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Abstract: - In this paper, a comparison of various Evolutionary Optimization (EO) techniques has been 
performed for controller tuning (PID and FOPID) for DC motor speed control applications. Three techniques 
have been considered, which are: genetic algorithm (GA), particle swarm optimization (PSO), and differential 
evolution (DE). A fixed structure PID and FOPID controller has been considered. Usually in literature, 
comparison has been carried out based on time domain performance indices; whereas, in this work, mixed 
sensitivity H∞ method is considered as the fitness function for the comparison of various EO techniques in order 
to assess the robustness of the designed system. It has been shown that GA optimized FOPID controller has 
better robustness with respect to model uncertainties. 
 
Key-words: Controllers, differential evolution, DC motor, genetic algorithm, mixed sensitivity function, 
particle swarm optimization 
1 Introduction 
The proportional–integral–derivative (PID) 
controller is the most widely used controller for 
industrial applications due to its simple design and 
ability to provide effective control [1]. But, many 
real-world physical systems need fractional calculus 
as they are modelled by fractional-order differential 
equations, i.e., equations involving non-integer 
order integrals and derivatives such as dynamic 
systems with materials having memory and 
hereditary effects [2], chaotic systems [3], automatic 
voltage regulator (AVR) [4], permanent magnet 
synchronous machine (PMSM) AC servo system 
[5]. The emergence of ‘fractance’ and memristors 
[6] and progress in the synthesis of real non-integer 
differentiator has led to the development of 
fractional-order controllers, including fractional-
order PID controllers (FOPID) [1]. The main 
advantage of using fractional-order controllers for a 
linear control system is that the time and frequency 
responses can be obtained in the form of functions 
other than that of exponential type and better 
performance as compared to integer-order 
controllers can be obtained. In a PID controller, the 
derivative and the integral order are of integer 
nature; whereas, in FOPID, the derivative and 
integral order are of fractional nature rather than 
integer [2]. The key challenge of designing a FOPID 
controller is to determine the two key parameters  
(integral order) and  (derivative order) apart from 
usual tuning parameters of PID. Both  and  are in 

fraction, which increases the robustness of the 
system and gives an optimal control [7-9].  

DC motor is widely used for industrial 
applications due to its easy controllability and high 
performance [10-11]. In DC motor speed control, 
robustness is the primary requirement of design 
followed by the performance of the system. 
Therefore, many controllers are designed to ensure 
the disturbance rejection and robustness. While 
many control structures have been proposed in 
literature for DC motor speed control, such as 
adaptive variable structure control [12], differential 
feedback control [13], fuzzy logic DC motor speed 
control [14]; yet to incorporate robustness in the 
controller design, H∞ is the most popular optimal 
control technique [15]. A design procedure which 
incorporates loop shaping methods to obtain 
performance and robust stability trade off and a 
particular H∞ optimization problem to guarantee 
closed loop stability has been proposed in [16]. 
Moreover, adaptive neural method [17], robust 
controller [18] and robust adaptive discrete variable 
structure control scheme for speed control of DC 
motor [12] have also been introduced. A multi 
objective formulation has also been proposed [19]. 

Numerous controllers have been developed in 
literature for DC motor speed control namely: PID 
controller, fuzzy logic controller, neural network 
[20], fuzzy-neural network, fuzzy-genetic algorithm 
[21], fuzzy-ant colony, fuzzy-swarm [14], fuzzy-
sliding mode control [22]. Many techniques have 
been used to tune the parameter of these controllers 
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such as particle swarm optimization (PSO) [23-24], 
augmented Lagrangian particle swarm optimization 
[25], improved differential evolution [7], and 
FOPID controllers tuned by Ziegler-Nichols type 
rules [26]. Among these techniques evolutionary 
optimization (EO) techniques have emerged as 
popular controller design techniques. However, a 
comparison of various evolutionary optimization 
(EO) techniques like genetic algorithm (GA), 
Particle Swarm Optimization (PSO) and Differential 
Evolution (DE) for FOPID tuning still needs to be 
explored and has been investigated in this work.  

