Dynamic Behaviors of N-Species Cooperation System with Distributed Delays and Feedback Controls on Time Scales

MENG HU
Anyang Normal University
School of mathematics and statistics
Xian'gedadao Road 436, 455000 Anyang
CHINA
humeng2001@126.com

LILI WANG
Anyang Normal University
School of mathematics and statistics
Xian'gedadao Road 436, 455000 Anyang
CHINA
ay_wanglili@126.com

Abstract: This paper is concerned with an n-species cooperation system with distributed delays and feedback controls on time scales. For general nonautonomous case, by using differential inequality theory and constructing a suitable Lyapunov functional, sufficient conditions which guarantee the permanence and the global attractivity of the system are obtained. For the almost periodic case, by using the Razumikhin type theorem, sufficient conditions which guarantee the existence of a positive almost periodic solution of the system are obtained. Finally, an example and numerical simulations are presented to illustrate the feasibility and effectiveness of the results.

Key–Words: Cooperation system; Permanence; Global attractivity; Almost periodic solution; Time scale.

1 Introduction

As is well known, ecosystem in the real world are continuously disturbed by unpredictable forces which can result in changes in the biological parameters such as survival rates. Of practical interest in ecology is the question of whether or not an ecosystem can withstand those unpredictable disturbances which persist for a finite period of time. In the language of control variables, we call the disturbance functions as control variables. During the last decade, dynamic behaviors such as permanence, global attractivity, periodicity and almost periodicity of different types of ecosystems with feedback control have been studied extensively; see, for example, [1-5] and the references therein.

On the other hand, in the natural world, there are many species whose developing processes are both continuous and discrete. Hence, using the only differential equation or difference equation can’t accurately describe the law of their developments; see, for example, [6,7]. Therefore, there is a need to establish correspondent dynamic models on new time scales.

Recently, ecosystems with periodic coefficients on time scales received more researchers’ special attention due to their applications; see, for example, [8-13] and the references therein. However, upon considering long-term dynamical behaviors, the periodic parameters often turn out to experience certain perturbations, that is, parameters become periodic up to a small error, then one has to consider the ecosystems to be almost periodic. Therefore, if we consider the effects of the environmental factors (e.g. seasonal effects of weather, food supplies, mating habits, and harvesting), the assumption of almost periodicity is more realistic, more important and more general.

To the best of the authors’ knowledge, there are few papers published on the dynamic behaviors (permanence, global attractivity, almost periodicity, etc.) of ecosystems on time scales, especially for cooperative ecosystems on time scales. As we know, cooperative ecosystems is one kind of most important ecosystem in the real world.

Motivated by the above, in the present paper, we shall study a nonautonomous n-species cooperation system with distributed delays and feedback controls on time scales as follows:

\[
\begin{align*}
\dot{x}_i(t) &= r_i(t)x_i(t) \left[1 - c_i(t)x_i(\sigma(t)) \right] \tag{1}
\end{align*}
\]

where \(x_i(t) = 1, 2, \cdots, n \) is the density of cooperation species, \(u_i(t) = 1, 2, \cdots, n \) is the control variable.
\(g_i(t), i, j = 1, 2, \ldots, n\) are all continuous, real-valued functions which are bounded above and below by positive constants;

\((H_2)\) \(\theta_{ij}, \tau_i, \eta_i\) are all positive constants, \(B_{ij}(s), H_i(s), G_i(s)\) are all nonnegative continuous functions such that \(\int_{-\theta_{ij}}^0 B_{ij}(s) \Delta s = 1, \int_{-\tau_i}^0 H_i(s) \Delta s = 1, \int_{-\eta_i}^0 G_i(s) \Delta s = 1, i, j = 1, 2, \ldots, n.\)

Let \(\tau = \max\{\theta_{ij}, \tau_i, \eta_i, i, j = 1, 2, \ldots, n\}\), consider (1) together with the following initial conditions

\[
x_i(\theta) = \varphi_i(\theta) \geq 0, \quad \theta \in [-\tau, 0], \varphi_i(0) > 0,
\]

\[
u_i(\theta) = \psi_i(\theta) \geq 0, \quad \theta \in [-\tau, 0], \psi_i(0) > 0,
\]

where \(\varphi_i(s)\) and \(\psi_i(s)\) are continuous on \([-\tau, 0].\)

For convenience, we introduce the notation

\[
f^u = \sup_{t \in \mathbb{T}} f(t), \quad f^l = \inf_{t \in \mathbb{T}} f(t),
\]

where \(f\) is a positive and bounded function.

The organization of this paper is as follows. In section 2, we introduce some notations and definitions and state some preliminary results needed in later sections. Section 3 is devoted to studying the permanence and the global attractivity of system (1). Section 4 is devoted to studying the existence of a unique positive almost periodic solution of the system (1). An example is given in Section 5.

2 Preliminaries

Let \(\mathbb{T}\) be a nonempty closed subset (time scale) of \(\mathbb{R}\). The forward and backward jump operators \(\sigma, \rho: \mathbb{T} \rightarrow \mathbb{T}\) and the graininess \(\mu: \mathbb{T} \rightarrow \mathbb{R}^+\) are defined, respectively, by

\[
\sigma(t) = \inf\{s \in \mathbb{T}: s > t\},
\]

\[
\rho(t) = \sup\{s \in \mathbb{T}: s < t\},
\]

\[
\mu(t) = \sigma(t) - t.
\]

A point \(t \in \mathbb{T}\) is called left-dense if \(t > \sup \mathbb{T}\) and \(\rho(t) = t\), left-scattered if \(\rho(t) < t\), right-dense if \(t < \inf \mathbb{T}\) and \(\sigma(t) = t\), and right-scattered if \(\sigma(t) > t\). If \(\mathbb{T}\) has a left-scattered maximum \(m\), then \(\mathbb{T}^k = \mathbb{T}\setminus\{m\}\); otherwise \(\mathbb{T}^k = \mathbb{T}\). If \(\mathbb{T}\) has a right-scattered minimum \(m\), then \(\mathbb{T}_k = \mathbb{T}\setminus\{m\}\); otherwise \(\mathbb{T}_k = \mathbb{T}\).

