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Abstract: - Fractional-order controller was proven to perform better than the integer-order controller. However, 
the absence of a pole at origin in the approximated transfer function produced marginal error in fractional-order 
control system. This study demonstrated the design of an error compensator that comprises of a very small zero 
and a pole at origin to produce a zero steady-state error for the closed-loop system. Some modification on the 
error compensator was suggested for different order fractional integrator that can improve the overall phase 
margin. The proposed method can eliminate the steady-state error and additionally improved the percentage 
overshoot of the closed-loop response. The study was validated on steam temperature control of a steam 
distillation process that exhibits an s-shape step response. Hence, the PI controller was tuned using the Ziegler-
Nichols rules and applied for both integer and fractional PI. Significant improvement of the fractional PI and the 
enhancement of the proposed error compensator was discussed evidently through simulation and supported by 
experimental applications. 
 
 
Key-Words: - Fractional-order control; Fractional PI; Oustaloup’s Recursive Approximation; Ziegler-Nichols 
tuning; steam temperature control; hydro-steam distillation. 
 
1 Introduction 

PID controller is still dominating the feedback 
control applications until today. The simple control 
strategy based on the accumulation over some 
operation on the error signal has made it easy to 
understand and robust enough to solve many 
industrial problems. That is why the research on 
optimizing the PID controller is still going on until 
today. The advancement of the three terms 
controller in the form of fractional PID (F-PID) 
control has becoming more popular since the last 
decade. This new technique is proven to provide 
more flexibility and ability to enhance modelling 
and control of systems’ dynamics [1].  

Integer-order approximation for fractional-order 
system had been investigated since 1960s in other 
research area such as chemistry and mechanical 
systems [2]. Some approximation techniques are 
based on continued fraction expansion (CFE), curve 
fitting or identification methods and power series 
expansion (PSE). Oustaloup’s Recursive 
Approximation (ORA) is among the most popular 
approximation technique. The technique used 
recursive poles and zeros distribution within 
specified frequency range to assimilate the 
frequency response of the fractional-order transfer 
function.  

Applications of fractional-order models in control 
theory had been considered only two decades after 
that. The idea of fractional-order controller was first 
proposed by Oustaloup in 1991 [3] through 
Commande Robuste d’Ordre Non Entier (CRONE) 
controller which means non-integer robust 
controller. Later on Podlubny [4] had initiated the 
fractional order PID in the form of PIλDµ in 1999 
involving an integrator of order λ and differentiator 
of order µ of less than 1. The generalization of the 
PID with fractional order of λ and µ was 
demonstrated by many researchers to give better 
performance compared to the integer PID. However, 
until now there is no systematic way to set the value 
for λ and µ [1]. 

Recently, more studies had been concentrated on 
the method for F-PID tuning [5][6]. Generally, the 
design specifications were looking for an infinite 
gain margin and constant phase margin around the 
cross-over frequency to gain robust control towards 
gain variations [7]. The solutions were then obtained 
by solving a linear numerical optimization problems 
as had been reported in [8], [9]. Another tuning 
approach was by utilizing the Ziegler-Nichols 
tuning rules based on information of its frequency 
and step response. The rules were successfully 
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applied by [10]and [11] in their studies.  
This paper investigates the application of 

fractional PI (F-PI) controller to control steam 
temperature of a steam distillation process. The 
steam was applied for essential oil extraction which 
needs to be regulated around 85ºC to preserve the 
quality of yield. Ziegler-Nichols tuning rule was 
applied for the PI controller’s gain and the fractional 
order was adjusted for the F-PI based on frequency 
response specification and steady-state error 
requirement. 

The main issue that will be discussed in this 
paper is on the steady-state error compensation 
technique that is necessary when implementing the 
fractional controller. The approximation of 
fractional terms for integrator using ORA technique 
missed a pole at the origin as opposed to the integer 
PI controller. Its absence in the F-PI controller has 
become disadvantage despites of its advantages. 
Previously, two error compensator schemes had 
been introduced by Feliu et al.[8] and Axtell [10] 
and was popularly applied ever since. This paper 
discussed on the application of both schemes and 
proposed some modification for improvement. 

This paper is organized as follows: Section 2 
outlines the Oustaloup’s approximation for fractal 
operators used to implement the F-PI. Section 3 
described briefly on the hydro-steam distillation for 
essential oil extraction system and its modelling. 
Section 4 discussed on the design on the error 
compensator. Section 5 presents the experimental 
results and demonstrates the efficiency of the 
proposed method. Finally, conclusions were drawn 
in section 6 for the issue being discussed. 
 
