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Abstract: In this paper, two novel control implementations for the production of Ball Grid Arrays (BGA) at the 

micro scale are presented. The first is a linear control algorithm; the second is an adaptive neural network. The 

linear control algorithm was developed to manage the key control parameters of the system and to reach the 

desired performance as fast as possible based on measurements of system’s output. The neural network uses an 

adaptive control architecture for controlling the performance of the system. This architecture dynamically 

assigns weights to output variables, in current point time as well as in previous points in time, and uses them as 

control inputs to improve both production performance and stability. Brief theoretical background, 

experimental validation and a comparison of the two algorithms in terms of performance and stability are 

provided. 
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1. Introduction   
Ball Grid Arrays (BGAs) systems are designed to 

produce solder balls and are considered to be 

expensive equipment that is used for integration 

purposes in the electronics industry and mainly in 

the integrated circuit industry. The FP7 ICT micro 

Ball Grid Array project (μBGA, EC Grant No. 

243653), part of which this research work is, targets 

the creation of a system that will be able to produce 

such ball grid arrays in the micro scale, that is 50 to 

150 μm, and provide a competitive advantage to the 

E.U. electronics industry. Current trends dictate the 

constant integration of more electronics into circuits 

as well as the need for the miniaturization of those 

integrated circuits. The μBGA system addresses the 

need for miniaturization by providing spheres in the 

micro scale level while keeping the advantages of 

the BGA technology [1]. That is: 

 High Density 

 Heat conduction  

 Low inductance  

 

 

 

 

 

 

 

 

 

 

The scope of this paper is to present the developed 

control software, within μBGA project, that 

implements two control solutions: 

 a linear control algorithm and  

 an adaptive neural network (ANN) [2] 

for enabling the stable production of micro ball grid 

arrays systems at high production rates. 

The system (Fig 1) loosely consists of the following: 

 a crucible in which liquid solder is placed 

 a heater responsible for the increase of the 

temperature inside the crucible 

 a transducer that creates the necessary vibration 

frequency  

 a pressure control system for the introduction 

of nitrogen into the tank 

 a flange with an orifice of specific diameter 

through which the liquid solder flows and 

forms the spheres.   

 a camera for providing snapshots of the 

produced spheres  

 a computer responsible for controlling the 

system, storing data and running the HMI.  
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Figure 1: μBGA production system 

 

 

2. Open and closed loop control 
A brief discussion on open- and closed-loop control 

is presented next. 

 

 

2.1.Open Loop 
An open loop control system is a type of non-

feedback control system, i.e. the behavior of the 

system is based solely on predetermined inputs and 

any system output is not taken into account when 

determining the input.. As a result this approach has 

no learning capabilities and is unable to correct any 

possible errors or compensated for possible 

anomalies.  

 

 

2.2.Closed Loop 
A closed loop control system is one that uses 

feedback control, i.e., the output of the actual 

production is measured and is used to determine the 

input of the system. Specifically, the actual output is 

compared to the desired output and based on the 

generated differences the input settings are adjusted 

with the purpose of controlling system output. This 

process requires defining the control variables 

beforehand. There are two types of variables: the 

independent variables, which are the variables that 

are measured, and the dependent (control) variables, 

which are the ones that are being adjusted. For 

instance, in our case the measured (independent) 

variable is the droplet size and the control input 

(dependent) variables are frequency, pressure and 

voltage. In general, a closed-loop system is an 

automated one. 

 

 

2.2.1. Linear and Non-Linear Control 

Following the closed loop architecture two 

approaches have been adopted for controlling the 

system: a linear control approach and a non-linear 

one implemented by the use of an artificial neural 

network. 

The reason for implementing two distinct 

approaches is the need to evaluate the performance 

of system with regards to sphere production, in 

terms of stability, sphere diameter and production 

rate. Based on that evaluation we determine the 

most effective way to control the system. 

 

 

3. Linear Control Algorithm 
Linear control is a procedure where the values of 

variables in time (t-1), where t is the current time, 

were used as feedback to adjust the current output of 

the system aiming at achieving a specific production 

goal set during the initialization of the algorithm. 

This production target has been set by the user 

through software, the human-machine interface. The 

algorithm is tasked to maintain a stable production 

rate and specific sphere diameter and roundness.  