In this paper, GA, PSO and DE have been 
employed to design an FOPID controller for DC 
motor speed control. The proposed FOPID 
controller is simulated with six tuning parameters

),,,,,( µλτ DDip kkk and its performance is 
compared with optimally tuned PID controller

),,,( DDip kkk τ . It has been concluded that with 
respect to system uncertainties, robustness is 
significantly improved by FOPID controller. In 
literature, many authors have explored the FOPID 
controller tuning using time domain performance 
indices such as IAE, ISE, ITAE and ITSE [27-28], 
having constraints on gain crossover frequency, 
phase margin, robustness to variation in the gain of 
the plant, robustness to high frequency noise and 
good output disturbance rejection [29] or 
minimizing the characteristics equation [30]; but, 
issues of stability and robustness with mixed 
sensitivity function involving FOPID controller 
have not been adequately addressed. 

The paper is presented as follows. Sections 2 and 
3 present the overview of the concepts of fractional 
calculus and EO techniques, respectively. Design of 
controllers for DC motor is described in Section 4. 
Section 5 is devoted to tuning of the proposed 
FOPID and PID controllers using various EO 
techniques like GA, PSO and DE. Section 6 consists 
of comparison of FOPID and PID controllers. 
Section 7 concludes the paper. 
 
2 Fractional Calculus 
Fractional calculus may be explained as the 
extension of the concept of a derivative operator 
from integer order ‘n’ to arbitrary order ‘v’ where v 
may be a real value or a complex value or may be a 
complex valued function ),( txvv = : 

v

v

n

n

dx
d

dx
d

→  

The most commonly referred definition of 
fractional derivatives and fractional integrals was 
given by G. F. B. Riemann and J. Liouville, 

according to which, the fractional integral of order 
)0('' >vv  for a function  is given by: 
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with the condition that  and )(0 xfD n
x
− are causal 

functions. For initial conditions to be zero, the 
Laplace transform of  is given by )(][0 sFsDL vv

x =  
i.e., for zero initial conditions, the system whose 
dynamic behavior described by differential 
equations having fractional derivatives results in 
transfer functions with fractional orders of s [31-33]. 
To simulate fractional order of s in MATLAB, this 
is to be approximated by usual integer order transfer 
function having an infinite number of poles and 
zeroes. It is also possible to logically approximate it 
with a finite number of   poles and zeros. Oustaloup 
proposed a method of approximation of a function 
of the form [34]: 
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where, uω  is geometrical mean of the unit gain 
frequency and the central frequency of a band of 
frequencies distributed around it. That is,  

bhu ωωω =  (6) 

where, hω and bω  are the high and low transitional 
frequencies. 
 
3 Evolutionary Optimization (EO) 

Techniques 
Various EO algorithms used in this paper are 
described as follows: 
3.1 Genetic Algorithm (GA) 
GA is a global search technique developed by J. 
Holland in 1970’s. It is used to find true or 
approximate solutions to complex optimization 
problems. This technique is inspired by evolutionary 
biology such as inheritance, mutation, selection and 
crossover (also called recombination). It is 
implemented as a simulation problem in which a 
population of abstract representation (called 
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chromosome or the genotype or the genome) of 
candidate solutions (called individual, creatures or 
phenotypes) moves towards better solution by 
iteratively applying a set of stochastic operators [35-
37]. 
 
3.2 Particle Swarm Optimization (PSO) 
The PSO was developed by J. Kenedy and R. 
Eberhart in 1995. It is an evolutionary optimization 
technique based on the movement and intelligence 
of swarm that move around in a search space 
looking for the best solution. Each particle is treated 
as a point in N-dimensional space which adjusts its 
flight according to its own flying experience as well 
as the flying experience of the other particles. Each 
particle tries to improve its position using its current 
position, its current velocity, the distance between 
its current position and its best position ‘pbest’ and 
the distance between its current position and global 
best position ‘gbest’. It is an evolutionary technique 
similar to GA; but, it has a faster convergence [38-
40]. 
 
3.3 Differential Evolution (DE) 
DE was introduced by Storn and Price in 1996. It is 
a stochastic, population based optimization 
algorithm like GA. But one big difference is that DE 
is developed to optimize real parameters or real 
valued functions that are non-differentiable, non-
continuous, non-linear, noisy, flat, multi 
dimensional or have many local minima. As a result, 
the idea of mutation and crossover are substantially 
different in both the techniques. DE has better 
convergence to global optimum, more accurate and 
reduced number of simulations in comparison to 
other optimization techniques [41-42]. 
 