 
2 Fractional PI Controller 

Approximation  
The implementation of fractional controller 

involved the technique of approximating the integer 
order systems to represent the fractional order 
system. Some of the techniques normally applied 
are continued fraction expansion (CFE), curve 
fitting or identification methods and power series 
expansion (PSE). These techniques had been 
discussed and demonstrated in [2]. In identification 
methods, the approximation was analyzed in 
frequency domain to obtain a rational function 
whose frequency response fits the frequency 
response of the irrational function. This method was 
derived by Oustaloup himself and known as 
Oustaloup’s recursive approximation (ORA). This 

method is based on the approximation of a function 
in the form: 

ℜ∈= mssH m ,)(  (1) 
 
This function can be approximated by series of 

rational function synthesized as follows: 
 

∏
= +

+
=

N

n
np

nz

s

s
ks

1
,

,

1

1
)(ˆ

ω

ω
H  

(2) 

 
However, the approximation of H(s) denoted in this 
paper as is only valid within the boundary of 
low cut-off and high cut-off frequency defined as 
[ωl : ωh]. Referring to equation 2, N represents the 
number of poles and zeros which should be chosen 
beforehand. High value of N permitted good 
approximation but increased the computational 
complexity. On the other hand, low value will 
results in simpler approximation but could cause 
appearance of ripple in gain and phase behavior. 
Proper rules for selecting these parameters was 
discussed in [12]. The assignment of low and high 
frequency band limitations could somehow avoid 
the use of infinite numbers of rational transfer 
function besides limiting the high frequency gain of 
the derivative effect[13].  
The poles and zeros of the approximated function 
are calculated using the recursive equations given in 
equation 3: 
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The transfer function of F-PID is given by 
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where Kp, Ti, and Td are controller gain while λ and 
µ are the integral and differential power in real 
number. Fractional PID is the generalization of 
integer PID such that 
 
• If λ =1 and µ=1, we obtain a classical PID. 

• If λ=1 and µ=0, we obtain a PI controller. 

• If λ=0 and µ=1, we obtain a PD controller. 

• If λ=0 and µ=0, we obtain a P controller 

Hence, if λ and µ were set to arbitrary value 
between 0 and 1, the controller can be configured to 
behave within these four possibilities [6], [10], [14]. 

 

 

Fig. 1 Fractional PID control space 
 

This is the main advantage of the F-PID. Other 
than that, F-PID was acknowledged by many 
researchers to provide better control especially to a 
class of fractal system. Furthermore, F-PID is less 
sensitive to changes in process parameters and the 
controller parameters itself. There were five 
parameters that can be tuned instead of three in the 
conventional version and thus, more design 
specifications can be achieved from the λ and µ 
adjustment [5]. 

The frequency response for differentiator and 
integrator using ORA was shown in Fig.2 and Fig.3 
respectively. The magnitude and phase of each 
function related to fractional power m is given by, 
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where m represents the magnitude of λ and µ and 
will be used throughout this paper. The gain and 
phase can be adjusted between ±20 dB/dec and 
±90º. This characteristic enables more accurate 
design of the PID controller. 

 
Fig. 2 Bode diagram of ORA on sm 

 

Fig. 3 Bode diagram of ORA on s-m 
 

3 Hydro-steam Distillation for 
Essential Oil Extraction Process  

Generally, essential oil was extracted using 
distillation method. There are varieties of distillation 
methods available but common methods applied in 
the industries are hydro distillation, hydro-steam 
distillation and steam distillation. Distillation 
process separates the chemical constituents 
according to its boiling point in the form of oil 
vapours and steam mixture. Monoterpene 
hydrocarbons and oxygenated constituents have 
lower boiling point than phenols, ethers, or 
sesquiterpenes [15] and hence, will be released 
during lower temperature. The vapours are 
converted into liquid form through condensation 
process and can be separated from water using 
appropriate instruments.  
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In hydro distillation, the botanic materials are 
completely immersed in water and bring to boil. 
During the process, the materials are always in 
direct contact with heat and exposed to thermal 
degradation. Oxygenated components such as 
phenols get partially dissolved in the water and 
normally have to be redistilled in order to recover 
the lost compounds. However, redistilling process 
will increased operational cost and hence, was 
sometimes omitted [16]. Due to these reasons, the 
oils produced using hydro distillation is usually 
lower in quality compared to other distillation 
methods. 
 The most popular method used in industries is 
the steam distillation [17]. In proportion, almost 
93% of essential oils were extracted using steam 
distillation [16]. This method was preferred by 
aromatic industries because it was cheap [18] 
compared to other advanced methods such as 
supercritical fluid extraction (SFE) or solvent 
extraction. In steam distillation, the dry steam was 
supplied from satellite boiler unit into the vessel 
holding the botanic material. The advantage of this 
technique is that the amount of steam can be 
controlled to minimize thermal degradation. 
However, the application was only affordable by 
large-scale essential oil industries because the cost 
of the equipments is very high and need to be 
operated by qualified personnel. 