The basic theories of calculus on time scales, one can see [14].

A function \(p: \mathbb{T} \rightarrow \mathbb{R}\) is called regressive provided \(1 + \mu(t)p(t) \neq 0\) for all \(t \in \mathbb{T}^k\). The set of all regressive and rd-continuous functions \(p: \mathbb{T} \rightarrow \mathbb{R}\) will be denoted by \(\mathcal{R} = \mathcal{R}(\mathbb{T}, \mathbb{R})\). Define the set \(\mathcal{R}^+ = \mathcal{R}^+(\mathbb{T}, \mathbb{R}) = \{p \in \mathcal{R}: 1 + \mu(t)p(t) > 0, \forall t \in \mathbb{T}\}.

If \(r\) is a regressive function, then the generalized exponential function \(e_r\) is defined by

\[
e_r(t, s) = \exp\left\{\int_s^t \xi_{\mu(r)}(\tau(\tau)) \Delta \tau\right\}
\]

for all \(s, t \in \mathbb{T}\), with the cylinder transformation

\[
\xi_h(z) = \begin{cases} \log(1 + h z), & \text{if } h \neq 0, \\ z, & \text{if } h = 0. \end{cases}
\]

Let \(p, q : \mathbb{T} \rightarrow \mathbb{R}\) be two regressive functions, define

\[
p \oplus q = p + q + \mu pq, \quad \ominus p = -\frac{p}{1 + \mu p}, \quad p \ominus q = p \ominus (\ominus q).
\]

Lemma 1. (see [14]) If \(p, q : \mathbb{T} \rightarrow \mathbb{R}\) be two regressive functions, then

(i) \(e_0(t, s) \equiv 1\) and \(e_p(t, t) \equiv 1;\)

(ii) \(e_p(\sigma(t), s) = (1 + \mu(t)p(t))e_p(t, s);\)

(iii) \(e_p(t, s) = \frac{1}{e_p(s, t)} = e_{\ominus p}(s, t);\)

(iv) \(e_p(t, s)e_p(s, r) = e_p(t, r);\)

(v) \(e_{p^\delta(t, s)} e_{p^\delta(t, s)} = e_{p\oplus q}(t, s);\)

(vi) \((e_p(t, s))^\Delta = p(t)e_p(t, s).\)

Lemma 2. (see [15]) Assume that \(a > 0, b > 0\) and \(-a \in \mathcal{R}^+.\) Then

\[
y^{\Delta}(t) \geq (\leq)b - ay(t), \quad y(t) > 0, \quad t \in [t_0, \infty)\]

implies

\[
y(t) \geq (\leq)\frac{b}{a}[1 + (\frac{ay(t_0)}{b} - 1)e_{\ominus a}(t, t_0)], \quad t \in [t_0, \infty).\]

Lemma 3. (see [15]) Assume that \(a > 0, b > 0.\) Then

\[
y^{\Delta}(t) \geq (\leq)\frac{b}{a}[1 + (\frac{b}{ay(t_0)} - 1)e_{\ominus b}(t, t_0)], \quad t \in [t_0, \infty).\]

Let \(\mathbb{T}\) be a time scale with at least two positive points, one of them being always one: \(1 \in \mathbb{T}\), there exists at least one point \(t \in \mathbb{T}\) such that \(0 < t \neq 1.\) Define the natural logarithm function on the time scale \(\mathbb{T}\) by

\[
L_{\mathbb{T}}(t) = \int_1^t \frac{1}{r} \Delta r, \quad t \in \mathbb{T} \cap (0, +\infty).\]
Lemma 4. (see [16]) Assume that \(x : T \rightarrow \mathbb{R}^+ \) is strictly increasing and \(\bar{T} := x(T) \) is a time scale. If \(x^\Delta(t) \) exists for \(t \in T^k \), then
\[
\frac{\Delta}{\Delta t} L_T(x(t)) = \frac{x^\Delta(t)}{x(t)}.
\]

Lemma 5. (see [14]) Assume that \(f, g : T \rightarrow \mathbb{R} \) are differentiable at \(t \in T^k \), then \(fg : T \rightarrow \mathbb{R} \) is differentiable at \(t \) with
\[
(fg)^\Delta(t) = f^\Delta(t)g(t) + f(\sigma(t))g^\Delta(t).
\]

3 Permanence and attractivity

Assume that the coefficients of (1) satisfy
\[
(H_3) \ r_i^u > \frac{\alpha_i}{\alpha_i} M_{1i} + \frac{d_i^u + h_i^u}{\alpha_i} M_{2i}, \quad i = 1, 2, \ldots, n.
\]

Theorem 8. Let \((x_1(t), x_2(t), \ldots, x_n(t), u_1(t), \ldots, u_n(t))\) be any positive solution of system (1) with initial condition (2). If \((H_1) - (H_3)\) hold, then system (1) is permanent, that is, any positive solution \((x_1(t), x_2(t), \ldots, x_n(t), u_1(t), \ldots, u_n(t))\) of system (1) satisfies
\[
m_{1i} \leq \liminf_{t \rightarrow +\infty} x_i(t) \leq \limsup_{t \rightarrow +\infty} x_i(t) \leq M_{1i}, \quad i = 1, 2, \ldots, n,
\]
\[
m_{2i} \leq \liminf_{t \rightarrow +\infty} u_i(t) \leq \limsup_{t \rightarrow +\infty} u_i(t) \leq M_{2i},
\]
especially if \(m_{1i} \leq x_i(t_0) \leq M_{1i}, m_{2i} \leq u_i(t_0) \leq M_{2i}, \) then
\[
m_{1i} \leq x_i(t) \leq M_{1i}, \quad m_{2i} \leq u_i(t) \leq M_{2i}, \quad t \in [t_0, +\infty)_T, \quad i = 1, 2, \ldots, n,
\]
where
\[
M_{1i} = \frac{r_i^u}{r_i^c}, \quad M_{2i} = \frac{(\beta_i + g_i^u) M_{1i}}{\alpha_i^u},
\]
\[
m_{1i} = \frac{r_i^u - r_i^c M_{1i} - (d_i^u + h_i^u) M_{2i}}{r_i^c},
\]
\[
m_{2i} = \frac{(\beta_i + g_i^u) m_{1i}}{\alpha_i^u}.
\]