4 Controller design for DC motor 

speed control 
A block diagram of speed control system involving 
DC motor and a controller is shown in Figure 1. 
Here, input is the reference speed, controller is PID 
or FOPID, output is speed  and disturbance is 
due to measuring channel, environment or any kind 
of noise. 
 
4.1 PID controller 
PID control with its three term functionality offers 
the simplest solution to many real world control 
problems. A PID controller with four tuning 
parameters is usually selected: 

1
)(

+
++=

s
sk

s
kksK

D

Di
p τ

 (7) 

Tuning parameters of the controller are:
( )DDip kkkp τ,,,=    

 

 
 
 
 
 
 
 

Figure 1. Controller structure for DC motor 
 
4.2 FOPID controller 
The differential equation of a fractional order PIλDμ 
controller can be described as: 

)()()()( teDkteDktektu tDtip
µλ ++= −  (8) 

and its transfer function can be given as: 
µλ skskksK Dip ++= −)(  (9) 

FOPID controller involves selection of five 
parameters: three parameters (same as PID) and two 
fractional parameters µλ, . More flexibility is added 
in accomplishing control objective by this 
expansion. A drawback with derivative action is the 
noise amplification, which can be attenuated by 
replacing the term µskD  by 

1+s
sk

D

D

τ

µ  (insertion of pole 

in the vicinity of the zero of the derivative action). 
The transfer function of FOPID controller becomes: 

1
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D
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So, there are six parameters to tune now: 
),,,,,( µλτ DDip kkkp =  

 
4.3 DC motor model 
DC machines are characterized by their versatility. 
By means of various combinations of shunt, series 
and separately excited field windings, they can be 
designed to display a wide variety of volt-ampere or 
speed-torque characteristics for both dynamic and 
steady state operation and are frequently used in 
many applications requiring a wide range of motor 
speeds and a precise output motor control. The 
schematic diagram of a typical DC motor and its 
model are shown in Figure 2 and 3 respectively. 

From Figure 3, the transfer function from the 
input voltage, V(s), to the output velocity, )(sω  and 
to the output angle, )(sθ  can be written as: 

( )( ) 2)(
)(
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where, K is the emf (Nm/A), L is inductance 
(henry), R is electrical resistance (ohm), J is the 
moment of inertia of the rotor (kg.m2/s2), and B is 
the damping ratio of the mechanical system. 

 
Figure 2. Schematic diagram of a DC Motor 

  
 
 
 
 
 
 
 
 
 
 

Figure 3. Block diagram of DC motor  
 
 
4.4 Fitness function in the proposed 

technique 
The fitness function is based on the concept of 
robust mixed-sensitivity control which is the infinity 
norm of weighted sensitivity and complimentary 
sensitivity function [10]. In this control method, the 
multiplicative weights are taken to formulate the 
uncertainty which is generated due to changes in the 
parameters of the DC motor. In this paper, W1 is the 
performance weighting function, which is specified 
for the disturbance rejection of the system to limit 
the magnitude of the sensitivity function, and W2 is 
the robustness weighting function and is specified 
for the uncertainty in the plant to limit the 
magnitude of the complementary sensitivity 
function. This technique, called loop shaping 
technique, is widely used for selecting the weight 
functions for the synthesis of the controller. If S is 
denoted as the plant sensitivity function (transfer 
function between output and disturbance) and T as 
the plant’s complementary sensitivity function 
(transfer function between output and input), the 
cost function can be written in terms of infinity 
norm as: 

1
2

1 <=
∞

TW
SW

J  (13) 

In Figure 1, if the DC motor is denoted as plant 
‘P’ and controller as ‘K’ then S and T can be 
expressed as: 

( ) 11 −+= PKS   (14) 
( ) 11 −+= PKPKT   (15) 

This cost function in (13) is solved as a 
minimization problem to solve the optimal 
parameters of the controller. 
 
5 Design Example 
The parameters of FOPID and PID controllers have 
been designed using EO techniques with the 
objective function given by equation (13). The 
simulation has been done using MatLab V7.2. The 
parameters of the armature controlled DC motor are 
given in Table 1.  