The algorithm is initiated by initially defining some 

key inputs. Those are: 

1. Desired target ball diameter  

2. Orifice diameter 

3. Transducer vibration 

4. Initial vibration frequency 

5. Pressure in the tank 

Then the inputs are evaluated and the control 

parameters are adjusted in order to reach the 

targeted result. Once that is done the Graphical User 

Interface (GUI) is updated and the process continues 

in a loop. Fig 2 is a simple graphical representation 

of the function of the linear control algorithm.  

 

 
Figure 2: Representation of algorithm's function 

 
The main parameters that contribute to the variation 

of sphere diameter and roundness are frequency and 

pressure. In addition, for roundness, temperature 

levels must also be taken into account. It has been 

observed that the higher the temperature of the 

liquid stream is the longer it will take to solidify and 

the higher the chance for the droplet to get a better 

spherical shape.  
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3.1.Radius 
According to Rocha J.C [3] the radius of the sphere 

is approximated by the following equation and can 

derived by using the work of Eggers J and 

Villermaux E [4]: 

     (
     

  
)

 

 
(1) 

Where:  

ddrp = the radius of the droplet 

Vj = jet velocity  

Aj= is the cross section area of the jet 

f = frequency of the transducer. 

 

 

3.2.Diameter control 
In order to estimate the diameter of the produced 

spheres the algorithm is taking data relevant to 

sphere diameter from snapshots provided by the 

system’s camera module and adjust frequency 

accordingly. The equation that is used to estimate 

the diameter of the sphere in comparison to the 

precompiled dimension is as follows [3]:  

   |  
  

  
|        

Where: 

Dt = Desirable sphere diameter 

Dd = measured diameter 

φ1 = Variation factor 

 

 

3.3.Frequency control 
Based on the work of  Rocha J.C [3] for controlling 

the production of a BGA an algorithm for correcting 

the frequency of the transducer was developed and it 

was based on the following equations. 

 

                 (3) 

 

                (4) 

 

Where: φ1 is the sphere variation factor  

            fk the adjusted frequency 

           fk-1 frequency at previous moment 

 

The algorithm compares the actual diameter of the 

sphere with the precompiled one and if the outcome 

is different than zero then the variation factor is 

multiplied by the current frequency and as a result a 

balance frequency is produced. That frequency is 

either added or extracted from the original 

frequency depending on the diameter of the actual 

sphere. If it exceeds the target the vibration 

frequency increases. If the target size is higher than 

the output, then the system reduces the vibration 

frequency and in the case that the size is well into 

target, vibration frequency remains the same. The 

process works in a closed loop, as shown in Fig 3. 

 
Figure 3: Frequency control 

 
 

3.4.Pressure control 
Besides temperature, the volume of the liquid inside 

the tank also plays a role in the creation procedure 

and is closely related to pressure management. If 

temperature is low, droplets will cool off fast after 

breaking off the jet stream and thus not enough time 

will be given for the spheres to get an ideal spherical 

shape. In terms of liquid’s volume it is important to 

notice that as the liquid decreases the stream’s 

volume and velocity changes too, thus forming 

droplets of different sizes. In order to control the 

flow of the liquid and thus control the size of 

spheres the amount of pressure in the tank must be 

controlled. To do that the algorithm, calculates the 

pressure increase needed by knowing the initial 

height of the liquid and the initial pressure. Below 

are the equation used for this calculation [3][4]. 

       √
           

 
          

 

      𝑎 𝑚     (6) 

 

 

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Ioannis Friganiotis, Panagiotis Spanos

E-ISSN: 2224-2856 69 Volume 9, 2014



Where:  
p= pressure applied in the tank (metallic beam + 

vessel) 

patm = atmospheric pressure 

ph(t) = hydrostatic pressure at time t (pressure in the 

tank changes during operation and is measured via 

the use sensors) 

ρ = liquid density 

Cori = Drag coefficient 
 
 
3.5.Voltage Control 
In the case of voltage, the control system can adjust 

the amplitude of the signal by increasing or 

decreasing voltage. The idea is similar to both 

frequency adjustment and pressure adjustment. By 

adjusting the voltage that is introduced we can have 

control over the diameter of the spheres, roundness 

and stream. By adjusting voltage we can fine-tune 

the system, while keeping the rest of the variables 

constant. 