Proof. Assume that \((x_1(t), x_2(t), \ldots, x_n(t), u_1(t), \ldots, u_n(t))\) be any positive solution of system (1) with initial condition (2). From the \(i\)th equation of system (1), we have
\[
x_i^\Delta(t) \leq r_i(1 - c_i) x_i(\sigma(t)) \leq x_i(t)(r_i - r_i^c x_i(\sigma(t))).
\]

By Lemma 3, we can get
\[
\limsup_{t \rightarrow +\infty} x_i(t) \leq \frac{r_i^u}{r_i^c} := M_{1i}.
\]

Then, for arbitrary small positive constant \(\varepsilon > 0\), there exists a \(T_1 > 0\) such that
\[
x_i(t) < M_{1i} + \varepsilon, \quad \forall t \in [T_1, +\infty)_T.
\]

From the \(n + i\)th equation of system (1), when \(t \in [T_1, +\infty)_T\),
\[
u_i^\Delta(t) = -\alpha_i u_i(t) + \beta_i x_i(t) + g_i(t) x_i(t) \int_0^t G_i(s) u_i(t + s) \Delta s
\]
Let $\varepsilon \to 0$, then
\[
u^1(t) = -\alpha^1_i u_i(t) + (\beta^u_i + g^\nu_i)M_{1i}.
\]
By Lemma 2, we can get
\[
\limsup_{t \to +\infty} u_i(t) = \frac{(\beta^u_i + g^\nu_i)M_{1i}}{\alpha^1_i} := M_{2i}.
\]
Then, for arbitrary small positive constant $\varepsilon > 0$, there exists a $T_2 > T_1$ such that
\[
u_i(t) < M_{2i} + \varepsilon, \forall t \in [T_2, +\infty)_T.
\]
On the other hand, from the ith equation of system (1), when $t \in [T_2, +\infty)_T$,
\[
x^\Delta_i(t)
= r_i(t)x_i(t) \left[1 - c_i(t)x_i(\sigma(t)) - \frac{a_i(t) + \sum_{j=1,j \neq i}^n b_{ij}(t) J_{ij}(s)x_j(t + s)\Delta s}{x_i(t)} - d_i(t)u_i(t)x_i(t) - h_i(t)x_i(t) \int_{-\tau}^0 H_i(s)u_i(t + s)\Delta s, \right.
\]
\[
> x_i(t)[r^i_i - \frac{\alpha^1_i}{\alpha^u_i} (M_{1i} + \varepsilon) - \frac{\alpha^u_i}{\alpha^u_i} M_{2i} + \varepsilon].
\]
Let $\varepsilon \to 0$, then
\[
x^\Delta_i(t) \geq x_i(t)[r^i_i - \frac{\alpha^1_i}{\alpha^u_i} M_{1i} - \frac{\alpha^u_i}{\alpha^u_i} M_{2i}].
\]
By Lemma 3, we can get
\[
\liminf_{t \to +\infty} x_i(t) = \frac{r^i_i - \frac{\alpha^1_i}{\alpha^u_i} M_{1i} - (d^u_i + h^u_i)M_{2i}}{\frac{\alpha^u_i}{\alpha^u_i} M_{2i}} := m_{1i}.
\]
Then, for arbitrary small positive constant $\varepsilon > 0$, there exists a $T_3 > T_2$ such that
\[
x_i(t) > m_{1i} - \varepsilon, \forall t \in [T_3, +\infty)_T.
\]
From the $n + \text{th}$ equation of system (1), when $t \in [T_3, +\infty)_T$,
\[
u^1(t) = -\alpha^1_i u_i(t) + (\beta^u_i + g^\nu_i)M_{1i}.
\]
Let $\varepsilon \to 0$, then
\[
u^1(t) \geq -\alpha^u_i u_i(t) + (\beta^u_i + g^\nu_i)m_{1i}.
\]
By Lemma 2, we can get
\[
\liminf_{t \to +\infty} u_i(t) = \frac{(\beta^u_i + g^\nu_i)m_{1i}}{\alpha^u_i} := m_{2i}.
\]
Then, for arbitrary small positive constant $\varepsilon > 0$, there exists a $T_4 > T_3$ such that
\[
u_i(t) > m_{2i} - \varepsilon, \forall t \in [T_3, +\infty)_T.
\]
In special case, if $m_{1i} \leq x_i(t_0) \leq M_{1i}, m_{2i} \leq u_i(t_0) \leq M_{2i}$, by Lemma 2 and Lemma 3, it follows from (7)-(10) that
\[
m_{1i} \leq x_i(t) \leq M_{1i}, m_{2i} \leq u_i(t) \leq M_{2i},
\]
$t \in [t_0, +\infty)_T$.
This completes the proof. □

Theorem 9. Assume that all the conditions of Theorem 2.1 hold, further assume that
\[
(H_4) \frac{r^i_i}{\alpha^u_i + \sum_{j=1,j \neq i}^n b^u_{ij} M_{1j}} - \beta^u_i > 0;
\]
\[
(H_5) \alpha^1_i - d^u_i > 0;
\]
\[
(H_6) \text{There exist positive constants } k > 1 \text{ and } \gamma > 0 \text{ such that } \Pi > \gamma, \text{ where}
\]
\[
\Pi = \min_i \left[\left(\frac{r^i_i}{\alpha^u_i + \sum_{j=1,j \neq i}^n b^u_{ij} M_{1j}} - \beta^u_i \right) m_{1i}, (\alpha^1_i - d^u_i) \right]
\]
\[
- k \sum_{i=1}^n \left(\sum_{j=1,j \neq i}^n \frac{r^u_{ij} b^u_{ij} M_{1j} M_{1j}}{b^u_{ij} M_{1j} M_{1j}} \right)
\]
\[
\left[\left(\frac{r^i_i}{\alpha^u_i} m_{1i}, (\alpha^1_i - d^u_i) \right) \right]
\]
\[
+ h^u_i + g^\nu_i.
\]
Then the solution of system (1) is globally attractive.