Table 1. Parameters of considered DC motor 
Motor Parameter Value 

K 0.1 (Nm/A) 
L 0.5 (H) 
R 2 (ohm) 
J 0.02 (kg.m2/s2) 
B 0.2 (N-m.s/rad) 

 
Thus, the transfer function between speed and 

voltage of the DC motor by taking above parameters 
can be written as 

41.014.0001.0
1.0

)(
)(

2 ++
=

sssV
sω   (16) 

The synthesis procedure of H∞ controller can be 
done only by selecting proper weight functions. The 
selection purely depends on the plant model. There 
are no hard and fast rules for selecting the 
performance weight function and the robustness 
weighting function. An iterative work with assumed 
initial values is usually conducted to find out the 
weight functions W1 and W2. The guidelines for 
selection of these weighting functions have been 
explained in [43]. Inverse of W1 should reflect the 
desired shape of the sensitivity function (S); 
whereas, inverse of W2 should exhibit the shape of 
the complementary sensitivity function (T). The 
parameters (coefficients and constants) of W1 are 
adjusted such that the singular value curve of S 
remains below the singular value curve of inverse of 
W1. Similarly, the parameters of W2 are adjusted 
such that the singular value curve of T remains 
below the singular value curve of inverse of W2.  

In this work, four cases of different weighting 
functions have been considered in order to make 
detailed analysis. The frequency dependent 
weighting functions considered are: 
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In Case 1, W1 and W2 have been taken from [10]. 
In Case 2, W2 has been taken from [10] and W1 has 
been tuned using EO technique. In Case 3, W2 is 
taken from [10] and denominator of W1 is tuned 
using EO technique. In Case 4, W2 is taken from 
[10] and numerator of W1 is tuned using EO 
technique.  

The tuning of controller parameters in Case 1 is 
explained below: 
 
5.1 Tuning using GA (Case 1)  
In Case 1, the EO algorithm (GA, PSO, DE) aims to 
find optimal value of FOPID controller  

 to minimize the objective 
function as given in (13). The initial value, lower 
and upper bound of solution variables are set at 
[92.38, 198.93, 7.24, 0.0006, 0, 0]; [10, 100, 1, 
0.0001, 0, 0] and [1000, 1000, 100, 0.1, 1, 1] 
respectively. The upper and lower bounds of 
solution variables have been selected after 
performing a number of experiments. It was 
observed that if the range of the bounds is increased 
then the search space increases and this may lead to 
non-convergence of the optimization algorithm. On 
the other hand, if the range is reduced then sufficient 
optimization is not achieved.  

For the proposed simulation, the size of 
population is taken as 20 and number of generations 
is equal to 100. The mutation rate is chosen to be 
0.05. The GA gets converged in 56 generations with 
the optimal solution, [291.4001, 672.8005, 99.9982, 
0.0832, 0.9969, 1.0000], which on substitution in 
(10) provide following controller K(s).  

10832.0
9982.998005.6724001.291)(

0000.1

9969.0 +
++=

s
s

s
sK  

According to the theory of robust mixed 
sensitivity control, the fitness function chosen 
should be less than 1and the evaluated infinity norm 
is 0.5361. Therefore, designed system is robust. 

The same GA specifications are used to tune PID 
controller parameters . The initial 
value, lower and upper bound of solution variable 
are set at [95.38, 200.93, 10.24, 0.0009], [1, 10, 1, 
0.0001] and [100, 1000, 100, 0.1] respectively. The 
GA converges in 54 generations with the optimal 
solution, [29.4099, 825.4733, 9.5151, 0.0158]; 
which on substitution in (7) provide following 
controller K(s):  

10158.0
5151.94733.8254099.29)(

+
++=

s
s

s
sK  

The system obtained by the estimated controller is 
robust as the fitness function obtained is 0.7221, 

which is less than 1. Figure 4 shows the sensitivity 
function of the plant using PID and FOPID 
controller. It is shown that with FOPID, disturbance 
gets attenuated in larger frequency range. Figure 5 
shows that the noise attenuation is more with the 
FOPID controller. Figure 6 gives the step response 
of the plant with PID and FOPID controller. A step 
disturbance is introduced at t=3.5 sec. and it is 
observed that steady state value is obtained far 
earlier with FOPID than PID controller. 
 