The practical alternative for rural industries is 
called the hydro-steam distillation. The equipment 
for this method is very much similar to the hydro 
distillation except that the botanic material was 
situated above the boiling water. Hence, it was 
prevented from being in direct contact with the 
boiling water. In this method, the steam was 
generated inside the same vessel instead of being 
supplied from external boiler. The advantages of 
this method over hydro distillation are: 1) It 
produces higher yield, 2) Oil components are less 
susceptible to hydrolysis and, 3) The process is 
faster. On the other hand, this method is much 
cheaper and simpler than the large-scale steam 
distillation plant. 
 The main problem encountered in this method is 
the uncontrolled steam temperature during the 
extraction process which leads to uncertain quality 
of the yield. The idea was to regulate the steam 
temperature by manipulating the water temperature 
inside the tank. This can be done by applying an 
electrical heater and then manipulating the power 
supplied to the heater in order to maintain the steam 
at a specified set point. Regulating the steam 
temperature in this manner was not easy since the 
dead-time is very large. Other than that, the 

response is very non-linear and slowly varying 
towards the actuating signal.  

A hydro-steam distillation plant has been 
developed for this study. The plant was developed 
from a stainless steel tank and connected to a single-
tube copper condenser at the top. The steam was 
generated by boiling the water in the same tank. A 
perforated tray was installed above the boiling water 
to support the raw material. The plant was equipped 
with temperature sensors of RTD PT100 type for 
continuous steam temperature monitoring during 
closed-loop control. The electrical heater was 
manipulated using STOM-1 power controller in 
burst mode control. Figure 4 shows a schematic 
diagram of the proposed system together with a 
photograph of the real plant. 

 

 
 

Fig.4 Schematic and photo of the hydro-steam 
distillation plant 

 
 
 

3.1 Steam Temperature Model for Control 
 Steam temperature is a self-regulating process 
and has wide operating range. But, for this 
application, the operating range was limited from 
80ºC to 100ºC. The process dynamics depend on the 
volume of water loaded into the tank. This variable 
has great impact especially on the dominant time 
constant of the process model.  
 Experiments of step input were carried out in 
order to obtain a mathematical model that describes 
its behaviors during nominal operating conditions. 
The specified conditions are listed below: 
 
 Input range: 0 – 5 volt 
 Output range: 80ºC - 100ºC 
 Nominal set point: 85ºC 
 Nominal water volume: 10 liters 
 
Two sets of input-output data were considered. Each 
dataset was assigned as Z1 and Z2 with the 
following settings: 
 

Z1: Input : 3.0 - 3.5 volt 
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Output : 73ºC - 100ºC 
Z2: Input : 3.0 - 4.0 volt 

Output : 83ºC - 100ºC 
 
Both datasets are shown in Figure 5 and 6 
respectively.    
 

 
Fig.5 Z1 dataset 

 

 
Fig.6 Validation dataset (Z2) 

 
The dynamics of steam temperature within the 

specified range can be represented by a second-
order transfer function. The approximate model can 
be determined using MATLAB System 
Identification Toolbox which requires two input-
output datasets. The first dataset (Z1) was used for 
estimation and another one (Z2) for validation. 
Model validation was based on measurement of best 
fit between validation data and simulated data out of 
the estimated model. Formula of best fit is given by 
equation 6. 
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where  
y = true value 

ŷ = estimated value 
y  = mean value 

 

 
Fig.7 Validation of estimated model 

 
The estimation produced an estimate transfer 
function as given in equation 7 with best fit of 
92.24%. 

 
(7) 

 
 
 
3.2 PID Tuning with Ziegler-Nichols Rules 

This study applied Ziegler-Nichols PID tuning 
based on a process reaction curve. It should be noted 
that, these rules were only accurate for a process 
with an s-shaped step response or otherwise will not 
produce satisfactory response. The PID parameters 
can be acquired easily from the step response test 
and no process model is required. The tuning rules 
are listed in Table 1. 