Proof. Assume that $z_1(t) = (x_1(t), x_2(t), \ldots, x_n(t), u_1(t), \ldots, u_n(t))$ and $z_2(t) = (y_1(t), y_2(t), \ldots, y_n(t), v_1(t), \ldots, v_n(t))$ be two positive bounded solutions of system (1). It follows from (5)-(6) that for sufficient small positive constant $\varepsilon_0 (0 < \varepsilon_0 < \min_{1 \leq i \leq n} \{m_{1i}, m_{2i}\})$, there exists a $T > 0$ such that
\[
m_{1i} - \varepsilon_0 < x_i(t), y_i(t) < M_{1i} + \varepsilon_0,
\]
\[
m_{2i} - \varepsilon_0 < u_i(t), v_i(t) < M_{2i} + \varepsilon_0,
\]
where $t \in [T, +\infty)_\mathcal{T}$, $i = 1, 2, \ldots, n$, and
\[
\begin{align*}
\Delta_t r_i^t &= \frac{\gamma_i^t}{a_i^t + \sum_{j=1,j\neq i}^n b_{ij}^t (M_{ij} + \epsilon_0)} - \beta_i^t > 0. & (12)
\end{align*}
\]
Since $x_i(t), y_i(t), i = 1, 2, \ldots, n$ are positive, bounded and differentiable functions on \mathcal{T}, then there exists a positive, bounded and differentiable function $m(t), t \in \mathcal{T}$, such that $x_i(t)(1+m(t)), y_i(t)(1+m(t)), i = 1, 2, \ldots, n$ are strictly increasing on \mathcal{T}. By Lemma 4 and Lemma 5, we have
\[
\begin{align*}
\frac{\Delta}{\Delta t} L_T(x_i(t)[1+m(t)]) &= \frac{x_i^2(t)}{x_i(t)} + \frac{x_i(\sigma(t))m(t)}{x_i(t)} + \frac{\Delta}{\Delta t} L_T(y_i(t)[1+m(t)]) = \frac{y_i^2(t)}{y_i(t)} + \frac{y_i(\sigma(t))m(t)}{y_i(t)} + \frac{\Delta}{\Delta t} L_T(y_i(t)[1+m(t)])
\end{align*}
\]
Here, we can choose a function $m(t)$ such that $\frac{m(t)}{1+m(t)}$ is bounded on \mathcal{T}, that is, there exist two positive constants $\zeta > 0$ and $\xi > 0$ such that $0 < \zeta < \frac{m(t)}{1+m(t)} < \xi$, $\forall t \in \mathcal{T}$.

Set
\[
\begin{align*}
V(t) &= \sum_{i=1}^n V_i(t), \\
V_i(t) &= \mu_{-\delta}(t) \left(\frac{L_T(x_i(t)[1+m(t)])}{L_T(x_i(t)[1+m(t)])} \right) + \left(\frac{L_T(y_i(t)[1+m(t)])}{L_T(y_i(t)[1+m(t)])} \right) + \left(\frac{\Delta}{\Delta t} L_T(x_i(t)[1+m(t)]) \right) + \left(\frac{\Delta}{\Delta t} L_T(y_i(t)[1+m(t)]) \right)
\end{align*}
\]
\[
\begin{align*}
\mu_\delta(t) &= \mu(t), \\
\mu_\delta(t) &= \mu(t) \left(\frac{1}{\max\left\{ (r_i^t)^{\delta}, \frac{\delta}{m(t)} \right\}} \right) \mathcal{M} \left(\frac{1}{\max\left\{ (r_i^t)^{\delta}, \frac{\delta}{m(t)} \right\}} \mathcal{M} \left(\frac{1}{\max\left\{ (r_i^t)^{\delta}, \frac{\delta}{m(t)} \right\}} \right) \right)
\end{align*}
\]
where $\delta \geq 0$ is a constant (if $\mu(t) = 0$, then $\delta = 0$; if $\mu(t) > 0$, then $\delta > 0$). It follows from the mean value theorem of differential calculus on time scales for $t \in [T, +\infty)_\mathcal{T}$,
\[
\begin{align*}
\Delta_t r_i^t &= \frac{\gamma_i^t}{a_i^t + \sum_{j=1,j\neq i}^n b_{ij}^t (M_{ij} + \epsilon_0)} - \beta_i^t > 0.
\end{align*}
\]
Now, we divide the proof into two cases.

Case I. If $\mu(t) > 0$, set $\sigma(t) = \max\{\gamma_i^t, \frac{\delta}{m(t)}\}$ and $1-\mu(t) < 0$. Calculating the upper right derivatives of $V_i(t)$ along the solution of system (1), it follows from (11)-(13), $\{H_4\} - \{H_6\}$ that for $t \in [T, +\infty)_\mathcal{T}$,
\[
\begin{align*}
D^+ V_i^\Delta(t) &= \frac{\Delta}{\Delta t} L_T(x_i(t)[1+m(t)]) \Delta_t r_i^t, \\
\Delta_t r_i^t &= \frac{\gamma_i^t}{a_i^t + \sum_{j=1,j\neq i}^n b_{ij}^t (M_{ij} + \epsilon_0)} - \beta_i^t > 0.
\end{align*}
\]
\begin{align*}
&+ h_i^n \int_{-\tau_i}^0 H_i(s) |u_i(t+s) - v_i(t+s)| \Delta s \\
&+ g_i^n \int_{-\tau_i}^0 G_i(s) |u_i(t+s) - v_i(t+s)| \Delta s \right].
\end{align*}