 

 
Figure 4. Sensitivity function of DC motor with PID and 

FOPID controller using GA 
 
 

 
Figure 5. Complimentary sensitivity function of DC 

motor with PID and FOPID controller using GA 
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Figure 6. Closed loop step response with PID and FOPID 

controller using GA 
 
5.2 Tuning using PSO (Case 1) 
Initialization parameters used for PSO are: 
population size = 25, maximum number of iterations 
= 2500, minimum and maximum velocities are 0 
and 2, cognitive acceleration coefficient ‘C1’ = 2.1, 
social acceleration coefficient ‘C2’ = 1.3, minimum 
inertia weight = 0.6 and maximum = 0.9. The PSO 
converges in 34 iterations with the optimal solution 
of the FOPID controller, [241.4382, 354.8308, 
90.8583, 0.0867, 0.9954, 0.9996], which on 
substitution in (10) provides the following controller 
K(s).  

10867.0
8583.908308.3544382.241)(

9996.0

9954.0 +
++=

s
s

s
sK  

The infinity norm obtained by the evaluated 
controller is 0.5025, which is less than 1. 
Consequently, the system is robust. 

The same PSO specifications are used to tune PID 
controller parameters. The initial value, lower and 
upper bound of solution variable are set at as that in 
case of GA. The PSO converges in 60 iterations 
with the optimal solution, [72.1678, 202.3394, 
4.2014, 0.0001], which on substitution in (7) 
provides the following controller K(s): 

10001.0
2014.43394.2021678.72)(

+
++=

s
s

s
sK  

The system obtained by the estimated controller is 
also robust as the fitness function obtained is 
0.5008. Figure 7 shows the sensitivity function of 
the plant using PID and FOPID controller. It is 
shown that with FOPID, disturbance is getting 
attenuated in larger frequency range. Figure 8 shows 
that the noise attenuation is more with FOPID 
controller.  Figure 9 gives the step response of the 
plant with PID and FOPID controller. 

 
 

 

 
Figure 7. Sensitivity function of DC motor with PID and 

FOPID controller using PSO 
 

 
Figure 8. Complimentary sensitivity function of DC 

motor with PID and FOPID controller using PSO 
 

 
Figure 9. Closed loop step response with PID and FOPID 

controller using PSO 
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maximum value).  The other parameters are set as 
follows: count of population members = 15; 
maximum number of iteration= 200; step size= 0.8, 
crossover probability= 0.8. The same initial values, 
lower and upper bounds for initial values, are taken 
as in earlier two optimization techniques. 

The DE in 200 iterations converges with the 
optimal solution for FOPID, [125.8399, 82.2894, 
52.4687, 0.1972, 1.1986, 1.0188]; which on 
substitution in (10) provides the following controller 
K(s):  

11972.0
4687.522894.828399.125)(

10188.1

1986.1 +
++=

s
s

s
sK  

Here, infinity norm comes out to be 0.5009, 
therefore, the system is robust. The same DE 
specifications are used to tune PID controller 
parameters. The initial value, lower and upper 
bound of initial values of solution variable are set at 
as that in case of GA and PSO. The DE converges in 
200 iterations with the optimal solution, [65.5010, 
985.1620, 12.1832, 0.00001]; which on substitution 
in (7) provide the following controller K(s):  

100001.0
1832.121620.9855010.65)(

+
++=

s
s

s
sK  

Here, infinity norm comes out to be 0.5005; 
therefore, the system is robust. Figure 10 shows the 
sensitivity function of the plant using PID and 
FOPID controller. It shows that with FOPID 
disturbance is getting attenuated in larger frequency 
range. Figure 11 shows that the noise attenuation is 
more with the FOPID controller. Figure 12 gives the 
step response of the plant with PID and FOPID 
controller.  

 
Figure 10. Sensitivity function of DC motor with PID and 

FOPID controller using DE 
 
The similar exercise was carried out in Case 2, Case 
3, and Case 4 as well; where, in addition to the 
controller parameters, coefficients of weighting 
function W1 were also optimized by various 
optimization techniques. The optimized parameters 

values of FOPID and PID controllers are given in 
Table 2-5 for Case 1, Case 2, Case 3 and Case 4 
respectively. It can be observed that optimized 
parameters values for both the controllers using GA 
and PSO are close to each other as compared to that 
obtained using DE. 
 

