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Abstract -- This paper deals with the problem of state estimation and fault detection and localization of nonlin-

ear systems with uncertain parameters. The multiple model approach is used to model the nonlinear system. 

This approach is based on the use of fuzzy systems principle. Uncertain parameters are modeled using the 

bounded approach. The technique proposed in this work is used for linear case but never in the case of nonline-

ar systems, which presents the main contribution in this paper. The principle of the proposed method is to con-

sider that the system parameters are uncertain and the distribution value is unknown at the time of the court. 

Only the extreme bounds are known in advance. Using this method it is possible to generate fault indicators 

(named also residuals). These residuals are not sensitive to the parameter uncertainties and allow detecting and 

locating the faults affecting the system. A numerical example is showing the effectiveness of the presented 

method.  
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1. Introduction 
Most of the techniques used for diagnosis are based 

on the development of a mathematical model. The 

problem that may arise is that the developed model 

from the system redundancy may not reflect the 

physical system real behavior in view of the model-

ing uncertainties which may affect the system. 

Few studies have been developed in this context, 

however, can include the works of Adrot [1], Letell-

ier [2, 3] and Bedoui [4, 5] who are interested main-

ly in the regular linear systems, which is the least 

real case. 

In general case, physical processes are so complex, 

and it is impossible to model those using linear 

models. Linearity is a very conservative hypothesis. 

This work is interested in nonlinear systems. To 

model nonlinear systems, the multiple model ap-

proach is used. This approach is based on the fuzzy 

systems principle. Using this approach it is possible 

to model any class of nonlinear systems. It is a ques-

tion of general kind of modeling. By this virtue, 

Fuzzy systems are the subject of many works [6, 7]. 

They can reproduce exactly a nonlinear model be-

havior model [6-8]. They are constructed by a set of 

linear models blended together with nonlinear func-

tions holding the convex-sum property.  

Approaches using fuzzy models, named  also multi-

ple models [9] are the object of many works in dif-

ferent contexts including the taking into account of 

unknown inputs or parameter uncertainties [6, 7, 29, 

31].  

The modeling approaches of model uncertainties 

have been developed using stochastic variables [10] 

or using the bounded approach [11, 12]. These ap-

proaches assume that only the extreme limits of the 

uncertainties are known.  

The methods of fault detection and localization or of 

state estimation based on mathematical model sup-

pose that the mathematical model of the system is 

known. This hypothesis leads to start any diagnosis 

by a step of modeling. In often cases, the obtained 

model in uncertain due to many problems.  It is nec-

essary in these cases to make a diagnosis or a fault 
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detection and localization independently of the pa-

rameter uncertainties. Usually, these uncertainties 

are unknown. In these work it is supposed that only, 

the extreme boundaries of these uncertainties are 

known. The proposed method is based on the inter-

val analysis. 

The main contribution in this paper is to present a 

technique able to generate residuals, in the case of 

nonlinear systems, in spite of the model uncertain-

ties. These residuals are used to detect and localize 

the faults affecting the system. The advantages of 

this method is that it allows detecting and localizing 

faults even in the presence of the model uncertain-

ties and that it can be applied for all the nonlinear 

systems because the principle of modeling is general 

and can be used for all the nonlinear systems clas-

ses. 

The paper is organized as follow: after a small in-

troduction, sections 2 and 3 recalls the bounded ap-

proach principle and the multiple models approach 

respectively. Section 4 presents the problem formu-

lation and the technique of residual generation and 

the method that allows the fault detection and local-

ization. A numerical example illustrating the effec-

tiveness of the presented method is the subject of 

the section 5. The paper is finished by a conclusion.  

 

2. Bounded approach 
The bounded approach or interval analysis is a tech-

nique that has been used for 50 years in the Infor-

mation technology (IT) sector [13, 14] whose pur-

pose is to represent numerical errors in computer 

systems. For example, IT cannot represent the solu-

tion of the quotient 1/3 of an accurate, because the 

mathematical solution of this operation is infinite 

0.33…33<1/3<0.33...34, where bounded approach is 

developed to solve this problem by representing the 

exact value of the quotient between two bounds. 

Basing on this approach, it can write that 

1/3[0,333  0,334]. This approach is used in various 

fields of research. 