Since \(V_i(t, z_1(t+s), z_2(t+s)) < k V_i(t, z_1(t), z_2(t)), \)
\(s \in [-\tau, 0], k > 1 \) is a constant, then

\[
D^+ V_i^\Delta(t)
\leq - \min \left[\left(\frac{r_i^l}{a_i^n + \sum_{j=1, j \neq i}^n b_{ij}^\nu (M_{ij} + \varepsilon_0)} - \beta_i^n \right)
\times (m_{1i} - \varepsilon_0), (a_i^l - d_i^n) \right] V_i(t) \\
+k \left[\sum_{j=1, j \neq i}^n r_i^l b_{ij}^\nu (M_{ij} + \varepsilon_0) (M_{ij} + \varepsilon_0)
\times \sum_{j=1, j \neq i}^n b_j^\nu (m_{ij} - \varepsilon_0))^2 \right] V_i(t) \\
+ h_i^n + g_i^n \right] V_i(t).
\]

Therefore,

\[
D^+ V^\Delta(t) = \sum_{i=1}^n D^+ V_i^\Delta(t)
\leq - \left(\min_1 \left[\left(\frac{r_i^l}{a_i^n + \sum_{j=1, j \neq i}^n b_{ij}^\nu (M_{ij} + \varepsilon_0)} - \beta_i^n \right)
\times (m_{1i} - \varepsilon_0), (a_i^l - d_i^n) \right] \\
	imes \sum_{j=1, j \neq i}^n r_i^l b_{ij}^\nu (M_{ij} + \varepsilon_0) (M_{ij} + \varepsilon_0)
\times \sum_{j=1, j \neq i}^n b_j^\nu (m_{ij} - \varepsilon_0))^2 \right] V(t) \\
+ h^n + g^n \right] V(t).
\]

By the comparison theorem and (14), we have

\[
V(t) \leq |e_{-\gamma}(t, T)| V(T) \\
< 2 \left(\frac{M_{1i} + \varepsilon_0}{m_{1i} - \varepsilon_0} + M_{2i} + \varepsilon_0 \right) |e_{-\gamma}(t, T)|,
\]

that is,

\[
|e_{-\delta}(t, T)|(\mathcal{L}_T(x_i(t)(1 + m(t))) \\
- L_T(y_i(t)(1 + m(t)))) + |u_i(t) - v_i(t)| \\
< 2 \left(\frac{M_{1i} + \varepsilon_0}{m_{1i} - \varepsilon_0} + M_{2i} + \varepsilon_0 \right) |e_{-\gamma}(t, T)|,
\]

then

\[
\frac{1}{M_{1i} + \varepsilon_0} |x_i(t) - y_i(t)| + |u_i(t) - v_i(t)| \\
< 2 \left(\frac{M_{1i} + \varepsilon_0}{m_{1i} - \varepsilon_0} + M_{2i} + \varepsilon_0 \right) \\
\times |e_{-\gamma \ominus (-\delta)}(t, T)|.
\]

Since \(-1 - \mu(t) \delta < 0 \) and \(0 < \gamma < \delta \), then \((-\gamma) \ominus (-\delta) < 0 \). It follows from (15) that

\[
\lim_{t \to +\infty} |x_i(t) - y_i(t)| = 0, \quad \lim_{t \to +\infty} |u_i(t) - v_i(t)| = 0.
\]

Case II. If \(\mu(t) = 0 \), set \(\delta = 0 \), then \(\sigma(t) = t \) and \(|e_{-\gamma \ominus t}(t, T)| = 1 \). Calculating the upper right derivatives of \(V(t) \) along the solution of system (1), it follows from (11)-(13), \((H_4)\) - \((H_6)\) that for \(t \in [T, +\infty) \),

\[
D^+ V^\Delta(t) \\
= \text{sgn}(x_i(t) - y_i(t)) \left(\frac{x_i^\Delta(t)}{x_i(t)} - \frac{y_i^\Delta(t)}{y_i(t)} \right) \\
+ \text{sgn}(u_i(t) - v_i(t))(u_i^\Delta(t) - v_i^\Delta(t)) \\
\leq - |x_i(t) - y_i(t)| \left[r_i(t)c_i(t) \\
+ \frac{r_i(t)}{a_i(t) + \sum_{j=1, j \neq i}^n b_{ij}(M_{ij} + \varepsilon_0)} \right] \\
+ \sum_{j=1, j \neq i}^n r_i(t) b_{ij}(M_{ij} + \varepsilon_0) \\
\times \sum_{j=1, j \neq i}^n b_j^\nu (m_{ij} - \varepsilon_0))^2 \right] V(t) \\
+ h_i^n + g_i^n \right] V(t).
\]

By the comparison theorem and (14), we have

\[
V(t) \leq |e_{-\gamma(t, T)}| V(T) \\
< 2 \left(\frac{M_{1i} + \varepsilon_0}{m_{1i} - \varepsilon_0} + M_{2i} + \varepsilon_0 \right) |e_{-\gamma}(t, T)|,
\]

that is,

\[
|e_{-\delta}(t, T)|(\mathcal{L}_T(x_i(t)(1 + m(t))) \\
- L_T(y_i(t)(1 + m(t)))) + |u_i(t) - v_i(t)| \\
< 2 \left(\frac{M_{1i} + \varepsilon_0}{m_{1i} - \varepsilon_0} + M_{2i} + \varepsilon_0 \right) |e_{-\gamma}(t, T)|,
\]

