. Bayesian inference  

 
Suppose a patient with recurrent ovarian 
cancer that behaves according to the 
nonhomogeneous Poisson process with 
intensity function λ(x)=λ0h(β;x). The 
crucial two-action decision is whether after 
some period of time t, the failure rate of 
the recurrent ovarian cancer will be too 
high (in which case some undertaking the 
intervention treatment needs to be taken), 
or will still be within an acceptable range 
(in which case we can wait according to 
the status quo). Another option is to gather 
additional information. The decision 
should be made on the basis of expected 
cost-effectiveness with respect to some 
loss function [20, 21]. We also assume that 
the decision maker is risk neutral, and can 
therefore make the decision on the basis of 
expected monetary value. The basic 
elements of the Bayesian decision process 
are as follows: 
 
Parameter space Θ : {(λ0, β )| λ0>0}, 
where  λ0 is the scale factor and β is the 
aging rate. Both parameters are uncertain 
and can be estimated through physicians’ 
opinions. 
 
Action space A: {a1,a2}, where a1 is the 
status quo, and a2 is the risk reduction 
action. (We eventually expand this to 
consider a third possible action, the 
collection of additional information). 
 
Loss function L: a real function defined on 
Θ×A. If we decide to keep continuing the 
status quo, then the loss we face is L(θ,a1); 
if we decide to take the risk reduction 
action, then the loss we face is L(θ,a2). 
 
Sample space S: The additional 
information available to be collected. With 
recurrent event-time endpoints, it is 
common to schedule analyses at the times 
of occurrence of specified landmark events, 
such as the 5th event, the 10th event, and 
so on. The collecting of this additional data 
or information should also be reflected in 
the decision process. 
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The cost of collecting this additional 
information should also be reflected in the 
decision process. The detailed analysis 
descriptions of each phase are as follows: 

 
Prior analysis 
The available prior clinical knowledge 
(e.g., physician’s opinion, past experience, 
or the similar clinical status) about the 
parameter space, Θ :{(λ0,β)| λ0>0}, can be 
represented by a joint distribution 
indicating the relative likelihood of each 
state of nature. Loss functions appropriate 
for the status quo a1 and risk reduction 
action a2 can be derived by taking all cost-
related data into account. Once the prior 
distribution and loss function have been 
specified, it is easy to perform a prior 
analysis by simply comparing the expected 
losses for the options a1 and a2. Therefore, 
if E{L(θ,a1)} > E{L(θ,a2)}, then option a2 
is optimal, and if E{L(θ,a1)} ≤ E{L(θ,a2)}, 
then option a1 is optimal.  
 
Preposterior analysis  
When the expected losses associated with 
options a1 and a2 are fairly close, we might 
not feel very confident about a decision 
based solely on a prior analysis, and 
gathering additional information might be 
desirable. However, before collecting 
additional information, we have to 
investigate the possible outcomes and costs 
of each candidate sampling plan, and to 
determine the first stage decision of 
whether collecting additional information 
is worthwhile and also which sampling 
plan is the best in terms of cost-
effectiveness. The Expected Value of 
Sample Information (EVSI) can be 
calculated according to

1, 2 1, 2

) { ( , )} { { ( , ) | }
i j S j i

j j

EVSI(S Min L a Min E L a Sθ θ
= =

= −E E , where 

iS  is the ith sampling plan under 
consideration. The Expected Net Gain of 
Sample information (ENGS) is defined as

}{}{) *** iIii SCSEVSIENGS(S −= , where
}{ *iI SC  is the cost of the ith sampling 

plan. Therefore, if ENGS ≤ 0, then it is not 

worthwhile collecting additional 
information; conversely, if ENGS > 0, then 
we can start collecting data and prepare for 
a posterior analysis, and the i*th sampling 
plan should be adopted in order to satisfy 
the condition

)}({) ** iii SENGSMaxENGS(S = .  

Posterior analysis 
Once the optimal sampling plan, say S(k) , 
has been selected based on the preposterior 
analysis.  After the data collection is 
complete, the observed data S(k)=s(k) can 
then be used to perform a posterior 
analysis. The decision should then be made 
in accordance with the strategy that if 
E E{ ( , )| } { ( , )| }( ) ( ) ( ) ( )L a S s L a S sk k k kθ θ1 2= ≥ =
, then option a2 is optimal, and if 
E E{ ( , )| } { ( , )| }( ) ( ) ( ) ( )L a S s L a S sk k k kθ θ1 2= < = , 
then option a1 is optimal. 

 
By exploring the relationships among 

the optimal decision and the extent of 
uncertainty about recurrent trends, the 
conditions under which gathering 
additional information is worthwhile can 
be determined, and more generally in 
developing guidelines for the use of 
isolating trends in data in risk management. 
The following terminology will be used 
throughout this paper: 

 
CA: the cost of a recurrent event if it occurs. 
CR: the cost of the proposed risk reduction 
action. 
CI: the cost of collecting additional 
information. 
ρ: the reduction in failure rate that would 

result from the proposed risk reduction 
action (0<ρ<1). 

M: the expected number of failures during 
the time period [t,T] under the status quo. 