Indeed, in industry, no material can be modeled per-

fectly. The manufacturers require a tolerance inter-

val on the values of the electrical components (resis-

tors, inductors, capacitors, etc.) Many of these 

components are sensitive to external factors (tem-

perature, trigger, etc.), so it is required to model 

their variation using this approach. Which make the 

bounded approach a rigorous tool to model these 

bound variations.  

The interval arithmetic seeks to ensure the calcula-

tion results by finding the interval containing the re-

al result. The solution will be in the form of an in-

terval with sufficient accuracy. This technique is 

proved in automatic in various works such as those 

of [15] in control, [16] in state estimation, [17] in 

parametric estimation, [18, 19] for the fault detec-

tion, and [20] for the fault localization. 

The state space representation of a LTI discrete-time 

system can be described as follows: 

 

 
( 1) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

A B

C

x k A x k B u k v k

y k C x k w k

 



   


 
 (1) 

 

Where nx  is the system state, qu  its com-

mand, my  is the measured output. 

( ), ( ) ( )A B CA B  and C   are respectively the state 

matrix, control matrix and measures matrix with η is 

the uncertain parameters vector. n, q and m are re-

spectively the size of the vectors x, u and y. 

Definition [3] 

The solution domain of a linear dynamic system, on 

a time interval [0  n] is: 

 
  (0, ) ( , , ) : 0, ,S n x k u k n    

 (2) 

Where x(k,η,u) is the solution of the system repre-

sented by the equation (1) at time k for an uncertain 

parameter vector ηθ. 

The solution domain for a time interval [0 k] is rep-

resented as follow 

 
 ( ) ( , , ) :S k x k u   

 (3) 

For this, it will be assumed that the system is stable. 

This assumption is necessary in order to limit S(k) 

at each time k. 

   In practice, to introduce the uncertain model con-

cept, a simple example known by all is presented: 

Ohm's law. 

V R

I

DC

 
Fig. 1: R, I and V, the parameters of Ohm's law 

 

By definition, Ohm's law provides that the current I 

through a resistor with nominal value R0 and the 

voltage V, are proportional according to the equation 

V = R0I. 

Assuming that the instrumentation system is perfect, 

then the real values V and I of the current and the 
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voltage, called true values, are measured without er-

ror. Denoting Vm and Im the respective measure-

ments of I and V, the above proportional relation-

ship becomes: Vm = R0Im. In this case, the model is 

deterministic in measurement.  

Practically, it is impossible to find identical and per-

fect electronic components. For this the manufactur-

ers always indicate a tolerance interval on the values 

of components quantities. In our case, the resistance 

value R is given with some technological precision 

 ( = 5%, 10%, …), where the value of R can be 

written in the interval form containing the nominal 

value R0 [  (   )    (   )]. Furthermore, the 

value of R depends on the electronic component 

temperature. This may be taken into account by 

changing the model by adding an additional rela-

tionship reflecting the resistor resistivity. 

In conclusion, due to various disturbances which 

can affect the circuit, the resistance has a low 

chance to have its nominal value R0, by cons it cer-

tainly included in the interval [  (   )   (  
 )]. 
It becomes clear that uncertain model allows us to 

grasp the disturbances affecting the system, unlike 

the deterministic model 

      (   )         with    [     ] 
To better describe the problem, it should be noted 

that even the instrumentation chain is not perfect, 

whence measurement errors that will appear. 

Indeed, as the resistance, the sensors also have a 

limited technological precision, resulting additive 

and multiplicative errors in addition to measured 

values Im and Vm 

No one model perfectly reflects the exact behavior 

of a system under all constraints, conclusion vali-

dated by the previous example where it was shown 

at its modeling that several models may arise, every-

thing depends on the assumptions introduced. 

The proper solution to overcome this problem mod-

eling is to introduce all the uncertainties in the mod-

el. 

 

3. multiple model approach 
The aim of the multiple model approach idea is to 

apprehend the global nonlinear system behavior by 

local models set. Each local model (named also sub-

model) can be a linear time-invariant (LTI) system 

valid around an operating point. The local models 

are aggregated using an interpolation function. The 

total nonlinear system behavior is the sum of the lo-

cal models balanced by weighting functions associ-

ated to each of them. These weighting functions are 

used to gradually quantify the membership of the 

system current operation point at a zone of opera-

tion. Such models can approximate a wide class of 

nonlinear systems [7]. They can even describe ex-

actly some nonlinear systems[21]. Each nonlinear 

dynamic system can be simply, described by a fuzzy 

model. 