 

 

3.6. System stability 
In order to have a stable production procedure all 

parameters are adjusted in a parallel and 

“cooperative” way. This means that the algorithm is 

constantly evaluating each parameter not as an 

individual factor to a problem but as part of a larger 

system. So, during operation, all adjustments are 

decided and commanded based on the holistic 

behavior of the system.  

 

 

4. Adaptive Neural Network 
The second approach for controlling the production 

of BGA systems is the implementation of an 

adaptive neural network. The neural network is a 

non-linear approach for control and by introducing 

it to the system we can have a dynamic control over 

each variable [5][6]. 

The neural network used in our case implements an 

adaptive control algorithm for the control of the 

system’s functions. The networks architecture is 

presented in Fig 4. The reason for selecting a more 

complicated approach for controlling the system is 

the fact more accurate control may be achieved this 

way.  

The reason for choosing the above architecture is 

the need for fast adaptation and robust system 

response. A feedback active control technique with 

Non Dual Adaptive controller method and Model 

Reference Adaptive control (MRA) was developed 

for that purpose. 

 
Figure 4:Neural Control Architecture 

 
The architecture can be divided into four parts  

 Neural Network Controller 

The NN controller’s responsibility is to adjust the 

variables of the system (frequency, pressure, 

voltage) so that their values can reach the values 

produced by the system reference response. As 

inputs it accepts data from the system, from the 

output and the NN designed model. The inputs 

(frequency, pressure, voltage) are a combination of 

system variables, in current and previous points in 

time that are feeding the plant model. 

 Plant Model 

The Plant model receives inputs from the NN 

controller. These inputs are multiplied by a factor 

that varies both in time and for each variable. The 

output (frequency, pressure, voltage) of the plant is 

used by the algorithm and also it provides feedback 

to the NN controller so that it can be readjusted. 

 NN Designed Model 

The designed model is initiated before the activation 

of the neural network. It is used to train the 

controller so that its outputs will follow the outputs 

of the system reference response and it is utilizes 

data (frequency, pressure, voltage) both from the 

controller and the output so that it can provide 

online training. The output of the controller leads to 

simulation error where it compares the outputs and 

inputs in accordance to a predefined target and it 

produces an error relevant to the deviation from that 

target. 

 System Reference Response  

The system reference response is a mathematical 

model that uses the algorithm’s inputs, in terms of 

variables and it emulates the actions needed to be 

done by the system in order to produce the desired 

results. Frequency, pressure and voltage are the 

received inputs from the system. The simulation’s 

output is compared to the Plant output and an error 

is produced, when they are not in compliance that 

error becomes feedback to the NN controller. A 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Ioannis Friganiotis, Panagiotis Spanos

E-ISSN: 2224-2856 70 Volume 9, 2014



more detailed analysis of the adaptive control 

architecture can be found in Fig 5. 

 
Figure 5:Analytical Neural Adaptive Control Architecture 

 
 

4.1.Dynamic Back Propagation 
In order to train the controller, a feedback network 

that uses adaptive weights for each input parameter 

is used. Because of that the complexity of the model 

increases and for the simulation procedure to 

generate accurate results dynamic back propagation 

is required. A dynamic back propagation algorithm 

can manage effectively both the direct and indirect 

effects that the weights have on the output of the 

neural network [7][8][9]. 

A back propagation procedure can be described as a 

feedback loop that connects the output of the neural 

network to its input using a delay line. Our approach 

implements feedback from: 

 Output 

 NN designed model 

 System reference response 

In the initial stage all weights and biases are set to 

zero. In this first step we start from the last layer of 

the neural network and we compute the initial static 

derivatives that will be used for the calculation of 

the dynamic ones. After initialization all weights 

and biases of that layer are calculated using a 

devised function. In order to calculate the explicit 

derivatives of the layers outputs all outputs should 

be taken under consideration. The next step is for 

the algorithm to initialize the output for every 

weight and bias and compare to see if the output of 

the first layer is a time delayed input. If “yes” all 

weights and biases are calculated if “no” the layer is 

incremented. In the case that this is the last layer the 

function is used to calculate weights and biases for 

that layer. Fig. 6 presents the flow chart of the 

dynamic back propagation algorithm. 

 
Figure 6: Dynamic back propagation Algorithm 
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4.2. ANN Simulated results 
In order to test the performance of the developed 

artificial neural network before its actual 

implementation to the system, a series of 

simulations were performed with the ANN 

activated. The simulations were performed by using 

system defined inputs as well as random noise 

parameters and the acquired results included output 

data (diameter, error) from all the components of the 

neural network. 