 
Suppose that patient has a planned 

lifetime T, and the decision of whether to 
keep the status quo or perform some 
intervention treatment must be made at 
time t. The decision variable we are dealing 
with is then the expected number of 
recurrent event during the time period [t,T]. 
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Sincerecurrent times are assumed to be 
drawn from a nonhomogeneous Poisson 
process with intensity function 

λ(t)=λ0h(β;t), the expected number of 
recurrent events in [t,T] under the status 
quo is given by 

 
M≡M(T,t,λ0,β)= λ λ β( ) ( ; )s ds h s dst

T
t
T = ∫∫ 0 =λ0[H(β;T)-H(β;t)]= λ0H,       (4) 

 
where H y h s dsy( ; ) ( ; )β β= ∫0 , and H ≡ H

);();()( tHTH βββ −= . Suppose that 
undertaking the intervention treatment will 
reduce the failure intensity by a fraction ρ, 

where 0 < < 1ρ . Then the expected 
number of recurrent events in [t,T] if 
undertaking the intervention treatment is 
performed is given by 

 
λ ρ( )( )s dst

T 1 −∫ = 0)1( λρ−  H =(1-ρ)M                        (5) 
 

On the basis of the assumptions given 
above, we therefore have a two-action 
problem with a linear loss function, where 
the loss for taking action a1 (i.e., continuing 
with the status quo) is CAM and the loss for 
taking action a2 (i.e., undertaking the 
intervention treatment) is 
C M CA R( - ) +1 ρ . The expected loss for 
the status quo is simply CAE{M}, and the 
expected loss for undertaking the 
intervention treatment is 
C M CA R( - ) { }+1 ρ E  , and MC=CR/(CAρ) is 
the cutoff value of E{M} for undertaking 
the intervention treatment. 

 

As a simplistic assumption, one can 
assume that λ0 and β are independent of 
each other. For example, if the prior 
distributions for λ0 and β are Gamma(α ;
γ ) and Uniform (a,b), respectively, and 
the power-law failure model is assumed to 
be suitable under consideration, then the 
joint distribution of λ0 and β is just the 
product of the individual distributions of λ0 
and β. The joint posterior distribution for 
λ0 and β obtained by Bayesian updating 
is simply proportional to the product of the 
joint prior distribution for λ0 and β and 
the likelihood function, which is given by 

 
  (6) 

 
 

where K is the normalizing constant.  
 

Since the prior and posterior density 
functions for M are functions of λ0 and β, 
some prior and posterior mean values of M 
can be derived by the bivariate 
transformation technique. However, closed 
forms for the prior and posterior means of 
M are not always available, which is 
typically the case for the Bayesian 
analysis. Nevertheless, Bayesian prior and 
posterior analyses can still be performed 
by computing the prior and posterior mean 
values of M using the numerical 
integration technique and comparing them 
with the cutoff value MC=CR/(CAρ) (i.e., 

the cutoff value of E{M} for taking the risk 
reduction action). If the relevant mean is 
smaller than MC, then we should keep the 
status quo; if not, then we should perform 
the risk reduction action. 
 
4. Simulation Study 
 
We have used the recurrent ovarian cancer 
case study to illustrate the use of the 
models developed in the previous sections. 
The medical records and pathology were 
accessible by the Chung Shan Medical 
University Hospital Tumor Registry. The 

)]1)([)(),,,|,( *

*
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* 0
1

1
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birth date of the studied subject was 1-
May-1943, and the observation period was 
from 24-Sep -2010, to 23- August-2011. 
The recurrent dates for the subject during 
the observation period were: {24-Jan-2011, 
24-Apr-2011, 24-May-2011, 23-Jul-2011, 
22-Aug-2011}. An application is 
performed with the assumption that 
E{λ0}=0.2 and SD{λ0}=0.03, and that β is 
Uniform[1,2.8]. In addition, we have 
CA=238,000, CR=196,000, CI=102,000, 
ρ=0.08, T=75, and t=62. We use the entire 
failure data for the posterior analysis. Prior 
and posterior analyses are performed by 
comparing the prior and posterior mean 
values of M with the cutoff value MC.  

 
Since the recurrent data are already 

available, we assume that the cost of 
analyzing the recurrent data is associated 
with tasks such as reviewing records and 
interviewing physicians. As can be seen in 
the table 1, prior and posterior analyses can 
be performed by comparing the prior and 
posterior mean values of λ0 with the cutoff 
value MC. The observed data support the 
adoption of the risk reduction action, 
whereas the priors support the status quo. 
This can be explained by the fact that the 
observed data indicate greater deterioration 
than was assumed by the prior distributions.  

Table 1 Summary the result of Bayesian inference 
Prior E{M} 4.9500 
Optimal sampling number of failure 7 
Actual sampling number of failure 4 
Prior E{λ0} 0.2 
Posterior E′{λ0} 0.1532 
Prior E{β} 1.49 
Posterior E′{β} 1.7314 
Cutoff Value of E{M} for Risk Reduction 6.9400 
Prior Decision Status quo 
Posterior E′{M} 9.6983 
Posterior Decision Risk Reduction 

 
5. Conclusions 
 
In medical decision making, the event of 
primary interest is recurrent, so that for a 
given unit the event could be observed 
more than once during the study. In 
general, the successive times between 
recurrent events are not necessarily 
identically distributed. However, if any 
critical deterioration is detected, then the 
decision of when to take the intervention, 
given the costs of diagnosis and 
therapeutics, is of fundamental importance. 
In this paper, Bayesian inference of a 
nonhomogeneous Poisson process with 
power law failure intensity function is used 
to describe the behavior of recurrent 
ovarian cancer. Finally, this paper develops 
a systematic way to integrate the expert’s 
opinions which will furnish clinician with 
valuable support for quality medical 

decision making. 
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