 
Figure 11. Complimentary sensitivity function of DC 

motor with PID and FOPID controller using DE 
 

Table 2. Optimized parameters values for Case 1 
Optimized 
Parameters 

Value of Optimized parameters and fitness 
function(f) with FOPID controller 

GA PSO DE 
 FOPID PID FOPID PID FOPID PID 

kp 291.40 24.41 241.44 72.168 125.84 65.501 
ki 672.80 825.47 354.83 202.34 82.289 985.16 
kD 99.998 9.5151 90.858 4.2014 52.469 12.183 
τD 0.0832 0.0158 0.0867 0.0001 0.1972 0.00001 

 0.9969 * 0.9954 * 1.1986 * 
µ 1.000 * 0.9996 * 1.0188 * 
f 0.5361 0.7221 0.5025 0.5008 0.5009 0.5005 

Assumed parameters: p1=0, p2=0.5, p3=10, q1=0, q2=1 and 
q3=0.001; * Not applicable 

Table 3. Optimized parameters values for Case 2 
Optimized 
Parameters 

Value of Optimized parameters and fitness 
function(f) with FOPID controller 

GA PSO DE 
 FOPID PID FOPID PID FOPID PID 

kp 424.54 22.825 142.10 38.952 90.853 65.523 
ki 100.25 187.43 100.00 100.02 916.28 195.71 
kD 99.767 17.102 99.997 5.1307 515.78 5.0192 
τD 0.0819 0.0013 0.0234 0.0001 1.0335 0.0360 

 0.9969 * 0.9975 * 0.6728 * 
µ 0.9884 * 1 * 0.7762 * 
p1 0.1541 0.0248 0.0185 0.0359 0.3096 0.1684 
p2 0.0592 0.8515 0.646 0.2402 7.5188 1.1233 
p3 1.2424 0.8518 2.5366 0.5821 9.0237 3.7505 
q2 0.3793 02666 0.4205 9.8754 8.9039 8.9857 
q3 0.5499 0.1304 0.4666 0.1684 3.7960 9.4919 
f 0.3009 0.2190 0.2287 0.1789 0.3549 0.3734 

Assumed parameters: q1=1 
* Not applicable 
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Table 4. Optimized parameters values for Case 3 
Optimized 
Parameters 

Value of Optimized parameters and fitness 
function(f) with FOPID controller 

GA PSO DE 
 FOPID PID FOPID PID FOPID PID 

kp 96.269 34.571 10.160 42.999 363.87 24.969 
ki 134.65 65.504 100.13 73.691 185.86 100.12 
kD 80.457 3.2674 45.898 4.8694 985.13 9.7017 
τD 0.4902 0.0137 0.0577 0.0005 0.8464 0.8607 

 0.9702 * 0.1871 * 0.7679 * 
µ 0.9902 * 1 * 0.7478 * 
q2 0.8547 9.9966 0.8765 9.9892 1.6567 4.4505 
q3 0.8135 9.3605 0.8846 9.9352 0.8048 7.6576 
f 0.5880 0.1892 0.5721 0.1854 0.3664 0.4173 

Assumed parameters: p1=0, p2=0.5, p3=10, q1=0 
* Not applicable 

 

Table 5. Optimized parameters values for Case 4 
Optimized 
Parameters 

Value of Optimized parameters and fitness 
function(f) with FOPID controller 

GA PSO DE 
 FOPID PID FOPID PID FOPID PID 

kp 62.919 34.571 67.025 42.999 180.40 24.969 
ki 280.51 65.504 100.08 73.691 1736.6 100.12 
kD 98.186 3.2674 99.936 4.8694 254.00 9.7017 
τD 0.7983 0.0137 0.1569 0.0005 0.9000 0.8607 

 0.5699 * 0.7288 * 0.9000 * 
µ 0.9922 * 0.9994 * 0.9000 * 
p2 0.2343 9.9966 0.2235 9.9892 0.2000 4.4505 
p3 0.4242 9.3605 0.3451 9.9352 5.3000 7.6576 
f 0.3009 0.1892 0.2317 0.1854 0.3660 0.4173 

Assumed parameters: p1=0, q1=0, q2=1 and q3=0.001 
* Not applicable 

 
 

 
Figure 12. Closed loop step response with PID and 

FOPID controller using DE 
 
 
6 Comparison of PID and FOPID 

controlled process 
The comparison drawn between the two controllers 
has been shown in Table 6 to Table 8 for GA, PSO 
and DE respectively for all the four cases. 