The multiple model approach simplifies the study of 

nonlinear systems. It is able to reproduce the behav-

ior of complex system with an exact manner [22].  

A fuzzy model is the fuzzy fusion of many linear 

models. Each of these linear models represents the 

local system behavior around an operating point. A 

multimodel is described by fuzzy If-Then rules 

which represent local linear Input/output relations of 

the nonlinear system. It has a rule base of M rules, 

each having p antecedents, where i
th
 rule is ex-

pressed as : 

R
i 
: IF  

 
 is Fi

1
 and ... and  

 
is Fi

p 

Then : 
( ) ( ) ( )

( ) ( )

i i i

i i

x t A x t B u t

y t C x t

 


                                

(4) 

In which i = 1, ...,M, Fi
j 
(j = 1, ..., p) are fuzzy sets 

and     
 
  
 
     

 
 is a known vector of premise 

variables which may be the state, the input or the 

output. 

In this modeling approach, two main structures can 

be considered according to nature of the coupling 

between local models.  

In the first one, the sub-models have the same state-

space and consequently the multiple models is com-

posed of homogeneous sub-models [23].  

In the second structure, decoupled multiple struc-

ture, the sub-models do not share the same state-

space and the multiple model uses heterogeneous 

sub-models. 

3.1. Coupled structure 

A multiple model can be written in the coupled 

form: 

1

1

( ) ( ( ))( ( ) ( ))

( ) ( ( )) ( )

M

i i i i

i

M

i i i

i

x t t A x t B u t

y t t C x t

  

  






 



 





        (5) 

Where xi are the state vectors of the local models, y 

is the system output vectors and u is the system in-

put. Ai are the state evolution matrices, they repre-

sent its dynamic behavior, Bi are the matrices of 

control and Ci are the matrices of observation. The 

matrices Ai, Bi, and Ci are matrices with known coef-

ficients and appropriate dimensions.  
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 ( ( , 1, ,))i t   i M     are the activation functions 

(named also weighting functions) and  ( ) is the de-

cision variable vector.  

The weighting functions satisfies the sum convex 

property expressed in the following equations: 

0 ( ( )) 1 ( ( )) 1
M

i i

i=1

t    and    t           
 (6) 

If the measurement system is considered linear C1  

=C2  = … = CM  = C , the system (5) is rewritten as 

follows :  

1

( ) ( ( ))( ( ) ( ))

( ) ( )

M

i i i i

i

x t t A x t B u t

y t Cx t

  



 


 


  (7) 

 

3.2. Decoupled structure 

Similarly, a complex system can be represented by a 

multiple model with decoupled structure. 

 

{

 ̇ ( )    (  )  ( )   (  )  ( )

  ( )   (  )  ( )

  ( )   ∑     ( ( ) )    ( )
 
   

  (8) 

 1, ,i M   

where xi are the state vectors of the local models, yi 

are the output vectors of the local models, y is the 

system output vector and u is the system input. Ai 

are the state evolution matrices, they represent its 

dynamic behavior, Bi are the matrices of control and 

Ci are the matrices of observation. The matrices Ai, 

Bi, and Ci are matrices with known coefficients and 

appropriate dimensions.  

The same representation (8) can be written in the 

discreet case : 

 

{

  (   )    (  )  ( )   (  )  ( )

  ( )   (  )  ( )

  ( )   ∑     ( ( ) )    ( )
 
   

 (9) 

 1, ,i M   

 

where xi, yi, y, Ai , Bi  Ci are defined as above. 

 

4. Problem formulation   
In the rest of this paper, the problem of inaccuracy 

modeling of a nonlinear system will be solved. The 

technological equipment imprecision brings us to 

consider uncertainty on the matrix A. 

Let consider the fuzzy system described by a decou-

pled multiple model structure based on measurable 

decision variables )( ()k u k  . The considered 

structure presents an uncertainty on the matrix A. 