By initially training our neural network to produce 

spheres of 160μm stable diameter we then inserted 

the random noise.  

In Fig. 7 the performance of the neural network in 

relevance to diameter control is presented. 

 
Figure 7: Simulated input and output diameters 

 

It was observed that the ANN was able to adjust the 

control variables effectively to enable a stable, on 

target output. 

Furthermore, by comparing the system reference 

response with the plant output; and the designed 

model output with the plant output a series of error 

relevant data were produced. 

Errors were recorded for all types of variables 

(frequency, pressure, voltage) in order to evaluate 

the control performance of the neural network.  Fig. 

8 displays an example of frequency error in the 

controller.  

 
Figure 8: Control Error: Frequency 

 

The range of errors measured, in comparison to the 

standards accepted by industry, was minimal both in 

the controller and the designed model and is 

presented in the Tables 1 and 2 respectively. 
Table 1: Control error 

Control error 
Min error 

(%) 

Max error (%) 

Frequency 0.81 1.78 

Pressure 0.81 1.79 

Voltage 0.81 1.79 

 
Table 2: Model Error 

Model error 
Min error 

(%) 

Max error (%) 

Frequency 1.01 1.98 

Pressure 1.01 2.00 

Voltage 1.00 1.96 

 
 

5. Experimental measurements   
The target of the experimental procedure was to 

validate the stable production rate of BGA spheres 

with diameter in the range of 152 – 168 μm.  The 

performed experiments were divided into three 

phases: 

 Initialization Tests. During these tests the 

variables were manually adjusted. 

 Linear Control Tests. The linear algorithm was 

introduced to the system and its control 

functionalities  were tested 

 Implementation of ANN. The artificial neural 

network was introduced to the system and its 

control functionalities were tested. 

 

 

5.1.Initialization tests 
During the initialization procedure, we investigated 

the effects of frequency, pressure and voltage 

variables to the performance of the BGA system. A 

stable production rate was achieved through open 

loop system operation and the manual adjustment of 

each individual parameter, while the rest were kept 

constant. 

Fig. 9 displays the behavior of the system based on 

frequency alterations. The optimal operational range 

is defined to be between the two markers. 
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Figure 9: System’s behavior graph 

The initial experimentation procedure followed the 

principle of maintaining two variables stable while 

manually adjusting the third one. Fig. 10, 11 and 12 

graphically present the outcome of this 

experimentation procedure.  

Based on these experiments we observed that for a 

frequency of 11.8 kHz, a voltage of 22.4 V(peak to 

peak) and a pressure of 22kPa the system had a 

stable response and by using the data acquired we 

calculated that the production accuracy of the 

manually controlled system reached a level of 96% 

with a ±5% tolerance.  

 
Figure 10: Production Accuracy – frequency alterations 

 

 
Figure 11: Production Accuracy – Pressure alterations 

 
Figure 12: Voltage VS Roundness 

 
 

5.2.Linear Algorithm  
In terms of the linear algorithm we observed that 

after activation, the algorithm worked and the 

system started producing spheres of relative stable 

diameter. Fig. 13 is a comparison of sphere diameter 

versus sample number. 

 

 
Figure 13: Linear Algorithm – Diameter VS Samples 

 
Based on the results shown above we calculated that 

the accuracy level of our system with the 

introduction of the linear control algorithm rose to 

98.2%. The average sphere diameter was 162 μm 

with a ±5% tolerance. This proves that the algorithm 

can improve the performance of our system in 

comparison to manually adjusting variables. The 

greatest advantage of the linear algorithm is that it is 

not time consuming and it can quickly adapt the 

variable values in order to reach a predefined target. 

The disadvantage is its inability to sustain for long 

periods of time the targeted production. The latter 

has to do with the experimental setup used, for 

example the tank with the liquid solder was 

emptying faster than in real conditions due to small 

size, thus affecting the tank pressure. 
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5.3.Adaptive Neural Network 
The implementation of the proposed neural network 

in our system is acomplex procedure. The neural 

network must initially train based on a series of 

simulated data as well as data acquired from 

previous operation circles.  Once training is over it 

can start the actual control of the system.  

The performance of the neural network as it was 

recorded during experimentation, in terms of sphere 

diameter is presented in Fig. 14.  