that is,

\[
|e_{-\delta}(t, T)| |L_T(x_i(t)(1 + m(t))) \\
- L_T(y_i(t)(1 + m(t)))| + |u_i(t) - v_i(t)| \\
< 2 \left(\frac{M_{1i} + \varepsilon_0}{m_{1i} - \varepsilon_0} + M_{2i} + \varepsilon_0 \right) |e_{-\gamma}(t, T)|,
\]
\[x(t) = \int_{-\theta_1}^{0} B_{ij}(s)x_j(t + s) - y_j(t + s)|\Delta s \]
\[+ h_{ij}^u \int_{-\tau_i}^{0} H_i(s)u_i(t + s) - v_i(t + s)|\Delta s \]
\[+ g_i^u \int_{-\rho_i}^{0} G_i(s)u_i(t + s) - v_i(t + s)|\Delta s \]
\[\leq -\min \left(\left\{ r_i^u + \sum_{j=1,j\neq i} b_{ij}^u (M_{ij} + \varepsilon_0) \right\} \right) \]
\[\leq \frac{k}{\gamma} \left(\sum_{i=1}^{n} \left\{ \sum_{j=1,j\neq i} r_{ij}^u b_{ij}^u (M_{ij} + \varepsilon_0)(M_{ij} + \varepsilon_0) \right\} \right) V(t) \]
\[\leq -\gamma V(t). \] (16)

By the comparison theorem and (16), we have
\[V(t) \leq |e_{-\gamma}(t, T)|V(T) \]
\[< 2 \left(\frac{M_{1i} + \varepsilon_0}{M_{1i} - \varepsilon_0} + M_{2i} + \varepsilon_0 \right) |e_{-\gamma}(t, T)| \]

It follows from (17) that
\[\lim_{t \to +\infty} |x_i(t) - y_i(t)| = 0, \quad \lim_{t \to +\infty} |u_i(t) - v_i(t)| = 0. \]

From the above discussion and Definition 7, we can see that the solution of system (1) is globally attractive. This completes the proof. \(\square \)

4 Almost periodic solution

The aim of this section is to investigate the positive almost periodic solution of system (1), to do so, we further assume that system (1) satisfies
\[(H_7) \quad r_i(t), a_i(t), b_{ij}(t), c_i(t), d_i(t), h_i(t), \alpha_i(t), \beta_i(t), \gamma_i(t), i, j = 1, 2, \ldots, n \text{ are all continuous, real-valued positive almost periodic functions.} \]

The relevant definitions and the properties of almost periodic functions, see [18, 19].

Let \(S(T) \) be the set of all solutions \((x_1(t), x_2(t), \ldots, x_n(t), u_1(t), \ldots, u_n(t)) \) of system (1) satisfying \(m_{1i} \leq x_i(t) \leq M_{1i}, m_{2i} \leq u_i(t) \leq M_{2i} \) for all \(t \in T, i = 1, 2, \ldots, n \).

Lemma 10. \(S(T) \neq \emptyset. \)

Proof. By Theorem 7, we see that for any \(t_0 \in T \) with \(m_{1i} \leq x_i(t_0) \leq M_{1i}, m_{2i} \leq u_i(t_0) \leq M_{2i}, \) system (1) has a solution \((x_i(t), u_i(t)) \) satisfying \(m_{1i}
\leq x_i(t) \leq M_{1i}, \)
\(m_{2i} \leq u_i(t) \leq M_{2i}, \) \(t \in [t_0, +\infty) \) such that
\[r_i(t), a_i(t), b_{ij}(t), c_i(t), d_i(t), h_i(t), \alpha_i(t), \beta_i(t), \gamma_i(t), i, j = 1, 2, \ldots, n \text{ are almost periodic, there exists a sequence } \{t_n\}, t_n \to +\infty \text{ as } n \to +\infty \text{ such that } \]
\[r_i(t_0 + t_n) \to r_i(t), a_i(t_0 + t_n) \to a_i(t), b_{ij}(t_0 + t_n) \to b_{ij}(t), c_i(t_0 + t_n) \to c_i(t), d_i(t_0 + t_n) \to d_i(t), h_i(t_0 + t_n) \to h_i(t), \alpha_i(t_0 + t_n) \to \alpha_i(t), \beta_i(t_0 + t_n) \to \beta_i(t), \gamma_i(t_0 + t_n) \to \gamma_i(t), \gamma_i(t) \text{ as } n \to +\infty \text{ uniformly on } T. \]

We claim that \(\{x_i(t + t_n)\} \) and \(\{u_i(t + t_n)\} \) are uniformly bounded and equi-continuous on any bounded interval in \(T. \)

In fact, for any bounded interval \([\alpha, \beta]_T \subset T\), when \(n \) is large enough, \(\alpha + t_n > t_0, t + t_n > t_0, \forall t \in [\alpha, \beta]_T. \) So, \(m_{1i} \leq x_i(t + t_n) \leq M_{1i}, m_{2i} \leq u_i(t + t_n) \leq M_{2i} \) for any \(t \in [\alpha, \beta]_T \), that is, \(\{x_i(t + t_n)\} \) and \(\{u_i(t + t_n)\} \) are uniformly bounded. On the other hand, \(\forall t_1, t_2 \in [\alpha, \beta]_T, \) from the mean value theorem of differential calculus on time scales, we have
\[\frac{1}{M_{1i} + \varepsilon_0} |x_i(t_1 + t_n) - x_i(t_2 + t_n)| \leq M_{1i} \]
The inequalities (18) and (19) show that \(\{x_i(t + n)\} \) and \(\{u_i(t + n)\} \) are equi-continuous on \([\alpha, \beta] \). By the arbitrary of \([\alpha, \beta] \), the conclusion is valid.

By Ascoli-Arzela theorem, there exists a subsequence of \(\{t_n\} \), we still denote it as \(\{t_n\} \), such that

\[
x_i(t + t_n) \to p_i(t), u_i(t + t_n) \to u_i(t),
\]

as \(n \to +\infty \) uniformly in \(t \) on any bounded interval in \(\mathbb{T} \).