This structure is given by the following equations : 

 

 
( 1) ( ( )) ( ) ( )

ii i A i ix k A k x k Bu k  
 (10) 

 ( ) ( )i i iy k C x k   (11) 

 1

( ) ( ( )) ( )
M

m i i

i

y k u k y k



  (12) 

With ,n q m

i ix u et y     are respectively the 

state vector, the input and output of the i
th
 sub-

model.  ( ( )) 0,1i u k  represent the activation func-

tions depending on the input. ( ( ))
iA

n n

i kA   is the 

uncertain matrix of the i
th
 sub-model defined by: 

 

0

0

( ( ))

, ,

i i i

i i

A i A A

n n n n n n

i A A

iA k A

A

 

  

   

   
 (13) 

Where  is the operator of multiplication of two 

matrices element by element. 0

iA is the nominal ma-

trix of ( ( ))
ii AA k . 

iA is the matrix of amplitude of 

uncertainties in the elements of the matrix

( ( ))
ii AA k . 

iA is the matrix consisting of bounded 

and standard variables of i
th
 sub-model. i1,…,M 

4.1. State estimation  

From equation (11),  an estimated can be provided: 

 
(1)

1( ) ( )i i ix k C y k  (14) 
Consider that the state variables are estimated from 

a range of measures initially valid. Similarly, all the 

Ci matrices are considered observable and square. 

By returning to the equation (10) and replacing 

[ ( )]ix k by their estimated calculated in (14) 
(1)

( )ix k , 

it is possible to estimate the state variables at time k 

+1 

 

(2) (1)

( 1) ( )( ( ( )))
iAi ii ikx k A x k B u k  

 (15) 
The uncertain matrix ( ( ))

ii AA k  can be represented 

by their extreme limits, where it has the following 

form: 

 
( ( )) [ ] , , ( ) 1

i i
ii Ai A ik A A kA A    

   (16) 
Hence the expression (14) and (15) become : 

 
(2) (1)

[ ( 1)] [ ][ ( )] ( )i ii ix k A x k B u k    (17) 

 
(1)

1[ ( )] ( )i i ix k C y k  (18) 
The estimated state variable at time (k +1) is calcu-

lated twice. The first 
(1)

[ ( 1)]ix k  is calculated from 

measurements and the second
(2)

[ ( 1)]ix k   is calcu-
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lated from the system model. The final estimates 

[ ( 1)]ix k  are obtained by taking the intersection be-

tween the two estimated 
(1)

[ ( 1)]ix k  and

(2)

[ ( 1)]ix k  . 

 

(2) (1)

[ ( 1)] [ ( 1)] [ ( 1)]

{1 }

i i ix k x k x k

i M

    

  (19) 

4.2. Fault detection and location 

An uncertain fuzzy system is considered faulty if a 

fault can be detected on one of the sub-models. 

For fault detection and localization, locale residuals 

must be generated for each of the sub models. For 

this, the local coherency between estimated 
(2)

[ ( 1)]ix k   and
(1)

[ ( 1)]ix k   at every moment for 

all {1... }i M will be tested. 

By considering that the measures aren't affected by 

fault at the time k, it is possible to deduce that the 

estimated obtained using the system model and the 

model of measures at the same time 
(2)

[ ( 1)]ix k   are 

coherent with the system model. Then, this estimat-

ed can be considered as a reference to compare it 

with the estimated obtained from the measures at the 

time k+1 
(1)

[ ( 1)]ix k   

From the foregoing, it is possible to judge the state 

of the local estimated, in the case of the safe func-

tioning and faulty functioning 

 For the safe functioning : 

(2) (1)

[ ( 1)] [ ( 1)] [ ( 1)]i i ix k x k x k                       (20) 

For the faulty functioning : 

 
(2)

[ ( 1)] [ ( 1)]i ix k x k                                           (21) 

By referring to 
(2)

[ ( 1)]ix k  , the interval estimate

ˆ[ ( 1)]ix k   calculated from the equation (19) is ana-

lyzed. Two cases are possible: 

 If 
(2) (1)

[ ( 1)] [ ( 1)] [ ( 1)]i i ix k x k x k       it is 

possible to confirm that the interval estimates 
(2)

[ ( 1)]ix k  and
 

(1)

[ ( 1)]ix k  are coherent, which 

means that the sub-model measures, at the same 

time k +1, are safe. 