 
Figure 14: Neural Network – Diameter VS Samples 

 
We observed that the accuracy level of the system 

with an active ANN rose to 99.4%. The average 

sphere diameter was 155μm with a ±5% tolerance. 

The neural network was able to show a robust and 

stable performance for long periods of time and was 

able to produced better results than the simulated 

ones.  

The disadvantage was the significant time it 

required for the training process to be completed. 

This training must be repeated every time the setup 

is radically changed as the training data set is 

connected to a particular setup. 

 

 

6. Result Comparison  
The advantages of the linear approach are as 

follows: 

 Simpler design 

 Not time consuming 

 Doesn’t require training 

 Less demanding in terms of resources 

The main disadvantage of the linear approach is: 

 Not stable for long periods of operational 

time.  

The advantages of the non-linear approach are: 

 Extremely stable in time 

 More accurate results 

 More stable production rate 

The disadvantages are: 

 Higher complexity  

 Requires training 

 Time consuming 
Table 3 is a comparison between the results 

produced by each approach. 
 

Table 3: Result Comparison Table 

 
 

Fig 15 is a representation of the sphere size 

distribution for both algorithm as well as the 

expected results based on simulation. 
 

 
Figure 15Experimental and simulated distribution sphere size. 

 
The performance of the linear control algorithm was 

very close to the expected results produced by the 

simulation process whereas the results of the ANN 

actually showed improvement in production rates 

and stability in comparison even to the simulated 

outcome. 

Considering now the fact that the end target is for 

such systems to be used by the industry for mass 

production of BGAs it has become clear that the 

neural network is better suited for the intended 

control purpose. 

 

 

6.1.Validation 
In order now to validate the performance of both 

control approaches, as presented above, and verify 

their functionalities we have randomly selected 

sphere samples created during the production 

procedure and measured their diameter and 

roundness by taking snapshots of the spheres using 
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the installed camera module and by inserting them 

to a custom-developed image processing software. 

Furthermore actual samples were collected and 

examined under a digital microscope to further 

evaluate the results generated by the algorithms. 

While the control of the system was performed by 

the linear control algorithm the following samples 

were randomly selected and a small part of them can 

be previewed in Figs 16 and 17. 

 

 
Figure 16: Camera Snapshot – Linear Control 

 
Figure 17: Microscope – Linear Control 

Based on the above results we verified the correct 

operation of the algorithm. A comparison between 

the average values of the logged results and the 

results from both the snapshots and the microscope 

can be viewed in table 4. 
 

Table 4: Sphere comparison – Linear  

Average 

values 

Logged 

Results  

Snapshot 

Images 

Microscope  

Diameter  151.66μm 146μm 141μm 

Roundness  94.89% 97% 96% 

 

While the control of the system was performed by 

the Artificial Neural Network the following samples 

were randomly selected. A small part of them can be 

previewed in Figs 18, 19 and 20. 

 
Figure 18: Camera Snapshot -- ANN 

 
Figure 19: Microscope – ANN 

 
Figure 20: SEM Results – ANN 

 

Based on the above results we verified the correct 

operation of the ANN. A comparison between the 

average values of the logged results and the results 

from both the snapshots and the microscope can be 

viewed in table 5. 
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Table 5: Sphere comparison – ANN 

Average 

values 

Logged 

Results  

Snapshot 

Images 

Microscope  

Diameter  144.52μm 146μm 143μm 

Roundness  95.11% 98% 97% 

 

The validation procedure for both algorithms was 

conducted based on the examination of a few 

hundreds of spheres. Considering now that both 

algorithms have to evaluate the results of millions of 

spheres it is understandable to have a ±7% variation 

between the results produced by the algorithms and 

the results measured manually. The validation 

process proved that both algorithms are able to 

operate efficiently and verified the superior control 

capabilities of the neural network. 

 

 

7. Conclusions  
Two control algorithms for enabling the stable 

production of a μBGA system, which are also able 

to control a plethora of BGA production systems, 

were developed and presented. The first was based 

on linear architecture and the second was the 

implementation of a neural network (a non-linear 

approach). 

Based on simulation data and the actual 

experimentation carried out using both algorithms it 

has been demonstrated that both were able to control 

effectively the system. Yet, the linear algorithm 

could not maintain a stable production rate for long 

periods of time. On the other hand, the neural 

network offered a more robust mechanism for 

controlling the system and maintain stable 

production rates. 
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