 
 
 
Table 1  Ziegler-Nichols PID tuning rules from 
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Information about the process gain (K), process 

dead-time (θ), and process time constant (τ) can be 
obtained from the process reaction curve. These 
parameters are described in Fig. 8.  
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Fig. 8 Process reaction curve of steam temperature 

in hydro-steam distillation process. 
 
The controller parameters are then calculated 

according to the rules listed in Table 1 for K=4.5, 
θ=25 sec, and τ=280 sec. For the standard PID 
structure, the following PI controller was obtained; 
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4 Error Compensator Design for 
Fractional PI 

Applying ORA to an integrator never generates a 
pole at the origin and hence, the controller will not 
be able to track the set point without steady-state 
error [12]. The approach currently used to resolve 
this matter was by introducing a pure integrator and 
split the fractional integrator into two parts. This 
method was introduced by Axtell [10] and described 
by Eq. 9. 
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The ORA was then applied to the fractional 

function of . This approach was used by 
Ramiro [10] but conversely, Farshad [19] has 
proved that this approach produced inaccurate 
results. Applying a pure integrator will modify the 
overall frequency response and thus, the output will 
not be as expected and may cause instability. 
Alternatively, the steady-state error can be improved 
by increasing the system’s type by introducing Eq. 
10 as proposed by Feliu-Batlle et al. [8] 
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where n being a small value so that high frequency 
specifications were maintained and the system gain 

will not altered drastically. This approach was 
applied in this research for steady-state error 
compensation but with some modifications. The 
effect of each steady-state error compensation 
technique discussed above was described through 
Bode plots of the integrator terms and the composite 
PI controller. Figure 9 represents the effect from 
error compensator described by Eq.9 while Fig.10 
represents Eq.10. Both conditions were simulated 
for m=-0.5. 

 
 
 
Fig. 9 Bode plot of FO-PI with error 

compensation in Eq. 9 when m=-0.5. 
 
When the pure integrator was cascaded to the 

fractional integrator (FI), both magnitude and phase 
characteristics were totally altered for the whole 
frequency range. The phase was shifted down and 
reduced the phase margin. Consequently, the 
overshoot will increase. The phase was no more 
maintained around the crossover frequency and 
hence, gain changes will not be tolerated. On 
contrary, using the second method just increased the 
system’s type and maintains all other behaviors 
around specified frequency range. The overall 
magnitude specifications can be achieved by a 
simple gain adjustment. 
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Fig. 10  Bode plot of F-PI with error 

compensation in Eq. 10 when m= -0.5 
 
The results were based on simulation study of the 

second-order model given by Eq.7. PI parameters 
were obtained using the Ziegler-Nichols rules and 
were compared with the F-PI having the same 
controller settings. The integrator was approximated 
using ORA with N = 4, ωL=0.01 rad/s and 
ωH=10000 rad/s. The approximate transfer function 
was multiplied with gain, k so that the Bode 
magnitude crossed 0 dB (unity gain) at 1 rad/s. 

 

4.1 F-PI without Error Compensation  
The first experiment was implemented without 

any error compensator for the F-PI. The objective 
here was to get the idea on the effect of F-PI and to 
gauge its limitation. The controllers were compared 
for temperature regulation at 85ºC. The result for I-
PI was given in Table 2. The response has high 
overshoot but zero steady-state error. The settling 
time reported in this paper includes the input offset 
of 10s which should be subtracted from the reported 
value. 

 
 
 

Table 2 I-PI Closed-loop Performances 
Rise time, 

(s) 
Settling 
time, (s) 

OS 
(%) 

Steady-state 
error (ºC) 

20 314 74.53 0 
 
The F-PI was implemented with the same 

controller settings. The integral term was varied for 
integer order, m = -0.1, -0.5, and -0.9. For each case, 
the gain k was adjusted accordingly as mentioned in 

previous section. The output response together with 
the output from I-PI was shown in Fig.11 and the 
performance criterions were given in Table 3. 

 

 
Fig. 11 F-PI closed-loop responses without error 

compensation. 
 
In terms of overshoot, the F-PI version was better 

than the I-PI. The overshoot was reduced with the 
fractal power. But, none of the F-PI output can 
regulate the temperature at the set point and not 
even settled within the ±5% (±0.75ºC) boundary. 
This was due to the absence of pole at the origin as 
discussed previously. 