 If 
(2) (1)

[ ( 1)] [ ( 1)] [ ( 1)]i i ix k x k x k      ; the 

two interval estimates
(2) (1)

[ ( 1)] [ ( 1)]i ix k et x k 

are not coherent where the measures of the hole 

system at the same time k +1, contain at minus 

one fault. The i
th 

sub-model is then used to locate 

the fault. 

In this case, the safe states variables values are con-

sidered belonging only at the reference 
(2)

[ ( 1)]ix k 

, and it is not possible to consider the estimated in-

terval, obtained from the system model and meas-

urements at time k +2 
(2)

[ ( 2)]ix k  , as a reference 

to compare with 
(1)

[ ( 2)]ix k  . Fault must be cor-

rected first. 

For this, and by referring to the system model (10), 

the real state variables are replaced by the state vari-

ables estimated considered a reference at the same 

time
(2)

[ ( 1)]ix k   hence: 

 
(2) (2)

[ ( 2)] [ ( 1)] ( 1)i ii ix k A x k B u k      (22) 
To identify the measures affected by a fault, inter-

vals residuals [ ( 1)]ir k  are generated for each sub-

model. From the equation (11), the state variables 

values at (k+1) is replace by their estimated consid-

ered as a reference at same time 
(2)

[ ( 1)]ix k   

whence: 

 
(2)

[ ( 1)] [ ( 1)] ( 1)ii i ir k C x k y k      (23) 
A measurement is affected if the correspondent re-

sidual is abnormal i.e. the zero don't belong to the 

correspondent interval residuals. 

 

5. Results 
Consider an numerical example for a fuzzy system 

composed of three sub-models: 

 

1

0.450 -0.20 0.182

A -0.087 0.660 -0.08

0.120 0.109 0.350

 
 


 
  

1

0.500 -0.29 0.218

A -0.073 0.660 -0.08

0.120 0.131 0.390

 
 


 
  

 

2

-0.80 0.260 0.180

A 0.250 0.660 -0.18

0.120 -0.109 0.350

 
 


 
  

2

-0.50 0.290 0.216

A 0.325 0.670 -0.08

0.120 -0.131 0.390
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3

0.600 -0.39 -0.282

A -0.067 0.313 -0.180

0.320 0.309 0.700

 
 


 
  

3

0.800 -0.39 -0.118

A -0.033 0.330 -0.180

0.320 0.331 0.700

 
 


 
    

 

1

1.00

B -0.80

0.91

 
 


 
  

2

0.800

B -0.50

1.419

 
 


 
  

3

0.500

B -0.90

1.110

 
 


 
    

1

-5.25 -1.635 1.120

C 0.920 0.200 -5.00

-2.00 -1.30 1.495

 
 


 
  

2

-4.50 -1.635 1.12

C 1.90 0.150 -5.0

-2.00 -1.30 1.81

 
 


 
  

 

3

-3.25 1.350 2.000

C 1.920 0.550 -1.00

-3.80 -0.60 0.750

 
 


 
  

 

 

Consider on Figure 2 the control signal with uni-

form distribution between -1 and 2. 

 

 
Fig. 2: The control U(k) applied to the system. 

 

The transition between the sub-models is done 

through weighting functions that need to be normal-

ized to meet the requirement of convexity. Figure 3 

illustrates these functions μ(.) depending on the con-

trol U(k). 

The system has three outputs. Three faults are in-

jected respectively at times [20, 30], [50, 60] and 

[70, 80] on measurements y1(k), y2(k) et y3(k). Figure 

4 shows the different affected measurements with 

their corrections. 

 
Fig. 3: Normalized weighting functions depending on the con-

trol U(k). 

Fig. 4 : Affected outputs with their corrections. 

 

By returning to the system equation and the rela-

tions (17), (18) and (19) it is possible to determine 

one state estimate. 

From this state estimate it is possible to find an es-

timate of the system outputs.  

 
Fig. 5: Real and estimated outputs.  
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Figure 5 shows the lower and upper bounds of the 

three outputs
1 2 3( ), ( ), and ( )y k y k y k together with 

the measured outputs. The real system measure-

ments values must be included between these two 

bounds, else it will be declared faulty. 