For any \(\theta \in \mathbb{T} \), we can assume that \(t_n + \theta \geq t_0 \) for all \(n \), and let \(t \geq 0 \), integrate both equations of system (1) from \(t_n + \theta \) to \(t + t_n + \theta \), then by using the Lebesques dominated convergence theorem, we can obtain

\[
\begin{align*}
\frac{d}{dt} x_i(t) &= a_i(t) + \sum_{j=1, j \neq i}^{n} b_{ij}(t) \int_{\theta}^{t} B_{ij}(s)x_j(s)ds + c_i(t)x_i(t) \\
&\quad - d_i(t)u_i(t)x_i(t) + h_i(t)x_i(t) \int_{t-\tau}^{t} H_i(s)u_i(s)ds, \\
q_i(t) &= \int_{\theta}^{t+\theta} \left[-a_i(\omega)u_i(\omega) + \beta_i(\omega)x_i(\omega)\right]d\omega + g_i(\omega)\int_{\theta}^{t+\theta} G_i(s)u_i(s)ds.
\end{align*}
\]

Let \(z(t) = (z_1(t), z_2(t)) \) be a positive solution of product system (20), where

\[
\begin{align*}
z_1(t) &= (x_1(t), \ldots, x_n(t), u_1(t), \ldots, u_n(t)), \\
z_2(t) &= (y_1(t), \ldots, y_n(t), v_1(t), \ldots, v_n(t)).
\end{align*}
\]

Define \(z_1(t) = (x_i(t), u_i(t)), z_2(t) = (y_i(t), v_i(t)) \).

By using the same Lyapunov functional in Section 3. Set

\[
\begin{align*}
V(t, z_1(t), z_2(t)) &= \sum_{i=1}^{n} V_i(t, z_1(t), z_2(t)), \\
V_i(t, z_1(t), z_2(t)) &= \left|e_{-\delta}(t, T)|(|x_i(t) - y_i(t)| + |u_i(t) - v_i(t)|)\right|, \\
&\quad +|u_i(t) - v_i(t)|,
\end{align*}
\]

and \(|z_1(t) - z_2(t)| = \sum_{i=1}^{n} (|x_i(t) - y_i(t)| + |u_i(t) - v_i(t)|) \).

It follows from (13) that

\[
\begin{align*}
\min\left\{ \frac{1}{M_{i+1} + \varepsilon_0}, 1 \right\} |e_{-\delta}(t, T)|(|x_i(t) - y_i(t)| + |u_i(t) - v_i(t)|) &\leq V_i(t, z_1(t), z_2(t)), \\
&\leq \max\left\{ \frac{1}{m_{i+1} - \varepsilon_0}, 1 \right\} |e_{-\delta}(t, T)|(|x_i(t) - y_i(t)| + |u_i(t) - v_i(t)|),
\end{align*}
\]

This completes the proof.

Theorem 11. Assume that \((H_1)-(H_7)\) hold, then system (1) has a unique positive almost periodic solution which is globally attractive.
Therefore, condition (1) in Lemma 6 is satisfied.

Since
\[
\begin{aligned}
|V(t, z_1(t), z_2(t)) - V(t, \tilde{z}_1(t), \tilde{z}_2(t))| & \leq \left[e^{-\delta(t,T)} \right] \left[\frac{1}{M_{i_1}} - \varepsilon_0 \right] \left(\sum_{i=1}^{n} (|x_i(t) - y_i(t)| + |u_i(t) - v_i(t)|) \right) \\
& \leq V(t, z_1(t), z_2(t)) \\
& \leq \max \left\{ \frac{1}{m_{i_1} - \varepsilon_0}, 1 \right\} \left(|z_1(t) - z_2(t)| \right).
\end{aligned}
\]

that is
\[
\begin{aligned}
\min \left\{ \frac{1}{M_{i_1}} + \varepsilon_0, 1 \right\} & |e^{-\delta(t,T)}||z_1(t) - z_2(t)| \\
& \leq V(t, z_1(t), z_2(t)) \\
& \leq \max \left\{ \frac{1}{m_{i_1} - \varepsilon_0}, 1 \right\} |e^{-\delta(t,T)}||z_1(t) - z_2(t)|.
\end{aligned}
\]

Therefore, condition (1) in Lemma 6 is satisfied.

Since
\[
\begin{aligned}
|V(t, z_1(t), z_2(t)) - V(t, \tilde{z}_1(t), \tilde{z}_2(t))| & \leq \left[e^{-\delta(t,T)} \right] \left[\frac{1}{M_{i_1}} - \varepsilon_0 \right] \left(\sum_{i=1}^{n} (|x_i(t) - y_i(t)| + |u_i(t) - v_i(t)|) \right) \\
& \leq \max \left\{ \frac{1}{m_{i_1} - \varepsilon_0}, 1 \right\} \left(|z_1(t) - z_2(t)| \right)
\end{aligned}
\]

then
\[
\begin{aligned}
V(t, z_1(t), z_2(t)) - V(t, \tilde{z}_1(t), \tilde{z}_2(t)) & \leq \max \left\{ \frac{1}{m_{i_1} - \varepsilon_0}, 1 \right\} \left(|z_1(t) - z_2(t)| \right)
\end{aligned}
\]

\[
\begin{aligned}
& \leq \max \left\{ \frac{1}{M_{i_1} + \varepsilon_0}, 1 \right\} \sum_{i=1}^{n} (|x_i(t) - y_i(t)| + |u_i(t) - v_i(t)|) \\
& \quad + |u_i(t) - \tilde{u}_i(t)| \\
& \quad + |y_i(t) - \tilde{y}_i(t)| + |v_i(t) - \tilde{v}_i(t)|
\end{aligned}
\]

\[
\begin{aligned}
& \leq \max \left\{ \frac{1}{M_{i_1} + \varepsilon_0}, 1 \right\} \sum_{i=1}^{n} (|x_i(t) - \tilde{x}_i(t)| + |u_i(t) - \tilde{u}_i(t)| \\
& \quad + |y_i(t) - \tilde{y}_i(t)| + |v_i(t) - \tilde{v}_i(t)|)
\end{aligned}
\]

\[
\begin{aligned}
& \leq \max \left\{ \frac{1}{M_{i_1} + \varepsilon_0}, 1 \right\} \left(|z_1(t) - z_2(t)| \right)
\end{aligned}
\]

Therefore, condition (2) in Lemma 6 holds.