 
TABLE 3 F-PI (WITHOUT ERROR COMPENSATION) 

CLOSED-LOOP PERFORMANCES. 
m k OS (%) Steady-state 

error (ºC) 
-0.1 0.79 28.27 1.33 
-0.5 0.32 33.93 1.21 
-0.9 0.1 48.50 0.87 

 
 

4.2 F-PI with fixed error compensation 
The next stage of evaluation accommodated an 

error compensator described by Eq.10. The 
compensator was design for m=-0.5 where n will 
remain fixed at 0.03 rad /s. The fractional power 
was varied for m= -0.1, -0.5 and -0.9. The 
incompetency of the compensator can be observed 
in Fig.12. The output performance was given in 
Table 4. 
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Fig. 12 F-PI closed-loop responses with fixed 

error compensation. 
 
The overall transient was a bit different from the 

results obtained in section 4.1. Obviously, steady-
state error was improved and eliminated for m=-0.5 
and -0.9. The error when m=-0.1 was reduced. 
However, overshoot in the output was worse for 
every order of m but the settling time was improved 
compared to I-PI. 

 
 
Table 4 F-PI (with Fixed Error Compensation) 

Closed-Loop Performances. 
m k n Settling 

time (s) 
OS 
(%) 

Steady-
state error 

(ºC) 
-0.1 0.79 0.03 - 30.07 0.84 
-0.5 0.32 0.03 224 40 0 
-0.9 0.1 0.03 294 65.47 0 

 
 

4.3 F-PI with error compensation of variable 
n 

From the results obtained in section 4.1 and 4.2, 
it can be concluded that the zero of the error 
compensator had some impact on the overall 
system’s response and should be adjusted to get 
better response for different order of m. So, this 
study proposed an adjustable n which is the zero of 
the error compensator transfer function.  

The movement of zero had significant impact on 
the phase margin especially when m=-0.5 and -0.9 
while for m=-0.1, the presence of the filter was very 
dominant due to small magnitude and phase of the 
fractional integrator. For m=-0.9, great improvement 
in %OS was observed when n= 0.03 compared to 
n=0.003. The overall results were presented in 
Fig.13 and closed-loop performance was given in 
Table 5. 

 

 
Fig. 13 F-PI closed-loop responses with variable 

error compensation. 
 
Table 5 F-PI (with variable error compensation) 

closed-loop performances 
m k n Settling 

time (s) 
OS 
(%) 

Steady-
state error 

(ºC) 
-0.1 0.79 0.3 239 46.93 0 
-0.5 0.32 0.03 225 40.00 0 
-0.9 0.1 0.003 301 50.07 0 

 
 

 
5 Experimental Results 

The simulation results were validated on a hydro-
steam distillation process. For real-time 
implementation, the approximated transfer function 
of the integrator was discretized using Tustin 
method with sampling time of 1 sec. The real-time 
control was performed using MATLAB Real-time 
Workshop interfaced with PCI 1711 data acquisition 
card from Advantech Automation. 

The first result was used to validate the data from 
Table 5. The real-time response was slower than the 
simulation because the actuator saturation was 
neglected during simulation. However, the closed-
loop responses of F-PI were significantly improved 
the overshoot of the steam temperature produced by 
the PI controller. The efficiency of the proposed 
error compensator was proven in this experiment 
whereby all responses of F-PI produced no steady-
state error. Figure 14 presents the real-time F-PI 
with the same setting listed in Table 5.  
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Fig. 14 F-PI setting from Table 5 compared with I-
PI. 

However, the overshoot can be further improved 
by adjusting the value of n to increase its phase 
margin as had been presented in the previous 
section. This is obvious for the case when m is set to 
0.1 and n is dominating the frequency response of 
the overall system. The overshoot of this case can be 
significantly reduced by letting n = 0.03 and the 
output still saturates without steady-state error. 

 
Fig. 15 F-PI with m=-0.1 and adjustable n. 

The same situation can be demonstrated to the 
case when m=0.9. The overshoot was significantly 
improved for n = 0.003 compared to n = 0.03. 

 
Fig.16  F-PI with m=-0.9 and adjustable n. 

 
 
Conclusion 
This study demonstrated the improvement of 
fractional PI over the integer PI. The inherent 
steady-state error was eliminated using an error 
compensator comprised of a very small zero and a 
pole at origin. This study also show that the 
compensator was not generalized for every order of 
the fractional integrator but should be tuned for 
better phase margin that can improve the output’s 
overshoot. Another observation was that the error 
compensator is dominating the closed-loop response 
for cases when fractional-order is less than 0.5. The 
results were comprehensively explained by 
simulation and verified experimentally.  
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