From Table 6-8, it can be observed that the rise 
time, settling time and peak overshoot are reduced 
(improved) in case of a FOPID controller than that 
in the case of a PID controller; but, in case of PSO 
and GA; overshoot is almost negligible when PID 
controller is applied. It can also be observed that 
percentage reduction in performance characteristics 
is more in case of GA. The variation in the value of 
the fitness function during iterative process of GA 
has been shown in Figure 13 and Figure 14 for PID 
and FOPID respectively. The variation in the value 
of the fitness function during iterative process of 
PSO has been shown in Figure 15 and Figure 16 in 
case of PSO for PID and FOPID respectively. The 
variation in the value of the fitness function during 
iterative process of DE has been shown in Figure 17 
and Figure 18 for PID and FOPID respectively. It is 
observed that though PSO requires less number of 
iterations than the other techniques but GA 
converges more sharply than the other techniques 
i.e. variation in the fitness function with successive 
iteration is very less in GA in comparison to other 
optimization techniques. Further, it can also be 
observed that there are many large spikes in fitness 
function of PID controller in Figure 15 (PSO) and 
Figure 17 (DE); whereas; in case of Figure 13 (GA) 
the convergence is smooth. This may be due to the 
characteristic of the process undertaken by different 
algorithms for searching the search space. 

7 Conclusion 
In this paper, a comparison of various evolutionary 
optimization techniques for the designing of PID 
and FOPID controllers for DC motor speed control 
has been investigated. The comparison involves 
frequency domain performance criterion. In order to 
examine the effect of cost function, different cases 
are examined by taking different coefficients of 
performance weighting function unknown.  The 
performance of PID and FOPID is compared using 
GA, PSO and DE for different cases and it is 
observer that in each case, FOPID has better 
performance characteristics in terms of rise time, 
settling time and overshoot. Considering all the 
results, it is also observed that though PSO requires 
less number of iterations than the other techniques 
but variation in the fitness function with successive 
iteration is very less in GA in comparison to other 
optimization techniques. 
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Table 6. Comparison of PID and FOPID controller Using 
GA 

Parameters PID controlled process FOPID controlled process 
Cases  Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4 

Rise time 
(s)  

0.057 0.221 0.198 0.261 0.0176 0.0192 0.0387 0.030 

Settling 
time (s) 

0.982 2.35 0.898 0.539 0.156 0.092 0.475 0.312 

Peak 
Overshoot 

(%) 

18.07 4.92 0 0 17.3 13.6 9.86 12.2 

Steady state 
error 

0 0 0 0 0 0 0 0 

Table 7. Comparison of PID and FOPID controller using 
PSO 

Parameters PID controlled process FOPID controlled process 
Cases  Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4 

Rise time 
(s)  

0.045 0.182 0.176 0.206 0.038 0.031 0.017 0.041 

Settling 
time (s) 

0.0775 0.543 0.907 0.557 0.377 0.277 0.445 0.308 

Peak 
Overshoot 

(%) 

0.881 0 0 0 15.4 3.82 6.81 3.78 

Steady 
state error 

0 0 0 0 0 0 0 0 

Table 8. Comparison of PID and FOPID controller using 
DE 

Parameters PID controlled process FOPID controlled process 
Cases Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4 

Rise time 
(s) 

0.0197 0.0421 0.0937 0.057 0.0703 0.0085 0.0051 0.0129 

Settling 
time (s) 

0.081 0.239 0.545 1.78 0.76 0.0831 0.021 0.282 

Peak 
Overshoot 

(%) 

4.52 16.6 22.6 32.1 4.67 7.04 8.62 15.7 

Steady state 
error 

0 0 0 0 0 0 0 0 

 

 
Figure 13. Fitness function using GA for PID controller 

 
 

 

 
Figure 14. Fitness function using GA for FOPID 

controller 
 

 
Figure 15. Fitness function using PSO for PID controller 

 
 

 
Figure 16. Fitness function using PSO for FOPID 

controller 
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Figure 17. Fitness function using DE for PID controller 

 

 
Figure 18. Fitness function using DE for FOPID 

controller 
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