At moments [20, 30], [50, 60] and [70, 80], it is pos-

sible to remark that the output is out of bounds. 

From these results, residuals are easily generated 

and they will be used as fault indicator. 

Figure 6 represent the three residuals calculated 

from the real and estimated measurements. The res-

idue is a domain limited by two bounds. The zero 

must be included into this domain to assert that the 

system is safe; else it will be declared faulty. 

 

 
Fig. 6 :Residuals. 

 

It is clear that residuals perfectly detect faults at the 

times of their interventions; as well they locate each 

fault on the affected output. 

The bounded approach proves its effectiveness in 

term of fault detection and localization in cases of 

fuzzy systems with a parametric uncertainty. 

6. Discussion 
Thе аdvаntаgе оf thе рrороsеd mеthоd in this wоrk 

is tо оffеr thе роssibilitу tо dеtеct аnd lоcаtе fаults 

аffеcting thе sуstеm. Using thе multiрlе mоdеl 

аррrоаch, thе рrоcеss cаn bе mоdеlеd bу sеvеrаl 

lоcаl mоdеls аggrеgаtеd bу wеighting functiоn tо 

fоrm thе glоbаl mоdеl. It is роssiblе thаt sоmе lоcаl 

mоdеl аrе аffеctеd bу fаults, thе рrороsеd mеthоd 

cаn dеtеct thеm. 

This аррrоаch is vеrу imроrtаnt sincе it mаkе thе 

gеnеrаlizаtiоn оf thе рrороsеd mеthоd tо thе clаss 

оf nоnlinеаr sуstеm. 

In gеnеrаl, wоrks dеаls with nоnlinеаr sуstеms 

chооsе а раrticulаr clаss tо аррlу thеir thеоriеs, it is 

imроssiblе tо usе аn аррrоаch fоr аll thе nоnlinеаr 

sуstеms clаssеs. Using thе multiрlе mоdеl аррrоаch, 

this рrоblеm is sоlvеd bеcаusе аll thе nоnlinеаr 

sуstеms clаssеs cаn bе mоdеlеd using this аррrоаch. 

Bу ехрlоiting thе numеricаl аррlicаtiоn, it арреаrs 

thаt thе рrороsеd аррrоаch is intеrеsting bеcаusе it 

cоuld dеаl with cаsеs оf uncеrtаin fuzzу sуstеms. 

Bаsеd оn intеrvаl аnаlуsis, а stаtе еstimаtiоn is 

mаdе fоr а nоnlinеаr sуstеm with uncеrtаin 

раrаmеtеrs, which wаs nоt dоnе in thе citеd studiеs 

such аs thаt рrороsеd bу Lеtеlliеr (Lеtеlliеr еt аl., 

2011) whо рrоcеssеd bу thе sаmе аррrоаch, thе 

cаsе оf uncеrtаin linеаr sуstеms аnd hе ignоrеd thе 

cаsе оf nоnlinеаr uncеrtаin sуstеms. 

Thе рrороsеd tеchniquе hаs рrоvеn its еffеctivеnеss 

in thе dеtеctiоn аnd isоlаtiоn оf fаults аffеcting thе 

sуstеm раrаmеtеrs, which hаs bееn shоwn in thе 

рrеviоus ехаmрlе whеrе thе fаult indicаtоr 

(rеsiduаls) rеmаins insеnsitivе tо bоundеd 

uncеrtаintу аnd dеtеcts а fаult аs sооn аs his 

арреаrаncе оn оnе оf thе sub mоdеls. 

 

7. Conclusion 
Through this paper a method for fault detection and 

localization in case of fuzzy systems with paramet-

ric uncertainties is established. The proposed meth-

od is based on the use of the bounded approach by 

exploiting the interval analysis as innovative diag-

nosis technique to ensure the residual insensitivity 

for the parametric model uncertainties. The pro-

posed method is applied for the case of nonlinear 

systems described by multiple model structure. The 

effectiveness of the proposed method is shown by 

its application to a numerical example. This method 

has interesting prospects for research if the generali-

zation of uncertainty is managed; i.e. whereas all 

matrices of system are uncertain, which is the actual 

case in industrial systems and will be the subject of 

future works.  
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