By the proof of Theorem 9. Calculating the upper right derivatives of \(V(t, z_1(t), z_2(t)) \) along the solution of system (20), it follows from (14) and (16) that for \(t \in [T, +\infty) T \),
\[
D^+ V(t, z_1(t), z_2(t)) \leq -\gamma V(t, z_1(t), z_2(t)).
\]

Therefore, condition (3) in Lemma 6 is satisfied.

From the above discussion, we can see that all conditions in Lemma 6 hold. By Lemma 6 and Lemma 10, system (1) has a unique almost periodic solution which is uniformly asymptotically stable. Together with Theorem 8 and Theorem 9 that system (1) has a unique positive almost periodic solution which is globally attractive. This completes the proof. \(\square\)

5 Example and simulations

Consider the following system on time scales \((n = 2) \)
\[
\begin{aligned}
x_1^2(t) &= (0.8 + 0.2 \sin \sqrt{2} t)x_1(t)[1 - x_1(t)], \\
x_2^2(t) &= (4.5 + 0.5 \sin \sqrt{2} t)x_2(t)[1 - x_2(t)], \\
u_1(t) &= -(0.4 + 0.1 \cos \sqrt{2} t)x_1(t) + (0.015 + 0.005 \sin \sqrt{2} t)x_1(t), \\
u_2(t) &= -(0.45 + 0.05 \cos \sqrt{2} t)x_2(t) + (0.012 + 0.002 \sin \sqrt{2} t)x_2(t)
\end{aligned}
\]

By a direct calculation, we can get
\[
\begin{aligned}
r_1^u &= 1, r_1^l = 0.6, a_1^u = 5, a_1^l = 4, \\
b_1^u &= b_1^l = 0.01, c_1^u = c_1^l = 1, d_1^u = d_1^l = 0.2, \\
h_1^u &= h_1^l = 0.01, a_1^u = 5, a_1^l = 0.3, \\
\beta_1^u &= \beta_1^l = 0.02, \gamma_1^u = \gamma_1^l = 0.01, \\
r_2^u &= 1, r_2^l = 0.7, a_2^u = 5, a_2^l = 3, \\
b_2^u &= b_2^l = 0.02, c_2^u = c_2^l = 1, d_2^u = d_2^l = 0.2, \\
h_2^u &= h_2^l = 0.02, a_2^u = 0.5, a_2^l = 0.4, \\
\beta_2^u &= 0.014, \beta_2^l = 0.01, g_2^u = g_2^l = 0.02
\end{aligned}
\]

then
\[
\begin{aligned}
M_{i_1} &= 1.6667, M_{i_2} = 0.1667, \\
m_{i_11} &= 1.4838, m_{i_21} = 0.0059, \\
m_{i_12} &= 1.4286, m_{i_22} = 0.1214, \\
m_{i_12} &= 0.1971, m_{i_22} = 0.0118
\end{aligned}
\]
and

\[(H_3) \quad r_1^l - \frac{r_1^u}{\alpha_1} M_{11} + (d_1^u + h_1^u) M_{21} = 0.2183, \]
\[r_2^l - \frac{r_2^u}{\alpha_2} M_{12} + (d_2^u + h_2^u) M_{22} = 0.2505.\]

\[(H_4) \quad \frac{r_1^l}{\alpha_1 + \beta_1^u M_{12}} - \beta_1^u = 0.0997, \]
\[\frac{r_2^l}{\alpha_2 + \beta_2^u M_{21}} - \beta_2^u = 0.1251;\]

\[(H_5) \quad \alpha_1^l - d_1^u = 0.1, \alpha_2^l - d_2^u = 0.2;\]

\[(H_6) \quad \text{Let } k = 1.1, \text{ then } \Pi = 0.0074. \text{ One can choose } \gamma \in (0, 0.0074].\]

From the above, we can see that the conditions \((H_1)\) – \((H_7)\) hold. According to Theorem 11, system \((21)\) has a unique positive almost periodic solution which is globally attractive.

Let \(\theta_{12} = \theta_{21} = \eta_1 = \eta_2 = +\infty. \text{ If } T = \mathbb{R}, \text{ set } B_{12}(s) = B_{21}(s) = G_1(s) = G_2(s) = e^s; \text{ if } T = \mathbb{Z}, \text{ set } B_{12}(s) = B_{21}(s) = G_1(s) = G_2(s) = (\frac{1}{2})^s. \text{ The dynamics simulation of system } (21), \text{ see Figures 1 and 2.}\]

Figure 1: Let \(T = \mathbb{R}, \text{ dynamics behavior of system } (21) \text{ with the initial conditions } (x(0), y(0)) = \{(0.3, 0.3), (0.5, 0.5), (0.8, 0.8)\}.\]

Figure 2: Let \(T = \mathbb{Z}, \text{ dynamics behavior of system } (21) \text{ with the initial conditions } (x(1), y(1)) = \{(0.1, 0.01), (0.3, 0.03), (0.5, 0.05)\}.\]

6 Conclusion

This paper studied a \(n\)-species cooperation system with distributed delays and feedback controls on time scales. For general nonautonomous case, by using different inequality theory and constructing a suitable Lyapunov functional, sufficient conditions which guarantee the permanence and the global attractivity of the system are obtained. For the almost periodic case, by using the Razumikhin type theorem, sufficient conditions which guarantee the existence of a positive almost periodic solution of the system are obtained. The methods used in this paper are completely new, and the methods can be applied to study other dynamic systems.

Acknowledgements: This work is supported by the Basic and Frontier Technology Research Project of Henan Province (Grant No. 142300410000), the National Natural Sciences Foundation of People’s Republic of China (Tianyuan Fund for Mathematics, Grant No. 11326113).

References:

